
Front. Biosci. (Landmark Ed) 2022; 27(3): 084
http://doi.org/10.31083/j.fbl2703084

Copyright: © 2022 The Author(s). Published by IMR Press.
This is an open access article under the CC BY 4.0 license.

Publisher’s Note: IMR Press stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Original Research

Comprehensive Prediction of Lipocalin Proteins Using Artificial
Intelligence Strategy
Hasan Zulfiqar1, Zahoor Ahmed1, Cai-Yi Ma1, Rida Sarwar Khan1,
Bakanina Kissanga Grace-Mercure1, Xiao-Long Yu2,*, Zhao-Yue Zhang1,*
1School of Life Science and Technology and Center for Informational Biology, University of Electronic Science and Technology of China, 610054
Chengdu, Sichuan, China
2School of Materials Science and Engineering, Hainan University, 570228 Haikou, Hainan, China
*Correspondence: yuxiaolong@hainanu.edu.cn (Xiao-Long Yu); zyzhang@uestc.edu.cn (Zhao-Yue Zhang)
Academic Editor: Graham Pawelec
Submitted: 2 December 2021 Revised: 17 January 2022 Accepted: 20 January 2022 Published: 5 March 2022

Abstract

Background: Lipocalin belongs to the calcyin family, and its sequence length is generally between 165 and 200 residues. They are
mainly stable and multifunctional extracellular proteins. Lipocalin plays an important role in several stress responses and allergic in-
flammations. Because the accurate identification of lipocalins could provide significant evidences for the study of their function, it is
necessary to develop a machine learning-based model to recognize lipocalin. Methods: In this study, we constructed a prediction model
to identify lipocalin. Their sequences were encoded by six types of features, namely amino acid composition (AAC), composition of
k-spaced amino acid pairs (CKSAAP), pseudo amino acid composition (PseAAC), Geary correlation (GD), normalized Moreau-Broto
autocorrelation (NMBroto) and composition/transition/distribution (CTD). Subsequently, these features were optimized by using feature
selection techniques. A classifier based on random forest was trained according to the optimal features. Results: The results of 10-fold
cross-validation showed that our computational model would classify lipocalins with accuracy of 95.03% and area under the curve of
0.987. On the independent dataset, our computational model could produce the accuracy of 89.90% which was 4.17% higher than the
existing model. Conclusions: In this work, we developed an advanced computational model to discriminate lipocalin proteins from non-
lipocalin proteins. In the proposed model, protein sequences were encoded by six descriptors. Then, feature selection was performed to
pick out the best features which could produce the maximum accuracy. On the basis of the best feature subset, the RF-based classifier
can obtained the best prediction results.
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1. Introduction
Lipocalin belongs to the calcyin family and is usu-

ally composed of 165–200 residues. It is mainly a sta-
ble and multifunctional extracellular protein. Lipocalin
proteins can carry aquaphobic molecules such as lipids,
steroids and retinoids [1–3]. Lipocalins have important ap-
plications in several stress responses, homeostasis, candi-
date markers of renal functions and allergic inflammations
[4–6]. The biological role of lipocalin in human body is
shown in Fig. 1.

After the Human Genome Project (HGP), biological
sequence data increased significantly [7–9]. The tradi-
tional research technology based on biochemistry is time-
consuming, expensive and inefficient. Therefore, it is nec-
essary to develop computational methods that can accu-
rately recognize biomolecular functions in a short time [10–
12]. Existing computating tools, such as FASTA [13],
HAlign [14,15] and BLAST [16], can search sequences
with the help of known protein databases. However, these
tools cannot correctly distinguish lipocalins when there is
no homologous sequence in benchmark dataset. Therefore,
it is urgent to establish a machine learning-based model to

identify lipocalins. In previous methods, a model called
lipocalin-pred [17] was established to recognize lipocalins
by using amino acid composition (AAC), reduced AAC
[18,19], di-peptide composition (DPC), secondary structure
composition (SSC) and position-specific scoring method
(PSSM). It could yield an accuracy of 90.72%. Pugalen-
thi et al. [20] proposed a predictor based on support vec-
tor machine (SVM). Several features, such as AAC, SSC
and physiochemical properties, were used. As a result, they
achieved an accuracy of 84.37%. Although the two models
can produce encouraging outcomes, there is still room for
further improvement.

To further improve the prediction accuracy, we pro-
posed a random forest (RF)-based model to recognize
lipocalins. The flowchart of the proposedmodel was shown
in Fig. 2. Initially, the sequences were encoded by six
types of features, namely AAC, CKSAAP, GD [21], NM-
Broto [22], CTD [23] and PseAAC [24]. Subsequently,
these features were optimized by using analysis of vari-
ance (ANOVA) [25], Maximum Relevance Maximum Dis-
tance (MRMD) [26] and minimum Redundancy Maximum
Relevance (mRMR) [27] with incremental feature selection

https://www.imrpress.com/journal/FBL
http://doi.org/10.31083/j.fbl2703084
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


Fig. 1. The biological role of lipocalin in human body.

(IFS) [28]. The RF-based model was trained using the opti-
mal features. The performance of the proposed model was
evaluated by 10-fold cross-validation.

2. Materials and Methods
Reliable and accurate dataset is essential for the estab-

lishment of prediction model [29–34]. Therefore, we firstly
collected 307 positive and 307 negative samples from the
open-source database UniProt, and then excluded highly
similar sequences using CD-HIT with the cutoff of 40%
[35]. Finally, we obtained 211 lipocalins and 211 non-
lipocalin proteins. In addition, we also built an indepen-
dent dataset, including 42 lipocalin protein sequences and
42 non-lipocalin protein sequences, to test the prediction
model.

2.1 Feature Descriptors
Choosing informative and autonomous feature is a sig-

nificant step in generating machine learning-based models
[36–41]. Formulating sequence with mathematical expres-
sion is also a crucial step in protein function prediction [42–
49]. Hence, six types of features were utilized to describe
the residues sequences of proteins.

2.1.1 Amino Acid Composition Descriptor
AAC is the frequency of amino acid residues in a pro-

tein sequence [50–54]. The frequencies f (x)of 20 residues
can be calculated by

f (x) =
N (x)

N
x ∈ {ACDEFGHIKLMNPQRSTVWY} (1)

where N (x) is the x-th residue in a protein sequence with
N residues.

2.1.2 Composition of k-spaced Amino Acid Pairs
Descriptor

CKSAAP describes the occurrence of amino acid pairs
disengaged by any K amino acid (K = 0, 1, 2, 3, 4, 5). It

[50] is demarcated as k-spaced residual pairs Qxy which is
formulated as

Qxy =
Nxy

N − k
(k = 0, 1, 2, 3, 4, 5 and xy = type of AA) (2)

where Nxy is the number of residue pairs and ‘k’ denotes
the number of residues. In this work, for saving calculation
time, the value of ‘k’ was set to 3 and the dimension of the
features is 1600.

2.1.3 Pseudo Amino Acid Composition Descriptor

It contains the occurrence frequency of amino acids
and the correlation of physiochemical properties between
two amino acid residues [55]. It comprises ofAci andAc∂i
which can be formulated as

Aci =
Ni

1 + ω ×
∑20

i=1 θi(
hereθi =

∑N−d
i=1 (Qi −Qi+d)

2

NQ
, (i = 1, 2, 3 . . . , 20)

) (3)

Ac∂i =
ω × θi

1 + ω ×
∑20

i=1 θi
, ( here , ω = 0.05) (4)

whereNQ is properties number andNi is the i-th frequency
of amino acid. Qi is the i-th physicochemical property
value and θi is order factor of protein sequence.

2.1.4 Composition, Transition and Distribution Descriptor

CTD describes the composition, transition and distri-
bution of AAC in a protein sequence [56]. Amino acids are
separated into three different classes on the basis of their
physiochemical properties [18,57,58]. It is calculated as
follows:

Ca =
Na

N
(a = 1, 2, 3 . . .) (5)

2
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Fig. 2. The flowchart of the whole study. (A) Dataset was constructed and then divided it in to training and testing data. (B) Extracted
features by utilizing six types of feature descriptors and then optimized the features by using ANOVA and mRMR. (C) Constructed
the models by utilizing different classifiers on 5/10-fold CV. (D) Evaluated the models on independent dataset on the basis of accuracy,
specificity, sensitivity, MCC and AUC.

Tb =
Nb,c +Nc,b

N − 1
(b = 1, 2, 3 . . . , c ̸= b) (6)

Db,z =
Nb,z

N
(b = 1, 2 . . . , and z = 1, 0.15N . . . , N) (7)

whereNa is number of classes,Nb,c is the contiguous num-
ber of classes b and c and Nb,z is the amino acids number
which is in the z-th of b-th class.

2.1.5 Geary Descriptor

It is a type of association descriptor and has an ex-
treme resemblance withM-descriptor [59]. The mathemat-
ical manifestation is shown as Q(m):

Q(m) =
N − 1

2 × (N − m)
×

∑N−m
i=1

(
Pi − Pi+m

)2∑N
i=1 (Pi − m)2

(m = 1, 2, . . . , 20) (8)

where Pi is i-th amino acids property value in the amino-
acid index.

2.1.6 Normalized Moreau-broto Autocorrelation
Descriptor

It is a kind of autocorrelation function [22] and has
a resemblance with Moran-descriptor. The mathematical
manifestation is shown as

Q(m) =

∑N−m
i=1 (Pi × Pi+m)

N −m
(m = 1, 2, 3, . . . , 20) (9)

where Pi is i-th amino acids property value in the amino-
acid index.

2.2 Feature Selection
Redundancy and noise in feature set may lead to disap-

pointing performance of prediction model [60–62]. Thus,
feature selection is a key step to eliminate unimportant
features and improve efficiency of prediction model [63–
66]. There are several feature selection techniques, such as
ANOVA [25], F-score [67], mRMR [27], chi-square [68]
and LGBM [69,70]. A feature set with high dimension
may produce redundancy, overfitting and yield low accu-
racy in cross-validation prediction. Hence, ANOVA is a
good choice to deal with these problems, because it takes
less time and produce effective outcomes. The fusion of
feature does not mean that good results can be achieved.
These features may be highly correlated, which will lead
to the emergence of redundant information in the feature
set. Therefore, mRMR is an ideal choice to overcome these
problems, because it is able to find the correlation between
features. In this work, ANOVA and mRMR [27] were used
to rank features. By combining with IFS [67], the opti-
mal feature subset could be obtained. The details about
ANOVA, mRMR and IFS can be found in our previous
study [24]. The comparison with other different kind of
feature selection techniques and the contribution of feature
descriptors have been shown in Fig. 3A–D.

3
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Fig. 3. Plot showing the IFS procedure for identifying lipocalins in 10-fold cross-validation. (A) Firstly, 890 features were selected
from a total of 2990 features by ANOVA. (B) 117 optimal features were further obtained from 890 features by mRMR. The accuracy
increases from 88.20% to 95.03%. (C) The contribution of different feature descriptors in the model based on fusion features. (D)
Compare different feature selection algorithms. (E) The performance of single-encoded features and their fusion on different classifiers
before feature selection. (F) The performance of optimal single-encoded features and their fusion on different classifiers. (G) AUC value
of Lipo-RF on 10-fold cross validation. (H) Comparison of proposed model with Lipocalin-pred on independent dataset.

2.3 Machine Learning Classifiers
Classification is a form of supervised learning and

plays an important role in decision making [60,71–80]. In
this work, we chose RF to establish a model for recog-
nizing lipocalin. Three machine learning methods namely
Naïve Bayes (NB), support vector machine (SVM) [81,82],
and Ada boost (AB) [83,84] were compared. RF is a com-
prehensive knowledge technology, which has been widely
used in bioinformatics [85–87]. The principle is to combine
multiple weak classifiers and get the results through the vot-
ing process, so that the results of the prediction model have
the greatest improvement and generalization. The com-
plete procedure has been clearly described in reference [88].
Weka version 3.8.4 (University of Waikato, Hamilton, New
Zealand) [89] was utilized to implement the RF-based clas-
sifiers. The best parameters were shown in Table 1.

Table 1. Best parameters of the proposed model.
Best Parameters

‘N-estimators’ 100
‘Learning-rate’ 0.001
‘Mean absolute error’ 0.143
‘Kappa statistics’ 0.900
‘Mean square error’ 0.220

2.4 Evaluation Metrics
Accuracy (Acc), sensitivity (Sn), Matthews correla-

tion coefficient (MCC) and specificity (Sp) [90,91] were
utilized to measure the performance of proposed model,
which is expressed by the following formula:

Sn =
TP

TP + FN

Sp =
TN

TN + FP

ACC =
TP + TN

TP + FP + TN + FN

MCC =
TP × TN − FP × FN√

(TP + FN) × (TN + FN) × (TP + FP ) × (TN + FP )

(10)

where true positive indicates lipocalin, and false positive
indicates the non-lipocalin classified as lipocalin. On the
other hand, true negative represents non-lipocalin, and false
negative represents lipocalin classified as non-lipocalin.
The receiver operating characteristic (ROC) curve and the
area under the curve (AUC) were used to measure the effec-
tiveness of the prediction model. AUC of perfect classifier
is 1 and AUC of random behavior is 0.5.

4
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Table 2. Performance of optimized single-encodings and fusion models on different machine learning classifiers.
Classifiers Support Vector Machine Random Forest Naïve Bayes Ada Boost

Method Acc Sp Sn MCC AUC Acc Sp Sn MCC AUC Acc Sp Sn MCC AUC Acc Sp Sn MCC AUC

AAC 62.11 74.70 79.60 0.520 0.827 84.25 84.68 87.36 0.703 0.928 76.54 77.00 74.10 0.681 0.894 73.43 74.70 79.60 0.672 0.871
CKSAAP 66.77 65.56 84.55 0.245 0.743 86.79 84.82 90.77 0.723 0.938 87.46 88.11 89.55 0.743 0.922 88.73 89.20 90.30 0.867 0.948
CTD 63.13 78.10 74.55 0.541 0.778 81.32 77.55 88.78 0.712 0.886 73.87 68.00 83.80 0.587 0.843 74.14 73.50 79.50 0.611 0.873
Geary 74.02 77.30 81.40 0.576 0.854 85.93 83.14 88.28 0.745 0.889 86.09 84.52 89.33 0.756 0.889 73.49 70.10 68.90 0.573 0.791
NMBroto 79.38 80.60 82.00 0.623 0.890 85.38 80.50 76.60 0.735 0.876 74.48 81.60 77.20 0.600 0.877 82.81 80.20 79.88 0.705 0.862
PseAAC 86.81 83.70 88.88 0.725 0.862 88.90 83.10 91.80 0.741 0.939 78.12 78.20 88.00 0.621 0.884 89.64 84.55 87.11 0.762 0.905
Fusion 88.71 94.00 92.00 0.862 0.971 95.03 94.00 96.20 0.901 0.987 90.85 88.90 89.70 0.772 0.936 92.78 90.10 90.50 0.873 0.968
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Fig. 4. The visualization of single encoding features and fusion feature through t-SNE. (A) AAC, (B) CKSAAP, (C) PseAAC, (D)
CTD, (E) GD, (F) NMBroto and (G) fusion feature. Orange and blue represent lipocalins and non-lipocalins, respectively.

3. Results and Discussion
3.1 Performance Evaluation

Firstly, six different feature descriptors were used to
transform the training data into feature vectors. Then,
through 10-fold cross-validation, RF-based classifier was
used to evaluate each feature descriptor. Subsequently,
in order to improve the prediction accuracy, ANOVA and
mRMR combined with IFS were used to select the opti-
mal feature subset. Fig. 3A,B show the incremental fea-
ture selection curves. Fig. 3E,F show the AUC difference
of single-encodings and their fusion on different ML-based
classifiers before and after the feature selection. Table 2
shows the effectiveness of the improved prediction mod-
els based on single-encoding and feature fusion on sev-
eral ML-based methods. The results of the model based
on single-encoding and their fusion on several ML-based
classifiers before feature selection have been shown in Sup-
plementary Table 1 in Supplementary file 1. Supplemen-
tary Fig. 1 in Supplementary file 1 and Fig. 4 show the
feature distribution of single-encoding features and fusion
features before and after feature screening using t-SNE (t-
distributed stochastic neighbor embedding) technique. The
AUCs of single-encoding models are 0.928, 0.938, 0.886,
0.889, 0.876 and 0.939 for AAC, CKSAAP, CTD, GD,
NMBroto and PseAAC, respectively. The AUC of PseAAC
is 0.1%–6.3% higher than that of other encoding schemes.
On the other hand, the Acc, Sp, Sn, MCC, and AUC of the
feature fusion-based model are 95.03%, 94.00%, 96.20%,
0.901% and 0.987, respectively. The Acc, Sp, Sn, MCC,

and AUC on independent data set are 89.90%, 92.66%,
91.73%, 0.868% and 0.956. The AUCs of the feature
fusion-based model on training and independent datasets
have been shown in Fig. 3G,H.

3.2 Performance Evaluation of Different ML Algorithms

In order to compare a variety of machine learning
models, we input single-encoding features and their fusion
into other machine learning methods, such as AB, NB and
SVM. The 10-fold cross-validation test was used to esti-
mate the efficiency of these models. The comparison re-
sults have been shown in Table 2. We noticed that the ac-
curacies of feature-fusion models were higher than those of
single-encoding models, demonstrating that a large amount
of information can achieve better results. Fig. 3C shows
the contribution of the feature descriptors in RF-based fu-
sion model. The model based on the optimal fusion fea-
tures consists of 117 features from six descriptors, AAC,
CKSAAP, CTD, GD, NMBroto and PseAAC, contributed
9 %, 11%, 13%, 15% and 27% in the final optimized-fusion
model, respectively. Fig. 3F displays that the RF-based pre-
dictionmodel performs best among all classifiers. TheAUC
of the RF-based model is 1.6%–5.1% higher than that of
other classifiers, demonstrating that the RF-based model is
suitable for lipocalin proteins prediction.

3.3 Comparison with Existing Model on Independent
Dataset

We also compared our model with the existing model
on independent dataset to examine the efficiency and per-
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Table 3. Comparison between proposed model and the
existing method on independent dataset.

Method Acc MCC Sn Sp AUC Reference

Lipocalin-Pred 85.73 0.776 88.41 90.11 0.922 [17]
Lipo-RF 89.90 0.868 91.73 92.66 0.956 Our Study

formance of the models. The results on independent dataset
show that our model outperformed the existing model by
4.17%. The comparison between our model and the existed
model has been shown in Table 3 (Ref. [17]).

4. Conclusions
Lipocalin are responsible for transporting small hy-

drophobic molecules such as steroids, retinoids, and lipids.
They have sequence homology region and common ter-
tiary structure [92,93]. Lipocalins have been applied in sev-
eral fields, such as stress responses, homeostasis, candidate
markers for kidney functions and allergic infections. So
for, somemodels have been developed to identify lipocalins
[17,20]. In this work, we developed an advanced com-
putational model to discriminate lipocalin proteins from
non-lipocalin proteins. In the proposed model, protein se-
quences were encoded by six descriptors. Then, feature se-
lection was performed to pick out the best features which
could produce the maximum accuracy. On the basis of the
best feature subset, the RF-based classifier can obtained the
best prediction results. Further studies will focus on creat-
ing a user-friendly web server for the prediction model, and
will adopt additional feature selection methods and algo-
rithms to further improve the efficiency of lipocalin recog-
nition.
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