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Abstract

Background: Clear cell renal cell carcinoma (ccRCC) is a common and lethal urological malignancy for which there are no effective
personalized therapeutic strategies. Programmed cell death (PCD) patterns have emerged as critical determinants of clinical prognosis
and immunotherapy responses. However, the actual clinical relevance of PCD processes in ccRCC is still poorly understood. Methods:
We screened for PCD-related gene pairs through single-sample gene set enrichment analysis (ssGSEA), consensus cluster analysis, and
univariate Cox regression analysis. A novel machine learning framework incorporating 12 algorithms and 113 unique combinations were
used to develop the cell death-related gene pair score (CDRGPS). Additionally, a radiomic score (Rad_Score) derived from computed
tomography (CT) image features was used to classify the CDRGPS status as high or low. Finally, we conclusively verified the function
of PRSS23 in ccRCC. Results: The CDRGPS was developed through an integrated machine learning approach that leveraged 113
algorithm combinations. CDRGPS represents an independent prognostic biomarker for overall survival and demonstrated consistent
performance between training and external validation cohorts. Moreover, CDRGPS showed better prognostic accuracy compared to
seven previously published cell death-related signatures. In addition, patients classified as high-risk by CDRGPS exhibited increased
responsiveness to tyrosine kinase inhibitors (TKIs), mammalian Target of Rapamycin (mTOR) inhibitors, and immunotherapy. The
Rad_Score demonstrated excellent discrimination for predicting high versus low CDRGPS status, with an area under the curve (AUC)
value of 0.813 in the Cancer Imaging Archive (TCIA) database. PRSS23 was identified as a significant factor in the metastasis and
immune response of ccRCC, thereby validating experimental in vitro results. Conclusions: CDRGPS is a robust and non-invasive tool
that has the potential to improve clinical outcomes and enable personalized medicine in ccRCC patients.
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1. Introduction

Renal cell carcinoma (RCC) is among the top ten most
commonly diagnosed cancers globally, with clear cell RCC
(ccRCC) being the predominant histological subtype and
accounting for approximately 70% of RCC cases [1].

The global incidence of ccRCC is increasing and this
subtype has the worst prognosis of all RCC variants, with
the highest rates of invasion, metastasis, and mortality [2].
In recent surveillance work, 73,820 new cases of ccRCC
were diagnosed in the United States in 2019 and 14,770
deaths reported [1]. Tumor, Node, Metastasis (TNM) stage
continues to be the most pertinent prognostic indicator for
ccRCC in clinical practice. However, the prognostic accu-
racy of TNM is less than ideal, with substantial variation in
survival between individuals with identical TNM stage [3].
ccRCC also exhibits lower responsiveness to radiotherapy
and chemotherapy modalities compared to other RCC sub-
types. Although immune checkpoint inhibitor (ICI) therapy

has emerged as the standard immunotherapeutic approach
for advanced RCC, only a small proportion of patients show
meaningful and long-lasting benefits. The expression of
programmed death ligand 1 (PD-L1), tumor mutation bur-
den (TMB), neoantigen load (NAL), and mismatch repair
deficiency (dMMR, or microsatellite instability-high [MSI-
H]) are potential biomarkers of sensitivity to ICI therapy.
However, these techniques are limited by issues such as
spatial and temporal heterogeneity, poor precision, and the
presence of minor cell subpopulations [4–6]. To achieve
tailored treatment plans for ccRCC, it is therefore important
to develop effective models that can improve the accuracy
of prognosis and the selection of patients for immunother-
apy.

Programmed cell death (PCD) is intrinsically linked
to both tumorigenesis and therapeutic efficacy. Tumors
undergo diverse modes of cell death in response to vary-
ing environmental conditions [7]. The most recent guide-
lines put forth by the Nomenclature Committee on Cell
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Death (NCCD) define PCD as encompassing a spectrum
of processes including apoptosis, necroptosis, ferroptosis,
pyroptosis, netotic cell death, entotic cell death, lysosome-
dependent cell death, parthanatos, autophagy-dependent
cell death, oxeiptosis, and alkaliptosis. Apoptosis is a regu-
lated process that removes injured or surplus cells in an or-
derly manner without triggering inflammation. It involves
condensation, nuclear cleavage, and macrophage-mediated
vesicle engulfment [8]. Autophagy-dependent cell death
involves stepwise lysosomal degradation and is central to
metabolic homeostasis and nutrient recycling [9]. Both
apoptosis and autophagy have been implicated in mediat-
ing chemoresistance in glioblastoma [10]. Alkaliptosis is
a recently described modality of PCD that is governed by
intracellular alkalinization [11]. Cuproptosis represents a
novel form of cell death that relies on mitochondrial res-
piration and proceeds through direct binding of copper to
fatty acylated constituents of the tricarboxylic acid (TCA)
cycle [12]. Recent studies have identified disulfidptosis as
a novel PCD mechanism characterized by disulfide stress
[13]. Entotic cell death represents a process of active cel-
lular invasion that is restricted to viable cells and pericellu-
lar regions. This non-apoptotic pathway proceeds indepen-
dently of apoptotic executioner activation [14]. Ferropto-
sis is defined by the iron-dependent accumulation of cyto-
toxic lipid peroxides to lethal concentrations. Suppression
of ferroptosis has been found to confer resistance to PD-
1/PD-L1 immune checkpoint blockade [15,16]. Lysosome-
dependent cell death proceeds through the activity of lyso-
somal hydrolases released into the cytosol subsequent to
organelle membrane permeabilization [17]. The pivotal
characteristic of necroptosis centers around the assembly
of necrosomes and involves multifaceted progression [18].
Netotic cell death arises from the extrusion of neutrophil
extracellular traps (NETs), which are reticulated chromatin
structures deployed by granulocytes in response to infection
or tissue damage [19]. Oxeiptosis harnesses the reactive
oxygen species-sensing capability of KEAP1 to execute a
distinct cell death program. It represents a novel cellular
pathway that is likely to intersect with other modes of reg-
ulated cell death [20]. Parthanatos represents a specialized
form of regulated cell death mediated by the overactivation
of PARP-1 nuclease [21]. Pyroptosis is characterized by
cell swelling, lysis, and the copious release of proinflamma-
tory mediators [22]. It has been implicated in the translo-
cation of programmed cell death ligand 1 (PD-L1) and the
therapeutic response to PD-1 checkpoint blockade [23]. In
summary, it has been established that PCD is a critical de-
terminant of tumorigenesis and metastasis [18].

The generation of PCD-associated genetic signatures
to categorize patients into discrete risk strata has been pro-
posed to improve the accuracy of prognostic modeling [24].
However, prior efforts at generating quantitative models
have been hampered by biological noise and technical bi-
ases. An alternative approach based on relative gene ex-

pression to generate gene pair (GP) signatures may be
worthwhile since it eliminates the requirement for data stan-
dardization, thus allowing the development of reliable mod-
els [25]. However, this approach is constrained by neces-
sary intrusive procedures and excessive cost to the patient.
A potentially non-invasive alternative is the application of
radiomics, which makes use of the quantitative characteris-
tics of medical imaging [26,27].

The aim of this study was to identify PCD-associated
gene pairs which can predict the prognosis and outcome of
immunotherapy in ccRCC patients through a novel compu-
tational framework. Additionally, we investigated associ-
ations between radiomic features extracted from contrast-
enhanced computed tomography (CT) and the cell death-
related gene pair score (CDRGPS). Transcriptomic and
clinical data for ccRCC patients were obtained from The
Cancer Genome Atlas (TCGA-KIRC) database and Ar-
rayExpress (E-MTAB-1980). These were used as dis-
covery and validation cohorts, respectively. Cell death-
related gene pairs were identified through single sample
gene set enrichment analysis (ssGSEA), consensus clus-
tering, and univariate Cox regression. A machine learn-
ing framework incorporating 12 algorithms and 113 com-
binations was used to develop the CDRGPS. The prog-
nostic utility of CDRGPS was evaluated and incorporated
into a nomogram. CDRGPS was applied in single-cell
analysis to assess biological differences between high- and
low-risk subgroups. We also examined the prediction of
drug response and efficacy of immunotherapy. In addi-
tion, a radiomic score (Rad_Score) was derived from the
CT imaging-quantified CDRGPS status. Finally, the role
of PRSS23 in ccRCC was investigated (Fig. 1).

2. Materials and Methods
2.1 Data Collection

RNA sequencing (RNA-seq) data and corresponding
clinical data for ccRCC were obtained from The Cancer
Genome Atlas (TCGA) (https://cancergenome.nih.gov) co-
hort. After excluding samples with incomplete or absent
essential clinicopathological annotations, the final TCGA-
Kidney Renal Clear Cell Carcinoma (KIRC) cohort com-
prised 518 patients. An additional validation cohort of 101
ccRCC patients with gene expression microarray data and
clinical details was sourced from the E-MTAB-1980 dataset
in the ArrayExpress (https://www.ebi.ac.uk/biostudies/arr
ayexpress) repository [28].

2.2 PCD-Related Gene Sources
PCD-associated genes were selected from Kyoto En-

cyclopedia of Genes and Genomes (KEGG) databases,
Gene Set Enrichment Analysis (GSEA) gene sets, and pub-
lished reviews [29,30]. Specifically, a total of 580 apoptosis
genes, 52 pyroptosis genes, 87 ferroptosis genes, 367 au-
tophagy genes, 15 entotic cell death genes, 101 autophagy
genes, 14 cuproptosis genes, 9 parthanatos genes, 8 ne-
totic cell death genes, 7 alkaliptosis genes, 220 lysosome-
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Fig. 1. Flowchart for this study. PCD, programmed cell death; CDRGPS, cell death-related gene pair score; TCGA-KIRC, The Cancer
Genome Atlas - Kidney Renal Clear Cell Carcinoma.

dependent cell death genes, 15 disulfidptosis genes, and 5
oxeiptosis genes were compiled (Supplementary Table 1).

2.3 Consensus Clustering Analysis

To quantify PCD pathway activity in each sample, ss-
GSEA was conducted using the GSVA R package 1.44.5
with gene expression profiles. The ssGSEA scores were
then utilized to perform unsupervised consensus clustering

with the ConsensusClusterPlus R package 1.60.0 (1000 iter-
ations, 80% resampling rate, Spearman correlation) to cat-
egorize ccRCC into distinct PCD subclusters.

2.4 Development of Cell Death Related Gene Pair
Signature

Differentially expressed genes (DEGs) between the
two PCD subclusters were identified using the DESeq2 R
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package 1.42.0. Univariate Cox regression analysis was
then performed to identify DEGs that were significantly
correlated with overall survival (OS) in both the training
and test cohorts (p < 0.05). The prognostic DEGs identi-
fied were utilized to generate gene pairs following the ap-
proach described previously by Hong et al. [31]. Briefly,
genes were paired as A|B, with the pair designated as 1
if the expression of gene A exceeded that of gene B. The
pair was otherwise designated as 0. Gene pairs where 0
or 1 exceeded a prevalence of 20% were considered effec-
tive. To create a CDRGPS with high precision and general-
izability, 12 machine learning algorithms were integrated:
Lasso, Ridge, Stepglm, Extreme Gradient Boosting (XG-
Boost), random forest (RF), elastic net (Enet), partial least
squares regression for generalized linear models (plsRglm),
generalized boosted regression modeling (GBM), Naive-
Bayes, linear discriminant analysis (LDA), generalized lin-
earmodel boosting (glmBoost), and support vectormachine
(SVM). A total of 113 permutations of these 12 algorithms
were then evaluated in a 10-fold cross-validation frame-
work using the TCGA-KIRC training dataset for variable
selection and model building. We subsequently validated
model performance using E-MATB-1980 as an external test
cohort. The concordance index for each model was calcu-
lated across the training set and the external testing set. The
prediction accuracy of each model was then ranked using
the mean C-index. The set of algorithms that demonstrated
both reliable performance and clinical relevance was cho-
sen, leading to the development of a signature known as
CDRGPS that was capable of predicting the OS of ccRCC
patients.

2.5 Prognostic Value of CDRGPS and Potential Clinical
Translation

Based on the model generated above, a score was de-
termined for each sample in the training and test datasets.
Using the median value as the cutoff point, patients were
then divided into CDRGPS-high and -low groups. The
“survminer” R package 0.4.9 and Kaplan-Meier (KM) anal-
ysis were used to compare the two groups in terms of
OS, progression-free survival (PFS), disease-free survival
(DFS), and disease-specific survival (DSS). Furthermore,
the “timeROC” package 0.4 was employed to perform re-
ceiver operating characteristic (ROC) analysis for evaluat-
ing the sensitivity and specificity of CDRGPS in predict-
ing the OS of ccRCC patients in the training and test co-
horts. Additionally, the area under the curve (AUC) of
CDRGPSwas compared to that of other PCD-related signa-
tures. Univariate and multivariate Cox regression analyses
were also performed to determinewhether CDRGPSwas an
independent prognostic factor for ccRCC patients. To im-
prove the prognostic accuracy of CDRGPS, a nomogram
was constructed using the “rms” package. This nomogram
integrated CDRGPS and clinical characteristics, allowing
quantification of the survival outcomes of ccRCC patients.

The timeROC curve, calibration curves, and decision curve
analysis (DCA) were used to thoroughly assess the perfor-
mance of the nomogram.

2.6 Single-Cell RNA-Seq Data Collection and Processing
Single-cell RNA sequencing (scRNA-seq) data was

obtained from 7 ccRCC samples in the GSE156632 col-
lection [32]. Cell clustering and dimension reduction were
performed using the Seurat package [33]. Principal com-
ponent analysis (PCA) was performed using “RunPCA”.
A K-nearest neighbor analysis was then conducted using
the “FindNeighbors” function. Complex expression pro-
files were visually represented by downscaling and facil-
itated by the “RunTSNE” function. This was followed by
cell annotation based on marker genes associated with vari-
ous cell types. Finally, pseudotime analysis was conducted
using the monocle R package 2.26.0.

2.7 Tumor Stemness and Drug Sensitivity Analysis
Based on prior research, we derived six tumor

stemness indices using messenger ribonucleic acid
(mRNA) expression and methylation signatures: RNA
expression-based stemness score (RNAss), Epigeneti-
cally regulated RNA expression-based stemness score
(EREG.EXPss), DNA methylation-based stemness score
(DNAss), Epigenetically regulated DNA methylation-
based stemness score (EREG-METHss), Differentially
methylated probes-based stemness score (DMPss), and
Enhancer Elements/DNAmethylation-based stemness
score (ENHss) [34]. With regard to personalized treat-
ment, the pRRophetic R package 0.5 [35] was used to
predict the half-maximal inhibitory concentration (IC50)
of chemotherapy drugs that are commonly administered to
ccRCC patients. This was based on their distinct CDRGPS
level.

2.8 Integrated Evaluation of CDRGPS-Based
Immunotherapy Efficacy and Immune-Omics Molecular
Characterisation

To quantify immune infiltrating cells and the ES-
TIMATE score, we utilized CIBERSORT [36], MCP-
counter (Microenvironment Cell Populations-counter) [37],
the QUANTISEQ algorithm [38], and the ESTIMATE (Es-
timation of Stromal and Immune cells in Malignant Tu-
mors using Expression data) algorithm [39]. Additionally,
we used data from ssGSEA to compute the cancer immu-
nity cycle, which reflects the functionality of chemokines
and immunomodulators [40]. Furthermore, to explore
the predictive ability of CDRGPS for immunotherapy, we
used data from the RCC-Braun_2020 cohort consisting of
181 ccRCC patients treated with nivolumab, of which 57
showed clinical benefit, 57 showed intermediate clinical
benefit, and 67 showed no clinical benefit [41].
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2.9 Development of the Radiomics Model
Preoperative CT scans for 267 samples and stored in

The Cancer Imaging Archive (TCIA) were used to extract
radiomics features for use in model building [42]. The
volume of interest (VOI) for tumor segmentation was per-
formed manually using the 3D Slicer program (http://ww
w.itksnap.org/pmwiki/pmwiki.php). The entire tumor was
manually segmented for each axial slice by two radiolo-
gists, both with >5 years of experience. The Pyradiomics
2.2.0 Python package (version 3.0, Python Software Foun-
dation, Wilmington, DE, USA) was then used to extract
1688 radiomics characteristics from each VOI. Spearman’s
rank correlation analysis was used to determine which fea-
tures should be chosen. Features with correlation coeffi-
cients >0.9 were classified as redundant and eliminated
from further consideration. LASSO regression and 5-fold
cross-validation were used to modify the penalty parame-
ter in order to identify features with the highest predictive
value for CDRGPS. This allowed creation of the radiomics
score (Rad_Score), which involved linear combination of
the selected features and their weighting according to the
respective coefficients.

2.10 Cell Culture
Human renal cell carcinoma cell lines 786-O and

CAKi-1 obtained from the American Type Culture Collec-
tion were cultured under standard conditions in a humidi-
fied incubator at 37 °C and 5% CO2. The cell line iden-
tity was validated by STR profiling. And the cells were
tested before and after the experiments for mycoplasma
contamination detected by MycoStrip™ kit (InvivoGen,
HongKong, China) based on isothermal polymerase chain
reaction (PCR). Silencing of the target gene, PRSS23, was
achieved using small interfering RNA (siRNA) purchased
from Fenghuishengwu Associates. The PRSS23 siRNA se-
quence was 5′ GCGGCAGAUTTATGGCTAUGA 3′. The
786-O and CAKi-1 cell lines were seeded at a density of 4
× 105 cells per well in 6-well plates and allowed to grow
until complete adherence was achieved. Both cell lines then
underwent transfection using the lipo3000 compound.

2.11 Western Blotting
The 786-O and CAKi-1 cells were rinsed twice using

chilled Phosphate-Buffered Saline (PBS) and lysed on ice
by the addition of 250 µL lysis buffer. They were then
centrifuged for 15 minutes at 14,000 rpm and 4 °C, and
the debris removed. The combined protein was heated at
100 °C for 10 minutes. Equal amounts of protein samples
were resolved by sodium dodecyl sulfate-polyacrylamide
gel electrophoresis (SDS-PAGE) using a 10% polyacry-
lamide gel under a constant voltage of 120 V. The separated
proteins were subsequently transferred to polyvinylidene
difluoride (PVDF) membranes. These were blocked with
5% non-fat drymilk in Tris-buffered saline containing 0.1%
Tween-20 (TBST) for 60 minutes at room temperature.

This was followed by overnight incubation at 4 °C with pri-
mary antibodies against PRSS23 (Abcam, Cambridge, UK,
ab201182) and vinculin (Abcam, ab129002). After wash-
ing with TBST, the membranes were incubated with appro-
priate horseradish peroxidase-conjugated secondary anti-
bodies for 60 minutes at room temperature. The immunore-
active bands were visualized using enhanced chemilumi-
nescence reagents after further washing with TBST. Anal-
ysis of band densitometry was performed using Image Lab
software and ImageJ to determine relative protein expres-
sion levels. These were normalized to the vinculin loading
control.

2.12 Transwell Migration and Invasion Assays
Cell migration and invasion assays were performed

using 24-well Transwell chambers containing 8 µm pore
size polycarbonate membrane inserts (Thermo Fisher,
Waltham, MA, USA). For invasion assays, the upper sur-
face of the Transwell inserts was precoated with 100 µL
of Matrigel basement membrane matrix (BD Biosciences,
Franklin Lakes, NJ, USA) and incubated overnight at 4 °C
to allow gelling. Cells were harvested and resuspended at a
density of 3 × 104 cells/mL in serum-free medium. A 100
µL cell suspension was added to the upper chamber of each
insert, while the lower chambers were filled with 600 µL
of culture medium containing 10% fetal bovine serum as a
chemoattractant. Following 24-hour incubation at 37 °C to
allow for cell migration or invasion through the membrane,
the non-migrated cells on the upper surface were removed
using a cotton swab. Migrated or invaded cells on the un-
derside of the membrane were fixed with 4% paraformalde-
hyde solution for 20 minutes at room temperature and sub-
sequently stainedwith 0.5% crystal violet dye for 5minutes.
The number of stained cells in five random fields per insert
was counted under a light microscope to quantify the extent
of migration and invasion.

2.13 Statistical Analysis
The statistical analysis software R 4.2.1 (The R Foun-

dation for Statistical Computing, Vienna, Austria) was used
for all analyses. The Wilcoxon test was used for non-
parametric comparisons between two variables with non-
normal distributions. Kaplan-Meier survival analysis and
the log-rank test were used to compare OS, DFS, PFS, and
DSS between subgroups. This was carried out using the
survival R package 3.5-5. Univariate and multivariate Cox
regression analyses were conducted to identify independent
prognostic variables. Model performance was evaluated
using ROC analysis, and the AUC was calculated using
the R package timeROC. Differences in clinical traits be-
tween two CDRGPS subclusters were examined using the
chi-squared test. p < 0.05 was used to indicate statistical
significance, unless otherwise noted. Associations between
CDRGPS, immune cell infiltration, and tumor stemness in-
dex were examined using Spearman’s correlation analysis.
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3. Results
3.1 ccRCC Classification Based on 9 Programmed Cell
Death Patterns

The overall workflow for this study is outlined in
Fig. 1. We utilized the RNA-seq data of 13 PCD-related
genes from 518 ccRCC patients in the TCGA to perform
ssGSEA and subsequently univariate Cox regression anal-
ysis. Nine of the 13 PCD patterns exhibited significant as-
sociations with the clinical outcome of ccRCC (p < 0.1;
Supplementary Table 2). These included apoptosis, au-
tophagy, cuproptosis, disulfidptosis, ferroptosis, pyropto-
sis, entotic cell death, lysosome-dependent cell death, and
necroptosis. We next applied an unsupervised consensus
clustering method based on the 9 prognosis-related PCD
scores to categorize ccRCC samples into potential sub-
groups, ranging from k = 2 to k = 5. The cumulative distri-
bution function (CDF) curves derived from the consensus
clustering matrix revealed that k = 2 was the ideal number
of subgroups (Fig. 2A–D). The two consensus clusters, C1
and C2, displayed distinct PCD patterns. C1 exhibited ele-
vated levels of apoptosis, necroptosis and pyroptosis, while
C2 was enriched for autophagy, cuproptosis, entotic cell
death and ferroptosis (Fig. 2E). Patients belonging to C1
displayed reduced DSS, DFS, OS, and PFS compared to
the C2 group (p < 0.001, log-rank test; Fig. 2F).

3.2 Construction of a Cell Death Related Gene Pairs
Score Based on Integrative Machine Learning

To further examine the transcriptional heterogeneity
of PCD subpopulations in ccRCC, differential analysis was
conducted to contrast the two subclusters. A total of 920
genes were found to display substantial variation in expres-
sion level across the delineated groups (Supplementary
Fig. 1A). Of these, 303 putative genes linked to PCD pro-
cesses were identified as potential predictors of OS, as re-
vealed by univariate Cox regression analysis (p < 0.05).
These 303 prognosis-associated genes were then used to es-
tablish gene pairs, leading to the identification of 159 such
gene pairs associated with prognostic outcomes. The en-
semble of gene pairs, encompassing a subset of 51 genes,
was derived through meticulous curation (p < 0.05; Sup-
plementary Fig. 1B).

A compendium of 12 distinct machine learning algo-
rithms were synergistically harnessed, comprising Lasso,
Ridge, Stepglm, XGBoost, RF, Enet, partial least squares
regression for generalized linear models(plsRglm), GBM,
NaiveBayes, LDA, glmBoost and SVM. By employing a
rigorous 10-fold cross-validation methodology, these algo-
rithms were strategically amalgamated to identify the most
resilient CDRGPS, as indicated by an elevated C-index per-
formance metric. This iterative process was meticulously
performed with both the training dataset and an indepen-
dent external test dataset, as shown in Fig. 3A. Of the 113
models examined, the five prediction models with the high-
est average C-index were obtained exclusively using the RF

algorithm. These five predictive models showed good effi-
cacy not onlywithin the training dataset, but alsowith exter-
nal validation datasets, exhibiting a C-index greater than the
0.75 threshold. Following an exhaustive screening process,
the combined Lasso +RF configuration emerged as a partic-
ularly discerning predictive model, characterized by excel-
lent accuracy with minimal variables. The final iteration of
the CDRGPS was finally derived through synergistic inte-
gration of the Lasso and RF algorithms. Of note, the Lasso
algorithm discerned a selection of seven pre-eminent cell
death-related gene pairs (Fig. 3B), while the RF algorithm
identified the most robust predictive model (Fig. 3C). A tai-
lored risk score was calculated for each sample in the train-
ing and test cohorts, thus allowing patients to be catego-
rized into CDRGPS-high or CDRGPS-low groups accord-
ing to the median value. In both the TCGA-KIRC and E-
MTAB-1980 cohorts, patients in the CDRGPS-high group
had significantly worse OS than those in the CDRGPS-low
group (p < 0.001, log-rank test; Fig. 3D,H). Similarly, the
CDRGPS-high group had significantly worse DFS, PFS,
and DSS (p < 0.001, log-rank test; Fig. 3E–G).

3.3 Evaluation of the CDRGPS Model

The discriminative performance of the CDRGPS was
assessed by ROC analysis. The 1-, 3-, 5- and 10-year AUCs
were 0.880, 0.896, 0.920 and 0.927, respectively, in the
TCGA-KIRC, and 0.776, 0.763, 0.797 and 0.701 in the E-
MTAB-1980 dataset (Fig. 4A,B). These findings highlight
the powerful discriminative ability of the CDRGPS. Recent
developments in big data analytics and sequencing technol-
ogy have enabled considerable progress in the development
of prognostic and predictive gene expression signatures for
various diseases through the application of machine learn-
ing techniques. We next evaluated the prognostic accuracy
of the CDRGPS compared to five alternative cell death-
related signatures. These alternative signatures are based
on cuproptosis, ferroptosis, immunogenic cell death, pyrop-
tosis, and a composite of 12 combined PCD models, with
a particular focus on ccRCC patient outcomes [7,30,43–
47]. Significantly higher AUCs in both the training and
external test cohorts demonstrated better performance by
the CDRGPS in predicting patient survival compared to the
other five risk scores (Fig. 4C–I, Supplementary Fig. 2A–
G). Moreover, we performed univariate and multivariate
Cox regression analyses on both the training and test co-
horts for each of the relevant signatures. In both cohorts,
the CDRGPS model was the only independent predictor of
ccRCC patient outcome (Fig. 4J,K; Supplementary Fig.
2H,I). This finding underscores the robustness and reliabil-
ity of the CDRGPS.

3.4 Construction of the Nomogram

Given that clinical characteristics are routinely used
to assess the prognosis of ccRCC patients, we performed
an in-depth investigation into the associations between
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Fig. 2. Clear cell renal cell carcinoma (ccRCC) was classified into two programmed cell death (PCD) subclusters. (A) Consensus
clustering matrix. (B) Consensus clustering cumulative distribution function (CDF) curves. (C) Delta area under CDF curves. (D)
The principal component plot for the two clusters of ccRCC. (E) Heatmaps of two ccRCC subclusters associated with PCD based on
single-sample gene set enrichment analysis (ssGSEA) scores. (F) Survival analysis of the two subtypes in the TCGA-KIRC dataset.
Disease-specific survival (DSS), disease-free survival (DFS), overall survival (OS), and progression-free survival (PFS) are shown.
****p < 0.0001, ***p < 0.001.
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Fig. 3. A consensus CDRGPS was created and confirmed using a machine learning-based integrative process. (A) A total of 113
different predictive models were generated using a 10-fold cross-validation framework. The C-index for each model was then calculated
across all datasets. (B) Visualization of Least Absolute Shrinkage and Selection Operator (LASSO) regression in the training cohort. The
optimal λ was obtained when the partial likelihood deviance reached the minimum value. (C) Random forest analysis. (D–G) Survival
analysis for OS, DFS, PFS and DSS in CDRGPS-high and -low ccRCC patients from the TCGA-KIRC cohort. (H) Survival analysis
(OS) of CDRGPS-high and -low ccRCC patients in the E-MATB-1980 cohort.
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Fig. 4. Evaluation of the CDRGPSmodel. (A,B) Time-dependent receiver operating characteristic (ROC) analysis for the prediction of
OS at 1-, 3-, and 10-years in the training and test cohorts. (C–I) Area under curve (AUC) analysis of the CDRGPS and other PCD-related
models in the training cohort. (J,K) Results of univariate and multivariate analyses of OS using the CDRGPS and other PCD-related
models.
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CDRGPS and various clinical parameters. Significant dif-
ferences in grade, stage and TNM status were found be-
tween the CDRGPS-high and -low groups in the training
cohort (p< 0.001, chi-squared test, Fig. 5A). The CDRGPS
model continued to exhibit statistical significance for OS
following adjustment for potential confounding variables
such as age, gender, TNM stage, American Joint Commit-
tee on Cancer (AJCC) stage, grade andM stage (Fig. 5B,C).
To enhance the practical utility of CDRGPS, a nomogram
was constructed integrating independent prognostic factors,
including CDRGPS and M stage, along with key clinical
variables such as T stage and N stage, developed through
multivariate Cox regression analysis (Fig. 5D). The AUC
values for the nomogram at 1-, 3-, 5- and 10-year intervals
were 0.892, 0.923, and 0.948, respectively (Fig. 5E). Fur-
thermore, the calibration curves showed high concordance
between the predictions generated by the nomogram and
the actual observations (Fig. 5F). Additionally, DCA un-
ambiguously demonstrated that the nomogram offered a
greater net therapeutic benefit compared to the other sig-
natures (Fig. 5G).

3.5 Renal Cancer Cells with CDRGPS-High Display
Biological Traits Related to the Immune System and
Malignancy

Additional analyses were conducted using single-cell
transcriptomic profiles from 7 ccRCC samples to deter-
mine if CDRGPS could distinguish discrete biological
features at the single-cell level in ccRCC. After elimi-
nating low-quality cells and carrying out normalization,
integration and PCA, 11 clusters comprising 34,132
cells were identified (Fig. 6A). Six distinct cell types
based on the marker genes were identified by subcluster
annotation (Supplementary Table 3): B cells, endothelial
cells, macrophages, monocytes, tumor cells, and T cells
(Fig. 6B,C). Analysis of single-cell sequencing data
using GSEA and GSVA revealed that tumor cells with
high CDRGPS demonstrated a more robust regulation
of tumor-related immunity, including pathways such as
IMMUNE_RESPONSE, IL2_STAT5_SIGNALING,
INTERFERON_GAMMA_RESPONSE, INTER-
FERON_ALPHA_RESPONSE, and the humoral
immune response. Additionally, these cells dis-
played pronounced malignant biological char-
acteristics, such as TGF_BETA_SIGNALING,
PI3K_AKT_MTOR_SIGNALING, apoptosis, epithe-
lial to mesenchymal transition, the tumor necrosis
factor-mediated signaling pathway, and a greater response
to hypoxia (Fig. 6D–H). We next used pseudo-time
analysis to study correlations between CDRGPS and the
developmental trajectory of malignant cells, given the
diversity of cell developmental stages within tumor tissue.
This investigation yielded a cell trace plot that effectively
illustrates the fluctuations in CDRGPS across pseudo-time
(Fig. 6I). Cells exhibiting an elevated CDRGPS were

mostly clustered close to the terminus node of the branch-
ing tree, whereas those with lower CDRGPS values were
primarily found in the root of the branch tree. Differen-
tial gene expression analysis was performed relative to
pseudo-time progression. Heatmaps were generated to
visualize changes in gene expression patterns aligned with
increasing pseudo-time, and the corresponding increase in
CDRGPS. Interestingly, the up-regulated genes mostly had
immune response-related functions (Fig. 6J).

3.6 The CDRGPS Shows Good Predictive Accuracy for the
Effects of Immunotherapy

A rigorous, systematic investigation was performed
to evaluate the effect of CDRGPS on immunotherapy in
ccRCC. We initially studied the RCC-Braun_2020 cohort
due to the complete prognostic and treatment-related data
available for this patient cohort. The CDRGPS-high group
exhibited more favorable prognostic outcomes, suggesting
greater benefit from immunotherapy (Fig. 7A). In addition,
the group showing clinical benefit (CB) had a significantly
higher CDRGPS than the patient group showing no clinical
benefit (NCB) (p < 0.05; Fig. 7B). We next analyzed the
TME in order to investigate the underlying mechanisms re-
sponsible for the different responses to immunotherapy be-
tween the two groups. The ESTIMATE algorithm was used
to calculate immune scores, stromal scores, ESTIMATE
scores, and tumor purity scores for the CDRGPS subgroups.
The CDRGPS-high group showed markedly elevated im-
mune and ESTIMATE scores, together with a diminished
tumor purity score (Fig. 7C). We next counted the number
of immune cells in each sample in order to quantify dif-
ferences in immune cell infiltration between the CDRGPS-
high and -low groups. We employed Quantiseq, Timer and
Mcp_counter methodologies with RNA-sequencing data to
assess the level of immune cell infiltration in ccRCC pa-
tients. This revealed that plasma cells, T cell CD8, B
cells and cytotoxic lymphocytes were more prevalent in
the CDRGPS-high group (Fig. 7D). Moreover, a substantial
portion of cells exhibited a positive correlation between the
CDRGPS and the level of immune infiltrate (Fig. 7E). We
also investigated possible cellular mechanisms associated
with CDRGPS by analyzing the cancer immunity cycle.
In the TCGA-KIRC datasets, the CDRGPS-high subgroup
showed increased activity in six of the seven phases of the
cancer immunity cycle. These steps encompassed antigen
release (Step 1), cancer antigen presentation (Step 2), prim-
ing and activation (Step 3), recruitment of tumor-infiltrating
immune cells (Step 4), recognition of cancer cells by T cells
(Step 6), and the killing of cancer cells (Step 7) (Fig. 7F).
Prior investigations reported that increased expression of
immune checkpoints is associated with a better reaction to
ICI [48,49]. We therefore evaluated the level of immune
checkpoint expression in different CDRGPS subgroups. As
shown in Fig. 7G, the CDRGPS-high subgroup showed in-
creased expression of all nine immune checkpoints. To
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Fig. 5. Development and validation of the nomogram. (A) Clinical traits and their correlation with the CDRGPS-low and CDRGPS-
high groups. (B,C) Results of univariate and multivariate analysis for OS in relation to clinical traits and CDRGPS in the TCGA-KIRC
cohort. (D) The nomogram was constructed using the CDRGPS, T_stage, N_stage, and M stage. (E) ROC curves demonstrating the
ability of the nomogram to predict outcomes at 1-, 3- and 5-years. (F) Nomogram calibration curves for 1-, 3- and 5-year OS. (G) Decision
curve analysis (DCA) demonstrating the net benefit using the nomogram. ***p < 0.001.
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Fig. 6. Analysis of single-cell RNA sequencing data. (A) Plots of 11 cell clusters and 6 different cell types using t-Distributed Stochastic
Neighbor Embedding (t-SNE). (B) The expression of marker genes in six cell clusters. (C) Marker gene heatmap of each cell subpopula-
tion. (D) Gene set variation analysis of renal cancer cells with different levels of CDRGPS. (E–H) Gene set enrichment analysis of renal
cancer cells with different CDRGPS levels. (I) Pseudo-time trajectory plot showing the association between CDRGPS and pseudo-time
progression. (J) Heatmap displaying the top GO_BP terms and scaled expression of dynamic genes along a pseudo-time axis for renal
carcinoma cells with varying CDRGPS levels. GO_BP, Gene Ontology Biological Process; KEGG, Kyoto Encyclopedia of Genes and
Genomes.
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further affirm the predictive ability of CDRGPS for pa-
tient response to immunotherapy, we examined TMB data
acquired through the TCGA-KIRC cohort. Although not
reaching statistical significance, the CDRGPS-high group
showed a markedly higher TMB (Fig. 7H).

3.7 Associations between the CDRGPS and Drug
Sensitivity

First-line therapy for advanced RCC typically in-
volves tyrosine kinase inhibitors (TKIs) and mammalian
Target of Rapamycin (mTOR) inhibitors. However, both
intrinsic and acquired drug resistance pose persistent chal-
lenges, largely due to the subpopulation of tumor cells
known as tumor-initiating cells (TICs) or cancer stem cells
(CSCs). Six tumor stemness indices based on mRNA ex-
pression and DNA methylation signatures were obtained
from earlier publications [50–52]. Correlations between the
CDRGPS and these six indices were subsequently calcu-
lated. With the exception of DMPss, all indices showed
statistically significant correlations with CDRGPS. More-
over, these correlations were consistently negative, with the
exception of RNAss (Fig. 8A). To further confirm these
correlations, the drug response to selected TKIs (dasa-
tinib, gefitinib, imatinib) and to the mTOR inhibitor tem-
sirolimus was examined in patients stratified by CDRGPS.
The CDRGPS-high group exhibited lower half-maximal in-
hibitory concentrations (IC50) for dasatinib, gefitinib, and
temsirolimus (Fig. 8B). Furthermore, a negative association
was observed between the CDRGPS and the IC50 values for
these three drugs (Fig. 8C). These observations imply that
ccRCC patients with CDRGPS-high may respond more fa-
vorably to therapy with TKIs and mTOR inhibitors.

3.8 Construction of a Radiomics Score (Rad_Score)
Associated with CDRGPS

We selected 14 of 1688 features via LASSO regres-
sion to develop a Rad_Score that was predictive of high/low
CDRGPS in TCGA-KIRC (Fig. 9A,B). The Rad_Score
varied considerably between the CDRGPS-high and -low
groups (p < 0.001, Fig. 9C). A total of 267 patients in the
TCIA database were classified into High-Rad_Score and
Low-Rad_Score groups using an optimized cutoff. The
Rad_Score showed an AUC value of 0.813 for discrimi-
nating between CDRGPS-high and -low groups (Fig. 9D).
Patients with a Low-Rad_Score had significantly better OS
than those with a High-Rad_Score (p < 0.05; Fig. 9E).

3.9 PRSS23 as a Possible Treatment Target for RCC

Preliminary experiments suggest that serine protease
23 (PRSS23) may be a promising target for the suppres-
sion of metastasis and for immunotherapy in RCC patients.
Analysis of gene expression data from TCGA and GTEx
revealed upregulation of PRSS23 in ccRCC tissues com-
pared to normal tissues (Fig. 10A). Immunohistochemical
analysis confirmed that PRSS23 protein expression was

higher in RCC tissues compard to matching normal tis-
sues (Fig. 10B). GSEA found that epithelial-mesenchymal
transition and the IL2-Stat5 signaling pathway were pos-
itively associated with PRSS23 expression (Fig. 10C).
Moreover, the TIMER database revealed associations be-
tween elevated PRSS23 expression and multiple immune
cell categories, including CD8+ T cells, CD4+ T cells,
macrophages, neutrophils and dendritic cells (Fig. 10D).
siRNA-mediated knockdown of PRSS23 expression was
confirmed by Western blotting (Fig. 10E,F, Supplemen-
tary Fig. 3) and was found to attenuate the migratory
and invasive abilities of 786-O and CAKi-1 RCC cells
(Fig. 10G), suggesting that PRSS23 may promote RCC
metastasis.

4. Discussion
ccRCC is a significant global health concern due to

its high incidence, metastatic potential, and poor prognosis.
This type of RCC is quite common worldwide and exhibits
substantial heterogeneity in terms of its molecular charac-
teristics, clinical behavior, and natural disease progression
[53]. The management of ccRCC is particularly challeng-
ing because of this diversity. The TNM staging system
developed by the AJCC is a commonly used tool in clin-
ical decision-making for ccRCC. However, the significant
molecular and biological diversity of ccRCC mean that it
is not adequately represented by anatomical TNM classifi-
cation alone. This limitation can potentially lead to either
overtreatment or undertreatment of patients based solely on
TNM staging [54].

In recent years, cancer treatment has been revolution-
ized by immunotherapy targeting immune checkpoint path-
ways. Specifically, immune checkpoint inhibitors (ICIs)
such as anti-PD-1/PD-L1 agents have become the stan-
dard of care for advanced RCC due to their ability to re-
verse T cell exhaustion and stimulate anti-tumor immune
responses. However, despite improvements in RCC treat-
ment by ICIs, long-lasting responses occur in only a mi-
nority of patients [55,56]. These challenges underscore the
pressing need to develop more refined prognostic models
for ccRCC that can assist clinical decision-making.

In the present study, ccRCC was classified into two
distinct clusters. Cluster-1 showed elevated levels of apop-
tosis, necroptosis, and pyroptosis, while cluster-2 was en-
riched for autophagy, cuproptosis, entotic cell death, and
ferroptosis. Importantly, cluster-1, was associated with
worse prognosis than cluster-2. By performing differen-
tial expression analysis of the two clusters and univariate
Cox regression analysis, we identified the critical genes
contributing to the unique PCD patterns in ccRCC. Previ-
ous models often suffer from bias due to their reliance on
absolute gene expression values. Moreover, the choice of
algorithm used by researchers may be influenced by their
personal preferences and biases. The current study devised
a novel gene pair signature based on the relative expres-
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Fig. 7. Implications of the CDRGPS for immunotherapy. (A) Survival analysis of CDRGPS-high and -low patient groups in the
immunotherapy cohort. (B) The distribution of CDRGPS in patient groups with different response to immunotherapy. (C) Comparison
between CDRGPS-high and -low groups for the stromalscore, immunescore, ESTIMATE score, and tumor purity. (D) The abundance
of infiltrating immune cells in the CDRGPS-high and -low groups was assessed using multiple algorithms. (E) Heatmap based on
the Spearman r value between the CDRGPS and immune cell infiltration in the TCGA-KIRC cohort. (F) Comparison of the seven-step
anticancer immunity cycle between CDRGPS-high and -low groups. (G) Comparison of immune checkpoint expression profiles between
CDRGPS-high and -low groups. (H) Violin plots showing the distribution of tumor mutation burden (TMB) scores in CDRGPS-high
and -low groups. ****p < 0.0001, ***p < 0.001, **p < 0.01, *p < 0.05, ns, non-significant.
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Fig. 8. Associations between CDRGPS and drug sensitivity. (A) Correlations between CDRGPS and tumor stemness indexes
in ccRCC, including RNAss, EREG.EXPss, DNAss, EREG-METHss, DMPss, and ENHss. (B) Comparison of the susceptibility of
CDRGPS-high and CDRGPS-low patients to TKIs such as dasatinib, gefitinib, and imatinib, and to the mTOR inhibitor temsirolimus.
(C) The relationship between CDRGPS and the half-maximal inhibitory concentration (IC50) of small molecule drugs including dasatinib,
gefitinib, imatinib, and temsirolimus in ccRCC. ***p < 0.001.
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Fig. 9. Construction and evaluation of the Rad_score. (A) Lasso regression. (B) Plot of coefficient profiles for radiomics charac-
teristics associated with the Rad_Score. (C) Differences in Rad_Score between the CDRGPS-high and -low groups. (D) The predictive
value of Rad_Score for distinguishing the CDRGPS-high and -low groups. (E) Survival analysis (OS) of patients with high and low
Rad_Score.

sion order within samples, rather than absolute expression
levels. This eliminates the requirement for data normal-
ization, thereby improving reliability and generalizability.
Following the evaluation of 113 combinations of 12 ma-
chine learning algorithms, Lasso and RF were found to be
the best model based on PCD-related gene pairs. This gen-
erated a more straightforward and transferable model by
significantly reducing the dimensionality of the variables
and exposing underlying patterns. Therefore, the CDRGPS
may accurately predict the prognosis and efficacy of im-
munotherapy for ccRCC patients. Prognostic analysis of
both the training and test cohorts revealed that CDRGPS
was a predictor ofOS. Furthermore, ROC analysis indicated

that CDRGPS consistently exhibited high accuracy and sta-
ble performance in both cohorts. These findings highlight
the significant clinical potential of CDRGPS.

To further validate the robustness of our CDRGPS
signature, we compared it to five previously published
gene signatures that are based on various combinations of
PCD-related genes. Few of these prognostic models have
been used in clinical practice or undergone careful exter-
nal validation. Univariate and multivariate Cox regression
analysis revealed that only the CDRGPS model exhibited
statistical significance as an independent prognostic fac-
tor in ccRCC. Comparative performance assessments fur-
ther demonstrated the superior prognostication ability of
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Fig. 10. The putative biological role of PRSS23 in RCC immunology and metastasis. (A) Comparison of PRSS23 expression
level between tumor and normal tissues in RCC from the GEPIA database. (B) PRSS23 expression in RCC from The Human Protein
Atlas database Version (HPA, image available from v23.proteinatlas.org). (C) The TCGA-KIRC cohort was split into two subgroups
according to the median expression of PRSS23: PRSS23-high and PRSS23-low subgroups. GSEA found that the differentially expressed
genes exhibited significant associations with immunity, epithelial-mesenchymal transition (EMT), and immune-related pathways. (D)
Associations between PRSS23 and seven different immune cell types were revealed using TIMER analysis. (E) Knockdown of PRSS23
in 786-O and CAKi-1 cells. (F) Confirmation of PRSS23 knockdown byWestern blot. (G) Transwell assay was used to assess the ability
of RCC cells to migrate and invade following PRSS23 knockout (magnification: 400×, scale bars = 50 µm). *p < 0.05, **p < 0.01,
***p < 0.001. NES, Normalized Enrichment Score.

CDRGPS versus all other models across different datasets.
Most models were proficient when applied to their own
training dataset, but displayed weaker performance in in-
dependent external datasets, likely because of overfitting
and poor generalizability. Subsequently, independent prog-
nostic factors and crucial clinical variables were integrated
to develop a concise and precise nomogram for prognostic

prediction in patients. Moreover, calibration and decision
curve analyses upheld the clinical utility of the nomogram
for providing valuable prognostication.

In the current study we leveraged the GSE156632
cohort, comprising scRNA-seq profiles of seven ccRCC
samples, to characterize the heterogeneity of the TME.
Quality control and annotation of the scRNA-seq data
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using established marker genes identified six predominant
cell types: endothelial cells, tumor cells, T cells, natural
killer (NK) cells, macrophages and monocytes. Analysis
of single-cell sequencing data using GSEA and GSVA re-
vealed that tumor cells with high CDRGPS show enhanced
regulation of tumor-related immunity pathways, including
IMMUNE_RESPONSE, IL2_STAT5_SIGNALING,
INTERFERON_GAMMA_RESPONSE, INTER-
FERON_ALPHA_RESPONSE, and humoral im-
mune response. Additionally, these cells dis-
play enhanced malignant biological charac-
teristics such as TGF_BETA_SIGNALING,
PI3K_AKT_MTOR_SIGNALING, apoptosis, epithelial-
to-mesenchymal transition, tumor necrosis factor-mediated
signaling, and increased response to hypoxia. Furthermore,
pseudotime trajectory analysis of tumor cell states showed
that genes associated with high CDRGPS were linked to
pathways related to carcinogenesis and immune function.

The conventional initial therapy used for advanced
ccRCC is TKIs and mTOR inhibitors. However, the current
prognostic markers utilized in clinical practice are unable to
accurately identify individuals who may benefit from this
treatment. To address this critical unmet need, we assessed
the ability of CDRGPS to predict which patients would ben-
efit most from TKIs and mTOR inhibitors. Mounting evi-
dence has implicated PCD pathways in the response to these
inhibitors [57,58]. Our findings revealed an inverse associ-
ation between high CDRGPS and tumor stemness features.
Additionally, a high CDRGPS was predictive of increased
responsiveness to TKI and mTOR inhibitor therapy. Col-
lectively, these results indicate the CDRGPS signature may
serve as a powerful tool to inform treatment decisions and
allow the selection of ccRCC patients for personalized ther-
apy.

The advent of cancer immunotherapy has radically
altered the treatment of solid tumors, including ccRCC.
Nonetheless, ICIs are only effective in some individuals,
and hence their over-utilization can result in substantial cost
and severe adverse events. In this study, CDRGPS-high pa-
tients displayed abundant immune cell infiltration, indica-
tive of an “immune-hot” tumor phenotype. Furthermore,
CDRGPS-high tumors showed increased expression of nu-
merous inhibitory checkpoint molecules, in line with the
finding that integral immune checkpoint pathways are fre-
quently co-opted by malignancies to attenuate anti-tumor
immunity [59,60]. This suggests that adverse outcomes in
CDRGPS-high ccRCC may be due to suppressed immune
function caused by increased immune checkpoint signaling.
Consequently, immune checkpoint blockade to restore anti-
neoplastic immune responses may be an effective therapeu-
tic strategy for CDRGPS-high patients. Furthermore, these
patients also exhibited higher TMB and stronger anti-cancer
immune cycle activity. Elevated TMB can increase the gen-
eration of immunogenic neoantigens derived from somatic
mutations, subsequently driving the proliferation and acti-

vation of cytotoxic T lymphocytes against the tumor [61].
Taken together, our findings indicate that CDRGPS may be
a useful biomarker to identify ccRCC patients most likely
to derive clinical benefit from immunotherapy. This con-
clusion was validated in an independent cohort of patients
undergoing immunotherapy.

Enzyme-Linked Immunosorbent Assay (ELISA), Im-
munohistochemistry (IHC) and RNA-sequence data can be
used to evaluate CDRGPS. However, these methods are
expensive and complex, thereby limiting their scalability.
Enhanced CT examinations are commonly used in China
for renal cancer diagnosis, even in resource-limited regions.
The use of CT image-based radiological features to deter-
mine a patients’ CDRGPS therefore has significant clin-
ical and economic potential. Earlier studies on ccRCC
mainly used radiomics to predict post-nephrectomy clini-
cal outcomes or nuclear grading, with few studies having
explored the use of CT images to determine gene signa-
tures [62,63]. In the present study, our radiomics model-
based score (Rad_Score) showed good performance for de-
termining the CDRGPS of patients in the TCIA database.
Based on CT images, the Rad_Score can accurately reflect
the CDRGPS and thus serve as a rapid prognostic indicator
to help clinicians in treatment decision-making.

All of the genes in the gene pair model used in this
study had significant involvement in cancer. PRSS23 is a
serine protease that has been linked to tumor growth in a va-
riety of malignancies and is markedly up-regulated in can-
cer stem cells [64,65]. Gene expression profiling studies
have reported increased PRSS23 expression in several tu-
mor types including breast cancer [66], prostate carcinoma
[67], papillary thyroid carcinoma [68], and pancreatic can-
cer [69]. However, more research is required to determine
the precise function of PRSS23 in RCC and its relationship
to immunity. Our study showed that PRSS23was positively
associated with EMT and immune cell infiltration. Specif-
ically, PRSS23 expression correlated positively with sev-
eral immune cell types, including CD8+ T cells, CD4+ T
cells, macrophages, neutrophils, and dendritic cells. Fur-
thermore, our in vitro experiments provided evidence that
PRSS23 may have a promoting effect on RCC metasta-
sis. These findings indicate possible functions for PRSS23
in immune cell regulation and RCC metastasis, suggesting
that it could also serve as a target for novel treatment ap-
proaches.

Despite the potential clinical utility of CDRGPS in
ccRCC, certain limitations of this study warrant considera-
tion. Firstly, although CDRGPS was rigorously evaluated
and validated in the training and external datasets, large-
scale prospective studies across multiple centers are needed
to confirm these findings. Another limitation of the current
investigation is the lack of direct in vitro or in vivo experi-
mental confirmation of the results. Finally, the sample size
in the TCGA database is relatively small.
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5. Conclusions
By integrating diverse bioinformatics approaches and

machine learning methods, we have built a robust and re-
liable model termed CDRGPS that has prognostic utility
in ccRCC and the ability to predict treatment outcomes for
targeted therapies and immunotherapy. A key accomplish-
ment is development of the Rad_Score radiomic biomarker,
which provides a non-invasive means of estimating pa-
tient CDRGPS status. Overall, CDRGPS holds significant
promise for enabling precision oncology by guiding clinical
decision-making and surveillance strategies. This should
lead to individualized patient care based on minimally in-
vasive and cost-effective approaches.
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