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Abstract

Background: Phytopathogens, encompassing fungi, bacteria, viruses, and nematodes, pose a significant threat to the agricultural in-
dustry by causing substantial economic losses through severe plant diseases. The excessive use of synthetic fungicides to combat phy-
topathogens has raised environmental and human health concerns. Results: Consequently, there is an increasing demand for safe and
environmentally friendly biopesticides to align with consumer preferences for uncontaminated food. One particularly promising alterna-
tive to synthetic fungicides involves harnessing biocontrol bacteria that produce extracellular hydrolytic enzymes. These enzymes serve
to effectively manage phytopathogens while concurrently fostering sustainable plant protection. Among the pivotal hydrolytic enzymes
generated by biocontrol bacteria are chitinase, cellulase, protease, lipase, glucanase, and amylase. These enzymes exert their influence
by breaking down the cell wall, proteins, and DNA of phytopathogens, thereby establishing a dependable method of biocontrol. Conclu-
sions: Recognizing the critical role of these hydrolytic enzymes in sustainable biocontrol, this review seeks to delve into their primary
functions, contribution to sustainable plant protection, and mechanisms of action. Through an exploration of the potential presented by
biocontrol bacteria and their enzymatic mechanisms, we can discern effective and environmentally conscious strategies for managing
phytopathogens in agriculture.
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1. Introduction
Plant diseases have profoundly influenced the course

of food production and the development of human civiliza-
tions over decades [1]. The ultimate consequence of these
plant pathogens is reducing food quantity, quality, and se-
curity, exerting significant pressures on agricultural sys-
tems, and prompting adaptations and innovations to ensure
sustainable food production [2,3]. The severity of plant
diseases can vary from mild to severe, depending on var-
ious factors such as environmental conditions, host resis-
tance, pathogen aggressiveness, and the duration of infec-
tion [4]. Soil-borne phytopathogens pose a particularly se-
vere threat as they cause extensive damage, resulting in a
30% loss across a wide range of plants. This not only leads
to economic disasters for producers but also contributes to
the risk of starvation, particularly in underdeveloped coun-
tries with limited access to disease management methods
[5]. For instance, the devastating prevalence of potato late
blight, caused by Phytophthora infestans, led to famine,
starvation, death, and mass migration throughout history
[6]. It is worth noting that the impact of phytopathogens
on plants has been exacerbated by two key factors: global
climate change and the globalization of markets. These
factors have accelerated the spread of phytopathogens, in-

creasing the likelihood of emerging diseases affecting crops
[7]. Among plant phytopathogens, soilborne pathogens
pose a significant challenge to plant protection [8,9]. Soil-
borne plant pathogenic fungi, such as Fusarium sp., Scle-
rotinia sp., Phytophthora sp., Verticillium sp., Rhizocto-
nia sp., and Pythium sp. are reported to cause 50 to 75%
yield loss for various horticultural and agricultural prod-
ucts [10]. In addition to soilborne phytopathogenic fungi,
Ralstonia solani, which probably is the most destructive
plant pathogenic bacterium globally, as well as Meloidog-
yne spp. and Heterodera spp., as the most damaging ne-
matodes, have a tremendous effect on economic, political
and cultural development [11–13]. Regardless of damages
and losses caused by phytopathogens, another key chal-
lenge is developing efficient strategies that rapidly man-
age plant pathogens [14]. Synthetic pesticides have been
the primary method for managing plant diseases for sev-
eral decades because of their high effectiveness and ease
of application [15]. However, the intensive and indiscrim-
inate use of synthetic pesticides has led to several issues
in modern plant protection. These include the emergence
of pesticide-resistant strains, new disease outbreaks, and
mounting concerns about the impact on health, environ-
ment, and contamination of soil and water [16]. As a re-
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sult, there has been a revolution in plant protection to de-
velop more sustainable and environmentally-friendly alter-
natives [15,17–19]. Therefore, some eco-friendly manage-
ment methods include soil solarization, crop rotation, soil
steam sterilization, anaerobic soil disinfestation, resistant
cultivars or grafted plants, biofumigants, soil fertility, and
soil fertility biopesticides, have been developed to mitigate
soilborne phytopathogens while maintaining the environ-
ment safe [20,21]. Currently, sustainable agriculture is ex-
periencing emerging opportunities such as the utilization
of biological agents [22–26], integration of nanoscience
[25,27], advancement of resistant plants, and implementa-
tion of biopolymers [28–39]. Using soil microbial com-
munities for biological control has emerged as a promis-
ing strategy for suppressing soilborne plant pathogens [40–
42]. Biocontrol bacteria utilize diverse antagonistic strate-
gies against phytopathogens, encompassing the synthesis
of lytic enzymes, antibiotics, volatile organic compounds,
siderophores, nutrient and spatial competition, as well as
the initiation of host resistance [43]. Among these mecha-
nisms, the extracellular enzymes, commonly referred to as
hydrolytic enzymes, synthesized by diverse biocontrol bac-
teria, have a direct impact on phytopathogens by breaking
down the structural components of their cell walls [44,45].
Soil biocontrol bacteria can effectively manage plant dis-
eases caused by soilborne pathogens by producing extra-
cellular enzymes, including chitinase, cellulase, protease,
amylase, and lipase. This process helps to break down
organic matter in the soil, leading to the suppression of
pathogenic microorganisms and promoting plant growth.
Regardless of the indirect effect of bacterial biocontrol hy-
drolytic enzymes on the plant, some detected enzymes, in-
cluding pectinases, chitinases, lipases, cellulases, and amy-
lases, can directly affect plant growth by providing bet-
ter colonization. The production of these enzymes is re-
ported to be upregulated in the bacterial interaction with
the host plant, involved in the recognition, attachment,
and movement of beneficial bacteria through plant tissues
which leads to the induction of the plant immune system
against biotic stresses [46]. This review considers one of
the primary biocontrol mechanisms employed by antago-
nistic bacteria in sustainable agriculture to manage various
plant pathogens. This mechanism involves the production
of cell-wall degrading enzymes and is crucial in meeting the
increasing demand for safe and pathogen-free food for the
world’s growing population.

2. How Biocontrol Bacteria Control Plant
Diseases?

Recently, antagonistic microorganisms, especially
biocontrol bacteria, have been extensively reported as the
most promising strategies to guarantee plant health, qual-
ity and safety of fruits and vegetables [40,47]. Several
bacterial genera, including Bacillus, Pseudomonas, Serra-
tia, Rhizobium, Xanthomonas, Streptomyces, Enterobacter,

Agrobacterium, Erwinia, Alcaligenes, Stenotrophomonas,
and Arthrobacter have demonstrated antagonistic activity
in the biocontrol of various plant pathogens [3,48–51].
These bacteria suppress the development of plant pathogens
through multiple mechanisms of action, which can be di-
vided into direct and indirect mechanisms (Fig. 1).

Indirectmodes of action include colonization of the in-
fection site followed by competition for nutrients and space
and, more importantly, induction of host defense systems
[52]. Pseudomonas spp. are among the most reported ben-
eficial bacteria used as biopesticides due to several relevant
properties, including their potential capability to trigger
plant defense responses, strong biocontrol activity against a
wide range of phytopathogens and their high ecological fit-
ness [53]. Fluorescent pseudomonads have the potential to
colonize not only the rhizosphere but also the phyllosphere
and endosphere, outcompete other microorganisms for nu-
trients and space, and contribute to plant growth promotion,
disease suppression and nutrient cycling [54]. For instance,
better nutrient utilization and growth rate of P. fluorescens
EPS62e compared to Erwinia amylovora reduced bacterial
infection [55]. Under nutrient deficiency, especially the
limitation of iron, Pseudomonas spp. suppress pathogenic
microorganisms through a siderophore-mediated competi-
tion mechanism [56]. In addition, Pseudomonas spp. are
known as dominant bioactivemetabolites producers like en-
zymes, antibiotics, and cyclic peptides, playing significant
antagonistic roles [57]. The induction of plant systemic re-
sistance (ISR) is one of the most important indirect mecha-
nisms activated by Pseudomonas spp., which confers plants
with resistance to multiple pathogens via the stimulation
of induced systemic resistance. ISR activates the plants’
defense responses and primes them for a more effective
defense response. For instance, Pseudomonas fluorescens
PTA-CT2 activated the ISR mechanism in grapevines. As
a result, the plants developed increased resistance against
Botrytis cinerea and Plasmopara viticola, two common
pathogens [58]. Also, a relevant trait of Bacillus species is
their capability to elicit ISR, enhancing plant defense mech-
anisms against a variety of pathogens [59]. Besides these
two important genera, species of Lactobacillus spp., Pan-
toea spp. and Streptomyces spp. are among the most stud-
ied bacteria with biological control activity through a wide
variety of mechanisms [60–62].

The direct mechanisms are based on liberating antiox-
idants, lipopeptides, antibiotics, hormones, biosurfactants,
volatile compounds, and cell wall degrading enzymes, re-
ducing pathogens’ growth or metabolic activity [60–62].
Further, the production of various highly active antimicro-
bial metabolites, such as bacteriocins, pyrrolnitrin, pyolu-
teorin, dialkylresorcinols, and phloroglucinols have been
reported to be contributed directly to the biological con-
trol of plant pathogens [63]. Flury et al. [64] reported
the involvement of pyoluteorin and hydrogen cyanide pro-
duced by Pseudomonas spp. in the biocontrol of some phy-
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Fig. 1. Multiple modes of action of biocontrol bacteria against phytopathogens.

topathogens. Pseudomonas spp. produce cyclic lipopep-
tides, which are antimicrobial compounds that can harm
plant pathogens by disrupting their cell membranes. This
disruption can result in cytolysis and leakage, ultimately
leading to the death of the pathogen [63]. For example,
plant pathogens such as Pythium, Phytophthora, and Rhi-
zoctonia have been managed using orfamides produced by
P. protegens [65]. Lytic extracellular enzymes, such as cel-
lulase, β-1,3 glucanases, and chitinase play important roles
in the biocontrol activity of Pseudomonads by degrading
the cell wall compounds, such as glucan, chitin, and glyco-
sidic bridges [66].

The second most exploited antagonistic bacteria as
biopesticides are Bacillus species. Their wide distribution
in different habitats, such as plant surface and soil, en-
dospore forming ability and the production of a wide variety
of antimicrobial compounds, and the stimulation of plant
immune system are considerable traits for their application
in plant protection [67]. Several bacteriocins, such as sub-
tilin A, subtilin B, subtilin, amysin, thuricin, amylocyclicin,
and amylolysin produced by Bacillus spp. exhibit antimi-
crobial activity by forming spores in the cell membrane or
preventing the cell wall synthesis [68]. More than that,
many Bacillus species produce cyclic lipopeptides like sur-
factins, fengicins, and iturins, which are key factors in sup-
pressing fungal phytopathogens [69]. Bacillus spp. strains
can also liberate extracellular enzymes such as protease, li-
pase, chitinase, glucanase, cellulase, and chitosanase, that
important factors in the biocontrol of bacterial and fungal
pathogens [59].

3. Diversity of Enzyme-Producing Bacteria
Among these modes of action, extracellular enzymes,

also known as hydrolytic enzymes, produced by various
biocontrol bacteria directly affect phytopathogens via the
degradation of cell wall structural compounds of most
pathogens [44]. In fact, Hydrolytic enzymes play a crucial
role in breaking down fungal pathogen spores and mycelia
[70]. Bacterial lytic enzymes, such as chitinase, b-1,3-
glucanase, catalase, cellulase, and proteases, break down
polymeric compounds like chitin, glucan, cellulose, pro-
teins, DNA, and hemicellulose which are the main com-
pounds in the cell wall structure of phytopathogens [71].
Fig. 2 depicts the effects of hydrolysis enzymes on the
degradation of cell membranes and cell walls of phy-
topathogenic fungi.

A wide variety of plant biocontrol bacteria can re-
markably represent a mutually helpful interaction with mi-
crobial microorganisms by synthesizing various extracel-
lular enzymes that can change their environment in a self-
beneficial manner. The production of cell wall degrading
enzymes has been reported in different groups of bacteria
isolated from the rhizosphere and phyllosphere of different
plant species. For instance, Bibi et al. [72] reported the iso-
lation of amylase, lipase, protease, and cellulase-producing
bacterial strains of various genera from the leaves, roots,
and soil of mangroves.

In addition to producing extracellular enzymes, bio-
control bacteria can also disrupt the quorum-sensing system
of pathogens by producing inhibitor enzymes, such as chiti-
nase, pectinase, cellulase, and lactonase. These inhibitors
prevent the synthesis or degradation of signal molecules re-
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Fig. 2. The effects of hydrolysis enzymes on the degradation of the cell membrane and cell walls of phytopathogenic fungi.

quired for the pathogens to infect their host plants. This in-
terference with the quorum-sensing system can reduce the
virulence of the pathogens and limit the damage they cause
to the plants [73].

The most dominant bacteria belong to the genera Vib-
rio, Halomonas, Alteromonas,Marinobacter, Erwinia,Mi-
crobulbifer, Chromohalobacter, Psychrobacter, Aidingi-
monas, Isoptericola, and Bacillus. Some of them, in-
cluding Bacillus, followed by Halomonas, Marinobacter,
and Microbulbifer species, were also active against fun-
gal pathogens, such as P. capsica, P. ultimum, F. oxys-
porum, and A. mali. Evaluating the potential of the bac-
terial flora associated with maize in Brazil’s main maize-
producing regions for producing hydrolytic enzymes indi-
cated that these bacterial strains belong to the phyla Pro-
teobacteria, Firmicutes, and Actinobacteria. Moreover,
Pantoea dispersa and Massilia timonae were the new pro-
ducers of lipase and amylase, respectively [74]. While

conducting a study across three distinct regions of Tami
Nuda in India, numerous bacterial strains displaying hy-
drolytic enzyme production were successfully isolated. Out
of 72 bacterial isolates, 20.83%were found to produce amy-
lase, cellulase, and inulinase simultaneously. Most iso-
lates exhibiting enzyme activities were identified as Bacil-
lus cereus, B. thuringiensis, and B. anthracis [75]. Many
strains of B. subtilis depict the capability to suppress sev-
eral plant pathogens through the secretion of extracellular
enzymes such as β-glucanases, cellulases, and proteases
[76]. Bhutani et al. [77] conducted a study in which they
isolated endophytic bacteria from Cajanus cajan and Vi-
gna radiata. These bacteria were found to secrete vari-
ous enzymes, including cellulase, amylase, pectinase, and
protease. The identification results revealed that the iso-
lates belonged to different species of Bacillus or Bacillus-
derived genera, specifically B. licheniformis, B. panaci-
humi, B. cereus, B. megaterium, and B. subtilis. B. licheni-
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formis B307 produced chitinase, and this enzyme’s produc-
tion and its properties can be modified under optimal con-
ditions [78]. Regardless of Bacillus genera, various other
bacterial strains such as Serratiamarcescens, S. plymuthica,
P. putida, Enterobacter agglomerans, Aeromonas caviae,
streptomyces spp., Geobacillus thermodenitrificans, P. flu-
orescens, Paenibacillus ehimensis, P. cepacian, P. ehimen-
sis, P. stutzeri, S. viridodiasticus, Paenibacillus polymyxa,
and Stenotrophomanas maltophilia have been reported to
have biocontrol activity against phytopathogens through the
production of several cell-wall degrading enzymes, such as
protease, serine protease, β-1,3- glucanase, and chitinase
[44]. Recently, Admassie et al. [79] reported that bacte-
rial isolates obtained from the pepper plants with the high
production of lytic enzymes like cellulase, protease, lipase
and chitinase were identified as Enterobacter cloacae and
P. fluorescens.

4. Unlocking the Potential of Hydrolytic
Enzymes Produced by Biocontrol Bacteria

Extracellular hydrolytic enzymes are a highly het-
erogenous group of enzymes, including lyases, esterases,
glycosyl-hydrolases, and oxidoreductases. Microorgan-
isms with degrading activities toward plant cell wall
polysaccharides are the most source of hydrolytic enzymes
for industrial applications. Although, large- scale indus-
trial production of microbial enzymes as biopesticides in
the management of phytopathogens has been considered
by many researchers. Among rhizosphere microbes, var-
ious bacterial strains produce cell wall degrading enzymes,
including chitinase, cellulase, proteases, lipases, and amy-
lases, in response to phytopathogen attacks, which are fully
discussed in the following sections (Table 1, Ref. [40,79–
107]). These enzymes can either be applied indirectly by
manipulating genes coding enzymes, purified enzyme pro-
teins, or directly applying on phytopathogens.

4.1 Bacterial Chitinase in the Biocontrol of
Phytopathogens

Chitinase enzymes, which can be classified as ex-
ochitinases, endochitinases, β-N-acetylglucosaminidases,
and chitobiases are capable of hydrolyzing glycoside
bonds in chitin, a β-1,4 linked biopolymer of N-
Acetylglucosamine [108]. The presence of chitin polymer
in the cell walls of fungal phytopathogens represents chiti-
nase as a vital mean in the biocontrol of many plant dis-
eases as its degradation lyses fungal cell wall and induces
plant immune system [80]. Various microorganisms, such
as crustaceans, insects, fungi, yeasts, vertebrates, higher
plants, and bacteria, have been reported as chitinase pro-
ducers. Biocontrol bacteria with chitinolytic activity have
been reported to be effective against fungal phytopathogens
[109]. Loss of biocontrol activity in antagonistic bacte-
ria through the inactivation of gene-coding chitinase ex-
hibited the importance of chitinase activity in mitigating

phytopathogens [81]. Streptomyces spp. has been broadly
studied as a chitinase-productionmicroorganism among an-
tagonistic bacteria. For instance, Umar et al. [82] re-
ported that extracellular crude chitinase produced by Strep-
tomyces isolate CT02 showed antagonistic activity against
Aspergillus niger and A. oryzae. In another study, among
seven Streptomyces species isolated from grassland soils, S.
flavogriseus, S. albus, and S. fumosus exhibited chitinolytic
activity although S. albus produced the highest amount of
chitinase. The chitinase produced by these species inhib-
ited the growth of F. graminearum, Magnaporthe oryzae,
Rhizoctonia solani, Botrytis cinerea, and Puccinia species
[83]. Streptomyces cellulosae Actino 48 revealed the high-
est chitinase generation and the strongest suppression of
Sclerotium rolfsii by malformation, abnormalities, and hy-
phal injuries, resulting in a considerable loss of mycelia
density and mass [84]. Several Pseudomonas and Bacillus
species with chitinolytic activity have also been reported as
antagonistic agents against phytopathogens. Sharma et al.
[80] found that chitinase generated by Pseudomonas putida
and B. subtilis protected mug bean plants againstM. phase-
olina. Magnaporthe grisea, the causal agent of rice blast
disease. Magnaporthe grisea, the causal agent of blast dis-
ease infecting ragi, was suppressed by chitinase-producing
Pseudomonas spp. Although, the isolate with maximum ef-
ficacy and chitinase generation was identified as P. fluo-
rescens [85]. The biocontrol activity of Enterobacter cloa-
cae andP. fluorescens againstPhytophthora capsiciwas as-
sociated with the high potential of hydrolytic enzymes such
as chitinase [79]. Dhouib et al. [86] indicated that chiti-
nase production by Bacillus velezensis is one of the most
important mechanisms in managing Verticillium wilt dis-
ease caused by V. dahliae. Similarly, Alternaria alternata,
Botrytis cinerea, Fusarium oxysporum, F. graminearum,
Ustilaginoidea virens, and Fulvia fulva were grown sig-
nificantly decreased by a chitinase producer bacteria called
B. velezensis NGK-2 [87]. The extracellular chitinase pro-
duced by Paenibacillus elgii HOA73 inhibited the spore
germination of B. cinerea under in vitro conditions [81].
Jangir et al. [88] reported the role of extracellular chitinase
produced by different Bacillus isolates in suppressing F.
oxysporum f. sp. lycopersici. Chitinase production also im-
proved the biocontrol potential of Bacillus isolates against
M. phaseolina and R. solani [89]. Chitinase coding genes
in B. cereus were implicated in root colonization and man-
aging the maize pathogenic fungus F. verticillioides [90].
Chitinase produced by B. aerius and Geobacillus thermod-
enitrificans is reported as a biocontrol aspect involved in
the management of Phytophthora capsica [91]. Another
important chitinase producer bacteria, Serratia plymuthica,
effectively protected ginger againstPythiummyriotylum via
swelling, vacuolation, distortion and lysis of fungal mycelia
[92]. Recently, Malik et al. [93] observed the inhibitory
effect of chitinase synthetized by B. subtills TD11 against
fungi containing chitin in their hyphal walls such as Col-
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Table 1. Extracellular lytic enxymes in the biocontrol of phytopathogens.
Biocontrol bacteria Hydrolytic enzyme Target pathogen Reference

Streptomyces isolate CT02 Chitinase Aspergillus niger, A. oryzae [82]
Streptomyces albus, S. flavo-
griseus, S. fumosus

Chitinase Fusarium. graminearum, Mag-
naporthe oryzae, Rhizoctonia
solani, Botrytis cinerea, Puccinia
species

[83]

Streptomyces cellulosae Chitinase Sclerotium rolfsii [84]
Pseudomonas putida, B. subtilis Chitinase M. phaseolina [80]
Pseudomonas fluorescens Chitinase Magnaporthe grisea [85]
Pseudomonas fluorescens, Enter-
obacter cloacae

Chitinase, cellulase, lipase, protease Phytophthora capsici [79]

Bacillus velezensis Chitinase, protease, β-Glucanase Verticillium daliae [86]
Bacillus velezensis NKG-2 Protease, Lipase Gaeumanomyces graminis Var.

tritici, Gaeumannomyces grami-
nis var. tritici

[40]

Paenibacillus elgii HOA73 Chitinase B. cinerea [81]
B. subtills TD11 Chitinase, cellulase Colletotrichum, Aspergillus,

Fusarium, Rhizoctonia.
[93]

Bacillus velezensis NKG-2 Chitinase, β-Glucanase, cellulase, amylase Alternaria alternata, Botrytis
cinerea, Fusarium oxysporum,
F. graminearum, Ustilaginoidea
virens, Fulvia fulva

[87]

Bacillus spp. Chitinase, protease, glucanase Rhizoctonia solani, M. phase-
olina

[89]

Basillus spp. Chitinase, β-1,3-glucanase, protease F. oxysporum f. sp. lycopersici [88]
B. cereus Chitinase F. verticillioides [90]
Serratia plymuthica Chitinase Pythium myriotylum [92]
B. aerius, Geobacillus, Thermod-
enitrificans

Chitinase P. capsici [91]

B. cereus, B. subtillis, Pantoea
agglomerans

Chitinase Colletotrichum, Rhizoctonia, As-
pergillus, Fusarium

[93]

Bacillus simples, B. subtilis Cellulase, chitinase, pectinase, xylanase Fusarium spp. [94]
B. velenzensis TSA32-1 Cellulase, protease F. fujikuroi, F. graminearum, Di-

aporthe actinidiae, A. alternata,
Pythium ultimum

[95]

B. subtilis Cellulase, chitinase, glucanase Colletotrichum gloeosporioides
OGC1

[96]

Pseudomonas spp. Cellulase, glucanase, xylanase Verticillium dahliae [97]
Bacillus pumilus Protease, cellulase Fusicoccum aesculli, Phomop-

sis macrospora, Cytospora
chrysosperma.

[98]

B. cereus Protease Bursaphelenchus xylophilus [100]
B. cereus BCM2 Protease, chitinase Meloidogyne incognita [99]
P. aeruginosa FG106 Protease, lipase Xanthomonas euvesicatoria pv.

perforans, R. solani, P. infes-
tans, A. alternata, B. cinerea,
Clavibacter michiganensis subsp.
Michiganensis, P. colocasiae

[101]

P. putida ASU15 Lipase, protease, chitinase Uromyces appendiculatus [102]
B. cereus α- amylase Rhizoctonia cerealis [103]
B. cereus SCB-1 α- amylase, cellulase, protease Fusarium, Alternaria, Curvu-

laria, Neodeightonia, Sacchari-
cola, Cochliobolus, Phomopsis

[104]
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Table 1. Continued.
Biocontrol bacteria Hydrolytic enzyme Target pathogen Reference

Staphylococcus warneri, B.
velezensis, B. megaterium,
Caballeronia glebae, B. licheni-
formis

Amylase Ralstonia solanacearum [105]

One Bacillus and one Pseu-
domonas isolate

Amylase, protease R. solanacearum [106]

P. syringae, P. fluorescens, P.
aeruginosa

α- amylase, protease R. solanacearum [107]

letotrichum, Aspergillus, Fusarium, and Rhizoctonia. Sim-
ilarly, B. subtilis, B. cereus, and Patoea agglomerans iso-
lated from the rhizosphere of tomato plants were found to
liberate extracellular hydrolytic chitinase with antagonistic
activity against Colletotrichum, Rhizoctonia, Aspergillus,
and Fusarium [93]. It can be concluded from this sec-
tion that chitinase plays an essential role in the biocontrol
of many phytopathogens through the degradation of chitin
polymers in the cell wall structure.

4.2 Bacterial Cellulase in the Biocontrol of
Phytopathogens

Cellulase extracellular enzymes are glycoside hydrol-
yses that cleavage β-1,4-D glucan bond present in the cellu-
lase structure as an important cell wall component of certain
fungi, bacteria, and all plants. Cellulase causes cell wall
degradation and produces cellobiose, glucose, and cello-
oligosaccharide. This enzyme is categorized into three ma-
jor kinds, including endo- β-1,4 glucanase, exoglucanase,
and β-glucosidase, all taking part in cellulase hydrolysis
[110]. Cellulase has been reported as a potential biocon-
trol mechanism of some fungi, bacteria, and actinomycetes
[44]. For instance, cellulase from Bacillus velezensisNKG-
2 was found to show antagonistic activity against some
major plant fungal pathogens Alternaria alternata, Botry-
tis cinerea, Fusarium oxysporum, F. graminearum, Usti-
laginoidea virens, and Fulvia fulva [87]. The bacteria P.
fluorescens and E. cloacae have been successfully used in
the biocontrol of Phytophthora capsici by producing cel-
lulolytic enzymes [79]. Cellulase produced by B. subtilis
TD11 was found to show antifungal activity against Col-
letotrichum, Aspergillus, Fusarium, and Rhizoctonia [93].
Khan et al. [94] indicated that Bacillus simples and B.
subtilis could liberate extracellular cellulase, which acts
against Fusarium spp. in infected soils. The cellulase
enzyme from B. velezensis TSA32-1 has been character-
ized and was found to exert antifungal action against F.
fujikuroi, F. graminearum, Diaporthe actinidiae, A. alter-
nata, and Pythium ultimum [95]. Ashwini & Srividya [96]
observed the excretion of cellulase by B. subtilis, which
effectively reduced C. gloeosporioides mycelia in liquid
culture. Cellulase of two strains of B. velezensis showed
efficacy in biocontrol of grey mold disease caused by B.

cinerea [111]. In a study by Yanti et al. [112], the cellu-
lase of B. cereus and B. pseudomycoides were reported in
the biocontrol of tomato phytopathogens. The investiga-
tion of biocontrol agents for managing Verticillium wilt of
olive caused byV. dahliae resulted in the characterization of
somePseudomonas strains with the cellulase production ac-
tivity [97]. Cellulase producing endophytic B. pumilus JK-
SX001 showed antifungal activity on Fusicoccum aesculli,
Phomopsis macrospora and cytospora chrysosperma, the
casual agents of canker disease of poplar [98]. According to
above-mentioned studies, cellulase produced by biocontrol
bacteria is a key step in the suppression of plant pathogens
especially fungal phytopathogens.

4.3 Bacterial Proteases in the Biocontrol of
Phytopathogens

Proteases are enzymes that break down proteins and
are vital in biological control processes and in protecting
plants from disease-causing microorganisms. Proteases de-
grade proteins into peptide chains and amino acids, result-
ing in the breakdown of the cell wall. This occurs because
the fibrils of β-Glucanase and chitin are incorporated into
the protein matrix [113]. The protease generated by bac-
teria is mainly extracellular, easy to obtain, and active un-
der various environmental conditions, disrupting the action
of pathogenic proteins on plant cells [114]. Several bacte-
rial genera have been reported to mitigate plant pathogens
by producing extracellular protease enzymes. For example,
tomato phytopathogen was inhibited by the protease liber-
ated from B. cereus and B. pseudomycoides [112]. Protease
production by Pseudomonas fluorescens, and Enterobacter
cloacae limited the growth of Phytophthora capsici [79].
According to Dhouib et al. [86], Bacillus velezensis pro-
duce protease that can suppress the growth of V. dahliae.
One of the important hydrolytic enzymes in controlling
phytopathogens like F. fujikuroi, F. graminearum, Dia-
porthe actinidiae, A. alternata, and Pythium ultimum was
protease produced by B. velenzensis TSA32-1 [95]. Also,
protease fromBacillus spp. conferred the protection against
Rhizoctonia solani,M. phaseolina, and F. oxysporum f. sp.
lycopersici [88,89]. Ren et al. [98] reported an endophytic
B. pumilus strain as a protease producer, which conferred
protection against poplar canker disease caused by Fu-
sicoccum aesculli, Phomopsis macrospora, and cytospora

7

https://www.imrpress.com


chrysosperma. The investigation of an alkaline protease of
B. amyloliquefaciens SP1 showed its involvement in the ef-
ficient biocontrol of F. oxysporum [115]. Serine protease
extracted from B. licheniformis W10 exhibited its antifun-
gal potential against B. cinerea [116]. Hu et al. [99] re-
ported that one of the potential mechanisms employed by
B. cereus BCM2 in the infection and death ofMeloidogyne
incognita, which causes sever root-knot disease in crops, is
the production of extracellular hydrolytic enzymes, espe-
cially protease and chitinase. Recently, the pathogenicity
of an alkaline protease secreted from B. cereus NJSZ-13 to
prevent pine wood nematode, Bursaphelenchus xylophilus
was suggested by Li et al. [100]. Many researchers have
proved the great fungicidal and nematicidal potential of pro-
tease produced by antagonistic bacteria.

4.4 Bacterial Lipases in the Biocontrol of Phytopathogens

Lipases are vital lipolytic enzymes many microorgan-
isms produce, from procaryotes to eucaryotes. These en-
zymes belong to the alpha and beta hydrolase superfam-
ily with many catalytic characteristics, such as alcoholysis,
transesterification, decarboxylation, and aminolysis [117].
Their mechanism of action catalyzes the hydrolysis of dif-
ferent lipid substrates. Various bacterial strains represent-
ing lipase production can be considered as biological con-
trol agents. The lipases produced by these bacteria affect
phytopathogens directly and induce plant defense mecha-
nisms by liberating lipids [71]. Lipases produced by P.
aeruginosa FG106, isolated from the rhizosphere of tomato
plants, improved its biocontrol activity in managing Xan-
thomonas euvesicatoria pv. perforans, R. solani, P. infes-
tans, A. alternata, B. cinerea, Clavibacter michiganensis
subsp. Michiganensis, and P. colocasiae [101]. Admassie
et al. [79] reported lipases as one of the most important
antagonistic compounds liberated by Pseudomonas fluo-
rescens and Enterobacter cloacae in the control of P. cap-
sici. The P. putida strain AUS15, isolated from fresh beans,
represented direct biocontrol efficacy againstUromyces ap-
pendiculatus through lipolytic, chitinolytic, and proteolytic
activities [102]. Streptomyces puniceus with strong lipase
activity exhibited significant inhibition to the growth ofVer-
ticillium dahliae, and Valsa mali [118]. Evaluating the abil-
ity of several isolates of Bacillus (B. subtilis, B. licheni-
formis, B. firmus, B. lentus, B. circulans, and B. aerug-
inosa) and Pseudomonas (P. fluorescens, P. luteola, and
P. aeruginosa) to inhibit the mycelia growth of F. oxys-
porum f. sp. ciceris showed different rates of inhibition
due to the excretion of different hydrolytic enzymes in-
cluding lipase [119]. A study by Mota et al. [120] iso-
lated bacteria from different plant species and soils which
were identified as B. cereus, B. subtilis, B. thuringien-
sis, Paenobacillus polymyxa, Pseudomonas poae, Pseu-
dochrobactrum saccharolyticum, P. putida, B. amylolique-
faciens, Bacillus spp. and Pseudomonas spp. killed ju-
veniles of Mesocriconema xenoplax by the production of

extracellular lytic enzymes such as lipases. Similarly, li-
pase production activity was observed in bacteria isolated
from different sources, which were identified as Bacillus
sp., Pantoea sp., Pantoea vegans, Burkholderia cepacian,
Acinetobacter sp., P. putida, Staphylococcus warneri, B.
licheniformis, B. amyloliquefaciens, Paenibacillus cineris
and Oceanobacillus oncorhynchi. These bacteria exhib-
ited antagonistic activity against Xanthomonas oryzae pv.
oryzae, the causal agent of bacterial leaf blight of paddy
[121]. Consequently, lipases play a vital role as an impor-
tant lytic enzyme in the plant protection mechanism em-
ployed by many biocontrol bacteria.

4.5 Bacterial Amylase in the Biocontrol of Phytopathogens
Amylases are classified into three main groups includ-

ing, β-amylases which are exo-hydrolases, hydrolyzing α-
1,4-glucan binds into maltose units, α-amylases, produc-
ing maltose and glucose by catalyzing the hydrolysis of
α-1,4- glycosidic linkages and γ-amylases, producing glu-
cose via breaking down the α-1-6 and α-1-4 glycosidic
bonds [122]. These enzymes tolerate acidic conditions, and
calcium is needed to stabilize their conformation. They
are found in various microorganisms, including bacteria,
fungi, and oomycetes. Many researchers have proved the
antimicrobial capability of amylase produced by several
biocontrol bacteria. For instance, Huang et al. [103] ob-
served the secretion of an α-amylase by B. cereus, inhibit-
ing the growth of R. cerealis. Moreover, α- amylase pro-
duced by B. subtilis SCB-1 contributed to its antifungal po-
tential against diverse fungal pathogens, including Fusar-
ium, Alternaria, Curvularia, Neodeightonia, Saccharicola,
Cochliobolus and Phomopsis [104]. Myo et al. [87] dis-
covered that B. velezensis NKG-2 exhibited antifungal ac-
tivity against F. graminearum, B. cinerea, F. oxysporum,
Fulvia fulva, U. virens, and A. alternata through the pro-
duction of amylase. Endophytic beneficial bacteria, such as
Staphylococcus warneri, B. velezensis, B. megaterium, Ca-
balleronia glebae, B. licheniformis with high antagonistic
activity against, Ralstonia solanacearum, the causal agent
of bacterial wilt, was positive for amylase production [105].
In a separate investigation, bacterial wilt in tomatoes, in-
duced by R. solanasearum, was effectively managed us-
ing a single Bacillus isolate and one Pseudomonas isolate,
both of which exhibited the capacity to produce amylase un-
der in vitro conditions [106]. Three Pseudomonas isolates,
including P. syringae, P. fluorescens and P. aeruginosa,
could produce α- amylase, protease, and lipase, making
them potential in the growth inhibition of R. solanacearum
[107]. Among 73 endophytic bacteria isolated from dif-
ferent tissues of Clerodendrum colebrookianum, 84.6% of
them exhibited remarkable amylase production and antifun-
gal activity against F. oxysporum, F. graminearum, Col-
letotrichum capsici, F. proliferatum and R. solani [123].
Therefore, amylase-producing bacteria are potential bio-
control agents for several phytopathogens.
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Fig. 3. The action mechanism of chitinase.

5. Deciphering the Mechanisms of Hydrolytic
Enzymes in Phytopathogen Biocontrol

The main action mechanism of different extracellu-
lar lytic enzymes liberated by biocontrol bacteria catalyzes
the hydrolysis of phytopathogens’ cell wall, proteins, and
DNA, leading to the outflow of intracellular materials and
cell death [124]. The cell wall of pathogenic microor-
ganisms maintains their cells’ physical integrity, composed
of proteins, different carbohydrates, chitin, β-1,3-glucan,
and lipids. Different cell wall parts can be affected de-
pending on the target pathogen and biocontrol bacteria.
For example, chitinase degrades the polymer chitin pre-
sented in the cell wall of nematodes and fungi. However,
it is divided into two types based on the mode of action:
(1) Endochitinases, degrading internal sites of chitin mi-
crofibril over the whole length and producing multimer N-
acetyl glucosamine such as chitotetraose and chititriose and
dimer diacetyl-chitobiose, and (2) Exochitinases, which are
classified into (a) β-1,4-glucosaminidases, breaking down
oligomers obtained by Endochitinases into N-acetyl glu-
cosamine monomer, and (b) chitotriosidase which produce
diacetylchitobiose via breaking the non-reducing end of
chitin [44]. Fig. 3 depicts the degradation of chitin by chiti-
nase.

The second hydrolytic enzyme discussed in this ar-
ticle is cellulase, hydrolyzing 1,4-β-D-glycosidic bonds
of cellulose as a major polysaccharide compound in the
pathogens’ cell wall. These enzymes produce glucose,
cellobiose, and cello-oligosaccharide after breaking cel-
lulose down. Different cellulolytic enzymes, includ-
ing cellulose (endo-glucanases), β-glucosidases, and exo-
cellobiohydrolase (exo-glucanases), are required for the

synergistic conversion of cellulose to glucose [125]. Fig. 4
describes the degradation of cellulose by cellulase. The
third bacterial hydrolysis enzyme called protease not only
lyses the protein matrix in the cell wall but also degrades
the major phytopathogens proteins into peptide chains and
amino acids, disrupting their action on plant cells. Proteases
based on their site of action are classified into (1) Exopep-
tidases, removing amino acids from the carboxy-terminal
(carboxypeptidases) or amino-terminal (aminopeptidases)
end of the proteins, and (2) Endopeptidases break down the
internal amino acids of the polypeptide chain [126]. The
lipase’s mode of action is hydrolyzing different lipid sub-
strates by breaking ester bonds down and producing glyc-
erol, fatty acids, and other alcohols. These enzymes can
also induce the plant immune system by liberating lipids
[102]. The last discussed extracellular hydrolytic enzyme,
amylase, breaks down starch into maltose and glucose sug-
ars. According to the action site, amylases are classified as
α- amylases, β-amylases, and γ-amylases, lysingα-1-6 and
α-1-4 glycosidic linkages in starch structure [71]. It can be
concluded that hydrolytic enzymes secreted from biocon-
trol bacteria act on different parts of the phytopathogenic
cell wall, and all of them lead to the outflow of intercellular
materials and cell death.

6. Conclusion and Prospects
With the increasing global population and growing de-

mand for agricultural products, finding alternatives to syn-
thetic pesticides has become a top global priority. Antago-
nistic microorganisms, especially biocontrol bacteria, have
emerged as promising strategies to ensure plant health, food
safety, and sustainable agriculture. These biocontrol bacte-
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Fig. 4. The action mechanism of cellulase.

ria, belonging to genera like Bacillus, Pseudomonas, Strep-
tomyces, and others, exhibit antagonistic activity against
various plant pathogens through multiple modes of ac-
tion, particularly those producing hydrolytic enzymes. Hy-
drolytic enzymes, such as chitinase, cellulase, protease, li-
pase, and amylase, play a critical role in breaking down
components of phytopathogens’ cell walls, leading to their
degradation. Moreover, some of these enzymes can directly
affect plant growth and promote colonization by benefi-
cial bacteria, triggering the plant’s immune system against
biotic stresses. This mechanism of action not only com-
bats pathogens, but also enhances plant defense responses
and overall health. Looking forward, the perspective of
harnessing hydrolytic enzymes as a cornerstone of plant
protection strategies is highly promising, with ongoing re-
search on identifying novel and potent hydrolytic enzymes
to efficiently degrade a wide range of pathogenic organ-
isms, ultimately enhancing the effectiveness of biocontrol
agents. Additionally, integrating these enzymes into vari-
ous formulations, such as sprays or coatings, could facilitate
easy application. As these enzymes work through a fun-
damentally different mechanism from chemical pesticides,
it significantly reduces the likelihood of pathogens devel-
oping resistance, ensuring a sustainable and long-term so-

lution. Scaling up production processes for these enzymes
using advanced biotechnological methods is another avenue
that holds great potential. However, challenges include
maintaining the stability and activity of enzymes under dif-
ferent conditions, as well as ensuring their safe use without
any adverse effects on non-target organisms or the environ-
ment. Continued research, technological innovation, and
field trials will be instrumental in realizing the full scope
of benefits that hydrolytic enzymes can offer in sustainable
agriculture and disease management.
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