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Abstract

Background: Phenotype prediction with genome-wide markers is a critical but difficult problem in biomedical research due to many

issues such as nonlinearity of the underlying genetic mapping and high-dimensionality of marker data. When using the deep learn-

ing method in the small-n-large-p data, some serious issues occur such as over-fitting, over-parameterization, and biased prediction.

Methods: In this study, we propose a split-and-merge deep learning method, named SM-DL method, to learn a neural network on the

dimension reduce data by using the split-and-merge technique. Conclusions: Numerically, the proposed method has significant perfor-

mance in phenotype prediction for a simulated example. A real example is used to demonstrate how the proposed method can be applied

in practice.
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1. Introduction

During the past two decades, the dramatic improve-
ment in data collection and acquisition technologies has
enabled scientists to collect a great amount of high-
dimensional data, for which the dimension p can be much
larger than the sample size n, says small-n-large-p. For
example, high-throughput genomic data are highly dimen-
sional relative to their sample size. These data often make
prediction models sensitive to noise and false positive as-
sociations, which consequently make predicting accurate
prognoses difficult. The ability to predict complex traits
from marker data is becoming increasingly important in
plant breeding and association study [1,2].

There have been numerous studies in the genomic pre-
diction models developed with conventional statistical al-
gorithms, including the traditional hypothesis testing ap-
proaches [3,4], hidden Markov models [5,6], regression-
based methods [7,8], and some Bayesian algorithms [9,10].
Some approaches used regularization methods to reduce
the high-dimensional feature sizes, such as ridge regres-
sion best linear unbiased prediction (rrBLUP) [7], genomic
relationship best linear unbiased prediction (GBLUP) [§&],
Bayes-4, Bayes-B, and Bayes LASSO [9,10]. However,
among these different genomic prediction models, there
was not frequently observed in variation of prediction ac-
curacy. In addition, these prediction models typically make
strong assumptions and perform linear regression analysis.
For instance, in the rrBLUP model, the assumption is all
the marker effects are normally distributed with a small but
non-zero variance and it predicts phenotypes from a linear
function of genotype markers [7]. Therefore, there has dif-
ficulty capturing complex relationship within genotype, and

between genotypes and phenotypes in these genomic pre-
diction models for the highly dimensional marker data.
Deep learning is a recently developed machine learn-
ing technique that builds multi-layered neural networks
containing a large number of neurons to model complex re-
lationship in big data [11]. Deep learning has emerged as a
powerful tool to improve prediction performance over tra-
ditional models for speech recognition, image identification
and natural language processing [11]. This advanced model
has also been adopted in bioinformatics and genomics is-
sues recently [12—15]. Many biologists have successfully
applied it to several prediction problems including the gene
expression inference [16,17], the functional annotation of
genetic variants [18,19], phenotype identification from ge-
netic variations [18-22], the recognition of protein folds
[23,24], and the prediction of genome accessibility [25].
Pérez-Enciso and Zingaretti [26] provided a guide for us-
ing deep learning for complex trait genomic prediction.
Recently, some phenotype prediction and genomic se-
lection methods adopted the deep learning model, such as
DualCNN [27], G2PDeep [28], GenNet [29], and the com-
parative approach [30]. Ma, et al. [31] proposed a deep
learning method, called DeepGS, to predict phenotypes
from genotypes using a deep convolutional neural network.
Unlike conventional statistical models, DeepGS automati-
cally learns complex relationships between genotypes and
phenotypes from training data, without pre-defined rules
(e.g., normal distribution, non-zero variance) for the vari-
ables in the neural network. However, when using the
DeepGS method in the small-n-large-p data, it can lead
to over-fitting, over-parameterization, and biased predic-
tion. Hence, a large number of training dataset and a low-
dimensional subset data are required in order to overcome
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Fig. 1. The architecture of the SM-DL method. The left part presents the high-dimensional features as input; the middle part shows

the local neural network; the right part presents the global neural network.

these issues. In this study, a split-and-merge deep learn-
ing method, named SM-DL method, is proposed to learn
a neural network on the dimension reduced subset data by
using the split-and-merge technique on deep learning to ob-
tain nonlinear dimension reduction of the original data.

The rest of the paper is organized as follows. The split-
and-merge deep learning method for high dimensional data
is discussed in Section 2. Section 3 presents a simulated ex-
ample. A real data example is given in Section 4 to demon-
strate how the proposed method can be applied in practice.
Section 5 concludes this paper with brief discussion. Fi-
nally, a conclusion is given in Section 6.

2. Split-and-merge deep learning method

In this section, we present a split-and-merge deep
learning method, referred to as the SM-DL method, to ad-
dress the previously mentioned issue, such as over-fitting,
over-parameterization, and biased prediction. Based on the
SM-DL strategy, the information of the original input fea-
tures is reduced through deep learning. And then the non-
linear sufficient dimension reduced data is used for the fol-
lowing network algorithms.

To be more precise, the high-dimensional input fea-
tures are split into several low-dimensional subsets depen-
dent on the dimension of feature. Here, the ways of parti-
tion feature are not restricted, which means one can parti-
tion randomly or depending on the informative rules, even
if the overlapped are also allowed. For simplicity, in this
study, we partition features into the non-overlapping sub-
sets. For each low-dimensional subset, a “local” neural net-
work is fitted. The neurons of the last hidden layer for each
local network are extracted, named dimension reduced sub-
set data. Finally, all the dimension reduced subset data are
merged as the input of the “global” network and then con-
struct a global neural network. Both the local neural net-
work and the global neural network are trained on the train-
ing set and validated on the testing set during each fold of
cross-validation. We use a ten-fold cross-validations with
ten replicates to evaluate the prediction performance of the
SM-DL method. If it is needed, the split-and-merge proce-
dure can be repeated in the local network until the dimen-
sion reduce sufficiently. Fig. 1 presents the structure of the
SM-DL method. The method is summarized in Table 1.
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Table 1. SM-DL algorithm.

Algorithm 1

1: Input data {(y;, x;)}".

2: Partition the high dimensional dataset to many low-dimensional subsets.

3: For each low dimensional subset, do

o Fit a “local” neural network.

° Get the dimension reduced subset data by extracting the outputs of the last hidden layer.

4: Combine the dimension reduced subset datasets to form a new dataset, called a dimension reduced subset data.

If the dimension of the dimension reduced subset data is still higher than n, go to step 2.

5: Learn a “global” neural network on the combined dimension reduced dataset.

The structure of both “local” and “global” neural net-
works via SM-DL strategy are not any strict constraints.
We just note that the number of neurons in the last hid-
den layer of the “local” network is generally set to be
smaller than the number of input features in order to
serve the purpose of dimension reduction. The source
codes of the SM-DL method are available at GitHub
(https://github.com/WeiHeng86/SM-DL).

3. A simulated example

In this section, we illustrate the use of the SM-DL
method via a simulated example. We mimic the real data
which included the markers with biallelic genotype as the
input and the continuous phenotype as the output. The
framework of the relationship between the input and out-
put was referred to in the previous study [32]. Let Y be a
continuous output to mimic the phenotype of an individual
and X1, . . . , X, be the discrete variants with values {0,
1, 2} to mimic genotypes of markers. The true dense feed-
forward neural network (FNN) with a 2000-500-300-100-1
structure, which includes one input layer, three hidden lay-
ers, and one output layer, is determined by

REFD = (W Op0) +p0)) £=0, 1,2, 3,
where a (-) is an activation function, 2% denotes an output
vector on the £-th layer, and W &) and b() are a weight
matrix and a bias vector, respectively. Note that the first
layer 1(9) receives the variants (x’s) as input and A(*) is the
output layer.

We first generated the 2000 biallelic markers with
three genotypes represented as values {0, 1, 2}, and the mi-
nor allele frequency of each marker sets as 0.3. For the
FNN, the activation function is set to a hyperbolic tangent
function, the weights in W ()°s are generated from a Gaus-
sian mixture model, which is p(w) = o1 N (Wi, 1) + 2N
(W: o, 09) with the parameters 1 = o = 0.5, uy =-2, s
=2, and o; = 05 = 1, and the bias in 5#’s follows a nor-
mal distribution with mean 0 and standard deviation 10~4.
There are 4000 subjects in the training dataset and 1000 sub-
jects in the test dataset, and there has 2000 variants in each
subject.

For SM-DL method, we first split the variants of the
training dataset into two non-overlapping subset each with
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size 1000, and a local network with a 1000-800-700-600-1
structure is fitted to each subset. After merging the output
of the last hidden layer from the local network, which con-
sists of 1200 units as the input of a global network, we fit a
global network with a 1200-600-500-400-1 structure on the
dimension reduced subset data. For all the local and global
networks, the Adam method was used as the optimizer by
setting the learning rate to 10~ and the L,-regularization
parameter to 10~* for the connection weights. The loss
function is set to use mean square error (MSE).

For comparison, an FNN with the true structure 2000-
500-300-100-1, referred as True FNN, identical to the data
generated structure was used. Moreover, a more complex
large network with the structure 2000-1000-500-300-1, re-
ferred as Large FNN, was fitted the simulation data. We
applied the same learning rate and regularization parameter
used in the SM-DL method in the FNNs.

Both Pearson correlation coefficients (PCC) and mean
squared error (MSE) were measured the performance of
these methods. A ten-fold cross-validation was imple-
mented to evaluate the train performance of each model,
and the results were shown in the “Train” columns of Ta-
ble 2. After getting the optimal model, the predictive
performance of testing dataset was shown in the “Test”
columns of Table 2. We repeated the same process 10 times,
and the average PCC and MSE from the 10 calculations
was reported to measure model performance. The results
summarized in Table 2. The PCC of the SM-DL method
is slightly lower than those of the true FNN and large FNN
method; however, the MSE of the SM-DL is lower than
those of the other two methods, which shows the SM-DL
method has the better prediction performance. This exam-
ple supports that the last hidden layer of the network retains
all the response information contained in the input data.

4. A real data example

In this section, we present a real data example to illus-
trate how the SM-DL method can be applied to predict phe-
notype using genome-wide biomarkers. The dataset used
consists of 2000 Iranian bread wheat (Triticum aestivum)
landrace accessions, each of which was genotyped with
33,709 Diversity Array technology (DArt) markers. For
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Table 2. Comparison of performance in the simulated example.

. PCC MSE
Method Subset size
Train Test Train Test
SM-DL 1000 1(0) 0.2542 (0.0341) 0.0018 (0.0011) 448.8200 (67.1627)
True FNN all 1(0) 0.2551(0.0353) 0.2151(0.1503) 563.6709 (85.6407)
Large FNN all 1(0) 0.2713(0.0348) 0.3156 (0.2541) 536.3424 (75.6712)

The average Pearson correlation coefficients (PCC) and average mean squared error (MSE) with stan-
dard deviation of the estimates listed in parentheses for the SM-DL, True FNN and Large FNN methods.
The “Train” presents the train performance of the training dataset and the “Test” indicates the predic-

tive performance of the testing data set by using a ten-fold cross-validation.

Table 3. Comparison of performance in the real data example.

Model Subset size pee MSE
Train Test Train Test
1000 0.9945 (0.0002)  0.8211 (0.0033)  0.0121 (0.0004)  0.3652 (0.0079)
2000 0.9949 (0.0000)  0.8225 (0.0013)  0.0095 (0.0001)  0.3588 (0.0030)
CNN 3000 0.9952 (0.0000)  0.8278 (0.0008)  0.0092 (0.0001)  0.3334 (0.0020)
4000 0.9963 (0.0000)  0.8266 (0.0008)  0.0087 (0.0001)  0.3476 (0.0021)
all 0.9986 (0.0000) 0.8161 (0.0011)  0.0077 (0.0003)  0.3762 (0.0031)
1000 0.4943 (0.0446)  0.4145 (0.0411)  0.9921 (0.0146)  1.0375 (0.0028)
2000 0.4223 (0.0138)  0.3201 (0.0164) 0.9972 (0.0053)  1.0389 (0.0006)
FNN 3000 0.3459 (0.0164)  0.2637 (0.0112)  1.0003 (0.0074)  1.0372 (0.0008)
4000 0.3348 (0.0132)  0.2726 (0.0129)  0.9932 (0.0045)  1.0374 (0.0005)
all 0.0336 (0.0175)  0.0524 (0.0312)  0.9911 (0.0000)  1.0383 (0.0000)
rrBLUP all 1.0000 (0.0000)  0.7524 (0.0068)  0.0000 (0.0000)  0.4152 (0.0136)
GBLUP all 0.9947 (0.0001)  0.7512 (0.0002)  0.0216 (0.0003)  0.4361 (0.0002)

The average Pearson correlation coefficients (PCC) and average mean squared error (MSE) with stan-
dard deviation of the estimates listed in parentheses for the different methods. The “Train” presents
the train performance of the training dataset and the “Test” indicates the predictive performance of the
testing data set by using a ten-fold cross-validation.

each DArT marker, the allele was encoded by either 1 or 0,
to indicate its presence or absence, respectively. The phe-
notype used as the response variable is grain length (GL).
These genotypic and phenotypic data can be downloaded
from the International Maize and Wheat Improvement Cen-
ter (CIMMYT) wheat gene bank (https:/www.cimmyt.org
/resources/data/). Detailed descriptions for this dataset can
be found in [33]. For this dataset, 2000 Iranian bread wheat
were divided into a training set with 1600 subjects and a
testing set with 400 subjects.

To assess the effect of the data partition, four strategies
for the SM-DL method with different split sizes were com-
pared including subset size 1000, 2000, 3000, 4000. Here,
the markers were sorted by the location on the genome and
then divided into the non-overlapping subset with equal
size. The additional strategy without split for total 0of 33,709
variants was also compared. For the local network of the
SM-DL method, two types of neural networks, CNN and
FNN, following the DeepGS structures were adopted [31].
The CNN model was trained using the Adam method as

the optimizer with the number of epochs of 6000, the learn-
ing rate of 0.01, the momentum for moving average of 0.5,
and the weight of 10~°. For the FNN model, the param-
eters were optimized using the stochastic gradient descent
(SGD) with the number of epochs of 10,000 and the learn-
ing rate of 10~%. For simplicity, the activation function
and all hyper-parameters for the local networks were set
to the default values given in the R package “DeepGS”
(https://github.com/cma2015/DeepGS). For the global net-
work, we use a basic FNN with one hidden layer with size
500, and use the tanh function as the activation and the MSE
as the loss function. For training the global network, we use
the learning rate of 0.01 and the L2-regularization parame-
ter of 0.02.

Also, two BLUP (best linear unbiased prediction)-
based models, which included using ridge regression BLUP
(rrBLUP) and genomic relationship BLUP (GBLUP), were
constructed by using the R package “rrBLUP” (https://cran
r-project.org/web/packages/rTBLUP) and “BGLR” (https:
//cran.r-project.org/web/packages/BGLR), respectively.
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Fig. 2. The mean squared error (MSE) of the testing data set for ten-fold cross-validation, each fold with different colors. (A)

CNN model. (B) FNN model.

Table 4. The Wilcoxon signed-rank tests (W statistic) with the corresponding p-value between the SM-DL method with the local

CNN network and two other regression-based methods.

PCC MSE
Methods
W Statistic p - value W Statistic p - value
SM-DL (CNN) vs. GBLUP 100 9.234 x 107 100 9234 x 107
SM-DL (CNN) vs. rrBLUP 100 9.234 x 10°° 96 3.124 x 10°*

A ten-fold cross-validation with 10 times was imple-
mented to evaluate the train performance of each model,
and the results were shown in the “Train” columns of Ta-
ble 3. After getting the optimal model, the predictive
performance of testing dataset was shown in the “Test”
columns of Table 3. The average PCC and average MSE
were used as metrics for measuring predictive performance
of different models and the results were summarized in Ta-
ble 3. Fig. 2A and Fig. 2B present the MSE of the testing
data set for the CNN and FNN model for the ten-fold cross-
validation, respectively. CNN model has a lower mean but
a higher variance of MSE than the FNN model. For the
model with the local CNN network, the SM-DL method
significantly outperforms using all dataset without split in
both PCC and MSE. Similarly, for the model with the local
FNN network, the SM-DL method has better performance
than the FNN model without split structure. However, the
rrBLUP and GBLUP model has higher PCC than the SM-
DL method with local FNN network. It indicates the archi-
tecture of the local networks plays an important role. Over-
all, the SM-DL method with local CNN network has the
best performance among these methods in both PCC and
MSE. We can have great improvement with local CNN net-
works, but not with local FNN networks. For the local FNN
networks, we cannot achieve sufficient dimension reduc-
tion because the subset data cannot be well approximated.
Therefore, it is important for SM-DL method that the local
networks should be chosen such that sufficient dimension
reduction can be achieved.

Wilcoxon signed-rank test was conducted to statisti-
cally assess the performance of the SM-DL method as com-
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pared to two other regression-based methods. The SM-DL
method with the local CNN network for comparison was
the one with the highest PCC value. Table 4 shows the per-
formance of the SM-DL method with the local CNN net-
work is significantly better than other methods based on
the 5% significance level (p-value < 0.05). Hence, the
outperformance of the SM-DL method with the local CNN
network was statistically significant compared to two other
regression-based methods.

5. Discussion

A split-and-merge deep learning method to learn a
neural network on the dimension reduced subset data has
been developed. Two neural networks, CNN and FNN, are
applied to the local network. The CNN is regarded as a local
connectivity algorithm that can integrate the information of
adjacent features. This structure is helpful to take the rela-
tive location information of features (genetic markers) into
consideration. For this reason, we adopted CNN and FNN
models in the local neural network, and the performance
of CNN is much better than FNN. However, the input (di-
mension reduced subset data) of the global network was
combined from the local model, and the relative location
of these neurons was not meaningful. For this reason, we
adopted FNN rather than CNN in the global neural network.
It would be worthwhile to apply different structures of deep
learning algorithm to the local and global neural network.
Moreover, the convolutional layer in CNN is regarded as a
kind of dimension reduction strategy. The effect from the
split-and-merge algorithm may be partially covered by the
convolutional layer. On the contrary, there is no efficient
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dimension reduction mechanism in the FNN model, and the
advantage of the split-and-merge algorithm is shown appar-
ently. For CNN, the optimal subset size is 3000 that based
on the testing results in Table 3. For FNN, using the smaller
subset size (says 1000) could help to efficiently reduce the
dimension.

Here are few noteworthy perspectives for the SM-DL
algorithm. First, the split and-merge procedure was effi-
cient and effective to integrate the information of a great
number of inputs such as genomic data. Considered all po-
tential genetic variants into one algorithm to predict phe-
notype was the optimal circumstance. However, it is al-
most impossible and time-consuming because of too many
genetic variants such as over 88 million identified genetic
variants in the human genome [34]. In general procedures,
the variants in one chromosome or a small genome frag-
ment were considered at a time, and the variants in the dif-
ferent fragments were seemed independent without further
integrated process. It is inappropriate because the mecha-
nism of phenotype general resulted from the variants across
several genome regions. The SM-DL algorithm used the
split step to partition the genome into small fragments to
construct the local network that make the computing more
efficient. Also, the merge step effectively integrated the im-
portant information retrieved from the last hidden layer in
each local network of fragments together to predict pheno-
type. The information of each fragment transferred from
other research could also be adopted as the input in the
merge step to make the procedure more efficient. For the
split-and-merge deep learning strategy approach, the input
variable as a number represents the information of a genetic
molecular from a sample. We believe this approach could
be applied to other types of genetic variants such as inten-
sity from single nucleotide polymorphism microarray and
read depth for copy number variation from sequencing with
appropriate data preprocessing.

Second, the SM-DL algorithm could be taken as the
parallel ensemble learning algorithm. Two steps for en-
semble learning are essential, including several model con-
struction parallelly and combination results of constructed
models. For the split step of SM-DL, several local neural
networks were built parallelly. Here, the methods of parti-
tion features are not restricted even if the overlapped fea-
tures among local networks. These features have a similar
mechanism but in different regions could be overlapped in
several local networks. For example, the features/variants
were partitioned based on the genetic location first. Then,
these variants that belonged to the same gene or pathway
were copied to all the corresponding networks as inputs.
Alternatively, the randomly selected overlapping features
were allowed to decorrelate the features in each local model
such as random forest algorithm. In this study, we adopted
a simple way to test the proposed SM-DL algorithm in or-
der to focus on the performance of the split-and-merge strat-
egy. It would be worthwhile to study the performance of the

SM-DL method with the overlapping features among local
networks. Moreover, a systematically integrated method
via neural network model was adopted in the merge step
of SM-DL. Different weights of the results from each local
network can be considered via the network automatically
rather than the equal weight such as generally used arith-
metic mean and majority vote for ensemble learning algo-
rithms.

Third, SM-DL can be generalized easily to different
kinds of neural networks, such as FNN, CNN, and more
complex structures. In the SM-DL algorithm, the neurons
from the last hidden layer of each network were the only
information kept to the next merge-split loop. It mentioned
that SM-DL can be applied to any neural network in which
information from the last hidden layer can be extracted. It
is flexible to use the appropriate network and hyperparam-
eter settings based on your data structure, application issue,
and prior information. Through the SM-DL procedure with
accurate prediction, the results could be further applied to
select top-ranked individuals for animal breeding or find the
important genetic variants for medical diagnosis.

6. Conclusions

In this research, we proposed a split-and-merge strat-
egy for deep learning to treat the high-dimensional features
problem. A large number of features were reduced to the
lower-dimensional data while keeping the information on
response contained in the features. In the simulated and
real data example, the non-overlapping features among lo-
cal networks were adopted and the results show the SM-DL
method has the better performance. This strategy enhances
the predictive performance of deep learning and can be ap-
plied to different structures of deep learning algorithms.
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