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Abstract

Objective: Lung adenocarcinoma (LUAD) is a prominent contributor to global cancer mortality, characterized by constrained prognosis.
This study aimed to develop a novel prognostic indicator, the Cell Death Index (CDI), utilizing twelve programmed cell death (PCD)
pattern genes, to predict the immune infiltration and prognosis in LUAD patients. Methods: We collected PCD-related genes and
identified prognostic PCD genes in the Cancer Genome Atlas (TCGA)-LUAD dataset, and made rigorous validation in the Clinical
Proteomic Tumor Analysis Consortium (CPTAC)-LUAD cohorts. CDI was calculated using a multivariable Cox regression model.
Functional enrichment and tumor microenvironment were evaluated. Drug sensitivity prediction and nomogram development were
performed to assess CDI’s potential value. Results: The results revealed 10 PCD genes (ERO1A, CDK5R1, TRIM6, DNASE2B, ITPRIP,
MRGPRX2, FGA, NDUFA13, NLRP2, and CD68) significantly associated with LUAD prognosis. The CDI was constructed and showed
high accuracy in predicting patient survival with C-index values of 0.801 and 0.794 in the prognosis cohort and validation cohort,
respectively. CDI is also indicative of variations in biological functions, tumor microenvironment, and immune cell infiltration including
neutrophils, activated mast cells, activated dendritic cells, M0 macrophages, resting natural killer cells, γδT cells, and activated memory
CD4+T cells. Furthermore, drug sensitivity analysis indicated potential targeted strategies. Conclusions: The CDI, based on PCD genes,
serves as a robust prognostic tool for LUAD, offering profound insights into tumor biology, immune response, and personalized treatment
strategies. This study underscores the pivotal role of PCDmechanisms in LUAD pathogenesis and identifies potential therapeutic targets.
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1. Introduction

Lung cancer is the leading cause of tumor burden
worldwide, based on the GLOBOCAN 2020 estimates [1].
The pathogenic mechanism of lung cancer has not been
thoroughly elucidated [2]. The lung cancer-related mor-
tality accounts for approximately 20% of the total cancer
deaths worldwide, with a total of 1.59 million deaths in
2012 [3]. Lung cancer has been historically classified into
small cell lung cancer (SCLC) and non-small cell lung can-
cer (NSCLC), with the latter constituting three-quarter of
all lung cancer [4]. NSCLC is classified as adenocarci-
noma (60%), squamous cell carcinoma (30%) and other rare
subtypes (10%). Lung adenocarcinoma (LUAD) contin-
ues to be the predominant histological subtype of NSCLC
and is associated with an overall 5-year survival rate of less
than 19.4% [5]. In light of the poor prognosis observed in
LUAD, there exists an imperative unmet need to delve into
novel therapeutic targets aimed at enhancing the prognosis
of LUAD. The development of efficient models is also piv-
otal to render immunotherapy more practicable.

Programmed cell death (PCD), recognized as an ac-
tive, programmed procedure of autonomous cellular dis-

mantling, is characterized by the absence of cytoplasmic
content release to the extracellular milieu [6,7]. In recent
decades, several types of PCD have been found and de-
fined [8]. PCD consists of several types of cell death such as
apoptosis, necroptosis, ferroptosis, parthanatos, netotic cell
death, pyroptosis, entotic cell death, autophagy-dependent
cell death, oxeiptosis, lysosome-dependent cell death, and
alkaliptosis [9]. Advancements in research have revealed
that various forms of PCD, including apoptosis, pyroptosis,
ferroptosis, and lysosome-dependent cell death, play sig-
nificant roles in cancer pathogenesis. These mechanisms
hold promise as novel targets for prospective anti-cancer
therapies. For instance, some molecules such as circRNAs
can regulate the process of pyroptosis via directly bind-
ing to miRNA as a sponge, thus releasing the inhibition
of miRNA on PIF1, which finally mediates DNA damage
and promotes inflammasome activation in lung adenocarci-
noma [10]. Due to the advances in understanding the role of
PCD, increasing number of related remedies were explored
and applied in disease management.

Currently, evidence suggested that PCD makes a re-
markable difference in the progression and invasion of ma-
lignant cancers. Cancer cells would not be able to develop
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further without resisting multiple types of PCD [11]. How-
ever, a thorough investigation of the association through
PCD and LUAD remains unclear, and the specific role of
PCD in LUAD has been less understood. Additionally, the
recent development in array-based technologies enable us
to thoroughly explore the survival-related genes for prog-
nosis to identify potential targets [12]. Thus, in the present
research, we aim to construct a novel predictor, namely cell
death index (CDI), to evaluate the effectiveness of immune
infiltration and survival with respect to LUAD, and to pro-
vide theoretical basis for the decision of tailored treatment
strategy for LUAD individuals.

2. Methods
2.1 Study Workflow

A total of 1466 genes (Supplementary Table 1) that
are associated with twelve PCD procedures were collected
from available gene sets, recent papers, and manual search
[9]. Firstly, the PCD genes with prognostic value were
identified in the Cancer Genome Atlas (TCGA)-LUAD co-
hort (prognosis cohort). The prognostic CDI was con-
structed and then validated in the Clinical Proteomic Tu-
mor Analysis Consortium (CPTAC)-LUAD cohort (valida-
tion cohort). The correlation of CDIwith clinical outcomes,
functional enrichment, tumor microenvironment and drug
sensitivity prediction was further investigated. The work-
flow diagram of this research is delineated in Fig. 1.

2.2 PCD Genes Expression and Related Functions
Raw transcriptome counts data from LUAD and nor-

mal lung tissues were subjected to comparison within the
TCGA database. The DESeq2 package was used to identify
differentially expressed genes (DEGs), with the criterion
criteria set at adjusted p < 0.05 and |log2fold change (FC)|
>1. The biological function enrichment of these DEGs was
elucidated through the Database for Annotation, Visualiza-
tion and Integrated Discovery (DAVID).

2.3 Construction of the Prognostic CDI
To pinpoint the PCD genes with significant implica-

tions for the prognosis of LUAD, a series of analyses in-
cluding univariate Cox regression, Least Absolute Shrink-
age and Selection Operator (LASSO) Cox regression and
multivariate Cox regression were executed. The ultimate
prognostic CDI of each patient was calculated by the sum
up the product of risk coefficient and the expression of each
prognostic PCD gene. Subsequent exploration delved into
the association of CDI with clinical status, encompassing
survival, tumor stage, etc.

2.4 Functional Difference in High- and Low-CDI Patients
LUAD patients were stratified into high- and low-CDI

groups based on themedian CDI score of the TCGA-LUAD
cohort. Gene set variation analysis (GSVA) was utilized

to explore the altered biological signaling pathways among
patients with high- and low-CDI through the R packages
GSVA.

2.5 Evaluation of Independent Prognostic Performance of
CDI

The independent prognostic efficacy of CDI score was
appraised in TCGA-LUAD cohort and subsequently vali-
dated in CPTAC-LUAD cohort. The Kaplan-Meier curves
depicting the high- and low-CDI groups of LUAD patients
were constructed and compared. Employing the CDI score
as the predictive variable, Receiver Operating Characteris-
tic (ROC) curves were delineated at 1-, 3- and 5-year, with
the area under the receiver operating characteristic curve
(AUC) calculated using the timeROC R package. Calibra-
tion curves and dot plots were generated to generated the
congruence of CDI-predicted survival and actual survival.

2.6 Unsupervised Clustering
Based on the expression matrix of CDI genes, the

ConsensusClusterPlus package was used to investigate the
unidentified subtypes of LUAD. The parameter of consen-
sus clustering was chosen as follows: maxK = 8, clusterAlg
= hc and distance = pearson. The parameter k means that
each sample is partitioned into up to k cluster by a specified
clustering algorithm of agglomerative hierarchical cluster-
ing.

2.7 Establishment of the Nomogram
To verify the independent prognostic significance of

CDI, univariate Cox regression and stepwise multivariate
Cox regression were conducted, incorporating CDI score
along with clinical parameters. To further developed a
prognostic nomogram, the stepwise regression was con-
ducted to select the final model factors. The predictive per-
formance of the nomogramwas evaluated using theKaplan-
Meier curve, AUC and calibration analysis as described
above.

2.8 Relationship between CDI and Tumor
Microenviroment

The mRNA levels of 70 immunomodulators which
were involved in the functions including antigen presen-
tation, cell adhesion, coinhibitor, costimulator, ligand, re-
ceptor, etc., were analysed to identify their correlation with
CDI level. Then, we used CIBERSORT (Cell-type Identifi-
cation by Estimating Relative Subsets of RNA Transcripts)
to measure the infiltration of 22 types of immune cells in the
LUAD tumors of the high- and low-CDI groups. CIBER-
SORT is a computational method for estimating immune
cell composition in complex tissues base on their gene ex-
pression profiles.

2.9 Prediction of Drug Sensitivities
Inhibitory concentration (IC50) of nearly two hundred

common anti-tumor agents for each patient were predicted
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Fig. 1. Overview of the main workflow of this study. LUAD, lung adenocarcinoma; TCGA, the Cancer Genome Atlas; CPTAC, the
Clinical Proteomic Tumor Analysis Consortium; PCD, programmed cell death; DEGs, differentially expressed genes; GSVA, gene set
variation analysis.

by using the oncoPredict package in R. To assess the po-
tential response to immunotherapy, Tumor Immune Dys-
function and Exclusion (TIDE) algorithm was employed
between high- and low-CDI groups.

2.10 Statistical Analysis
R software (v.4.3.0, https://www.r-project.org/) was

used to perform all statistical analysis. Cumulative survival
curve was presented by Kaplan-Meier plot and the differ-
ences of survival were evaluated using the log-rank test. p
value less than 0.05 was considered as statistical signifi-
cance.
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3. Results
3.1 Expression Profile of PCD Genes in LUAD

In the prognosis cohort, a total of 236 DEGs encom-
passing 136 up-regulated genes and 100 down-regulated
genes were delineated (Fig. 2A and Supplementary Table
2). The expression heatmap of these DEGs showed pro-
nounced disparities between LUAD and normal lung tis-
sues (Fig. 2B). To elucidate the primary functions asso-
ciated with these DEGs, Gene Ontology (GO) and Kyoto
Encyclopedia of Genes and Genomes (KEGG) enrichment
analysis were performed (Fig. 2C–F). The results indicated
that these PCD DEGs are intricately linked to diverse func-
tional pathways, including apoptotic process, inflammatory
response, pathways in cancer and others.

3.2 Identification of a Prognosis-Related PCD Gene
Signature (CDI) for LUAD

Univariate COX regression analysis identified 49
PCD genes that were significantly linked to the survival of
LUAD patients in the prognosis cohort with p value< 0.05
(Supplementary Table 3). Using the LASSO COX regres-
sion, the collinearity between PCD genes as well as those
with less pronounced survival significance were eliminated
(Fig. 3A,B), and 15 genes were further selected. These 15
genes were then integrated into a multivariable COX re-
gression model, and a stepwise selection analysis were per-
formed. Consequently, the ultimate prognostic model com-
prised 10 PCD genes, namely ERO1A, CDK5R1, TRIM6,
DNASE2B, ITPRIP,MRGPRX2, FGA, NDUFA13, NLRP2,
and CD68 (Fig. 3C). The CDI for each patient can be com-
puted based on the expression level of these 10 genes using
the following formula: CDI = 0.2052 × ERO1A + 0.2821
× CDK5R1 + 0.3238 × TRIM6 + (–0.1625) × DNASE2B
+ (0.3568) × ITPRIP + 0.3277 × MRGPRX2 + 0.0672 ×
FGA + (–0.2602) × NDUFA13 + (–0.1133) × NLRP2 + (–
0.4214) × CD68.

The relationship of CDI with clinical features were de-
picted in Fig. 3D. LUAD patients in the prognosis cohort
who experienced mortality during follow-up demonstrated
a notably higher CDI score. Furthermore, an observable in-
clination towards elevated CDI was noted in the context of
more advanced tumor stages, encompassingAmerican Joint
Committee on Cancer (AJCC) stage, T stage, and N stage.

In furthering our comprehension of the distinctions
in biological function status between high- and low-CDI
groups, KEGGpathways analysis demonstrated that the cell
cycle, P53 signaling pathway and several cancer pathways
were notably prominent (Fig. 3E,F).

3.3 Internal and External Validation of the CDI
Employing the CDI as a prognostic factor, the pre-

dictive performance was evaluated in prognosis cohort and
validation cohort, respectively. LUAD patients with high-
CDI showed worse survival probability in both cohorts
(Fig. 4A,B). The AUC values of CDI in the prognosis co-

hort at 1-, 3- and 5-year of follow-up were 0.784, 0.796
and 0.805, respectively, with the C-index value of 0.801
(Fig. 4C). The CDI also demonstrated commendable perfor-
mance in the validation cohort with 1-, 3- and 5-year AUC
values of 0.803, 0.787 and 0.778, respectively, as well as
the C-index value of 0.794 (Fig. 4C). The calibration anal-
ysis of CDI in predicting the survival also exhibited highly
favorable fitting with the actual survival outcomes in both
LUAD cohorts (Fig. 4D,E).

3.4 Unsupervised Clustering Based on PCD Signature

To investigate the unidentified subsets of LUAD, 10
PCD signature genes were utilized to conduct the consensus
clustering procedure. According to the consensus index and
Cumulative Distribution Function (CDF) curve, it was ob-
served that the most significant differences among subsets
were evident when k = 3 (Fig. 5A–C). Subsequently, there
was a significant difference in survival among the subsets
of LUAD patients (Fig. 5D). The distribution of survival
and CDI risk groups revealed that cluster 3 was associated
with a lower CDI and better survival outcome (Fig. 5E).

3.5 Construction and Evaluation of the Prognostic
Nomogram

COX regression analysis showed that CDI is a signifi-
cant risk factor for LUAD survival independent of the clin-
ical factors including age, sex, stages of tumor (T), lymph
node (N), metastases (M) and the AJCC stage (Fig. 6A,B).
When adjusted for potential confounding variables which
were non-significant in the multivariable COX model such
as age, sex, etc., the hazard ratio for CDI was 2.655 (95%
Confidence Interval (CI), 2.009–3.508, p< 0.001). A prog-
nostic nomogram model was established after multivariate
COX regression and stepwise selection. AJCC stage, age
and CDI were finally used for construction of the nomo-
gram (Fig. 6C). The red lines, arrows and dots were plot-
ted on the nomogram to show an example of how to use
the nomogram. For a LUAD patient of 60 years old, stage
II and with CDI score of 7.5, he gets a total risk score of
121 points which indicates that the 1-, 3- and 5-year death
probability were 0.0619, 0.272 and 0.515, respectively.
The Kaplan-Meier curves of the nomogram-predicted high-
and low-points groups showed very obvious separation in
both cohorts (Fig. 6D). The AUC values of 1-, 3- and 5-
year ROC curves were all beyond 0.75, suggesting that
the nomogram had a relatively high accuracy (Fig. 6E).
Besides, the calibration curves also indicate favorable fit-
ting of the predicted survival with actual survival outcomes
(Fig. 6F).

3.6 Dissection of Tumor Microenvironment Based on CDI

The correlation analysis of CDI with the expres-
sion of immune-related genes suggested that higher CDI
level might had lower antigen presentation, cell ad-
hesion and stronger coinhibitor, indicating a relatively
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Fig. 2. Exploration of Differentially Expressed Genes (DEGs) in PCD in LUAD. (A) Volcano plot depicting Log fold change (FC)
changes and p-values of DEGs in PCD relative to normal controls in LUAD. (B) Heatmap showing the expression levels of DEGs in
PCD in both LUAD and normal controls. (C–F) Representation of functional enrichment pathways for these DEGs in terms of gene
ontology-biological process (GO BP), cellular component (GO CC), molecular function (GO MF), and Kyoto Encyclopedia of Genes
and Genomes (KEGG), respectively.

immuno-tolerant microenvironment in these LUAD tissues
(Fig. 7A). The estimated proportion of immune cells in the
tumor microenvironment was also calculated and shown in
Fig. 7B. Elevated CDI score was correlated with marked in-
crease in the infiltration of neutrophils, activated mast cells,
activated dendritic cells, M0 macrophages, resting natural
killer (NK) cells, γδT cells, and activated memory CD4+T

cells. Conversely, there was a reduction in the infiltration
of resting mast cells, resting dendritic cells, monocytes, and
activated NK cells (Fig. 7C,D).

3.7 Efficacy of CDI in Evaluating Treatment Sensitivity

To investigate the correlation between the CDI score
and treatment sensitivity, we obtained IC50 values of each
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Fig. 3. Establishment of cell death index (CDI). (A,B) Illustration of the Least Absolute Shrinkage and Selection Operator (LASSO)
regression process for penalty coefficients, resulting in the inclusion of 10 genes for modeling. (C) Display of hazard ratio values, 95%
Confidence Interval (CI), and p-values for the 10 genes in the CDI model. (D) Association between CDI scores in LUAD patients and
clinical indicators. (E,F) Differentiation of high and low CDI groups in LUAD patients based on CDI levels, presented as heatmap and
ridge plot, highlighting the top 10 significantly enriched KEGG pathways for each group. *, p < 0.05; **, p < 0.01; ***, p < 0.001;
****, p < 0.0001; ns, non-significant.

agent in LUAD tissues to identify those showing significant
differences. The top 20 drugs with the most significant cor-

relation of IC50 value with CDI score were recognized. As
depicted in Fig. 8A, several commonly used chemothera-
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Fig. 4. Evaluation of the Prognostic Value of CDI. (A) Survival Kaplan-Meier (KM) curves for high and low CDI groups in LUAD
patients from both TCGA and CPTAC datasets. (B) Correlation between individual patient survival risk and outcomes in high and low
CDI groups from TCGA and CPTAC datasets. (C) Receiver Operating Characteristic (ROC) curves and area under the curve (AUC)
values for CDI as a prognostic indicator in 1/3/5 years for LUAD patients in TCGA and CPTAC datasets. (D) Calibration curves for
CDI as a prognostic indicator in 1/3/5 years for LUAD patients in TCGA and CPTAC datasets. (E) Calibration scatter plots for CDI as
a prognostic indicator in 1/3/5 years for LUAD patients in TCGA and CPTAC datasets.

peutic drugs, such as cisplatin and targeting drugs, includ-
ing osimertinib in NSCLC, were found to be highly asso-
ciated with CDI score. Notably, patients with lower CDI
scores appeared to be resistant to traditional chemothera-

peutic drugs such as cisplatin, docetaxel and gemcitabine
(with higher IC50), but sensitive to the recent developed
targeting drug osimertinib (Fig. 8B).
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Fig. 5. Unsupervised Clustering Analysis Based on CDI Genes. (A–C) Clustering analysis process demonstrating three distinct
patient clusters. (D) Survival KM curves for the three patient clusters. (E) Scatter plot showing the distribution of CDI levels and
survival outcomes for patients in the three clusters. CDF, Cumulative Distribution Function.

Regarding immunotherapy prediction (Fig. 8C,D),
CDI showed no significant difference in relation to the
TIDE score. However, patients with higher CDI possessed
elevated exclusion score and dysfunction score, suggesting
a positive association between CDI and T cell immune ex-
clusion, and a negative association with T cell function.

4. Discussion
This investigation marks a groundbreaking effort, be-

ing the first to meticulously probe the twelve PCD patterns
within TCGA-LUAD patients. We devised a prognostic
CDI and meticulously validated its reliability in an external
cohort. The nomogram based on CDI and clinical param-
eters was constructed, revealing a highly promising prog-
nostic utility. Additionally, the patients stratified into high-
and low-CDI groups exhibited notable diversity in survival,
biological functions, tumor environment, immune infiltra-
tion and drug resistance profiles.

Programmed cell death encompasses sophisticated
modulation and intricately associated with complicated
mechanisms. In recent decades, emerging evidence sug-
gested that PCD is involved in many biological processes
associated with the malignant behaviors of tumors [13–15].
Based on the capability to promote adaptive immune re-
action or not, PCD can be classified as immunogenic and
tolerogenic cell deaths [16]. Immunogenic PCD serves as
an alert to the neighboring immune components of poten-

tial threat by releasing the cellular contents such as pro-
inflammatory cytokines and damage-associated molecular
patterns (DAMPs). These products can be identified by
the Pattern Recognition Receptors (PRRs) present on innate
immune cells, subsequently triggering immune reactions.
On the contrary, tolerogenic PCD such as apoptosis, pre-
serves the integrity of the cell membrane without releasing
cellular components, thus resulting in a “quiet” clearance
by the phagocytes with no further inflammatory response
triggered [17]. Therefore, the PCD and related genes in
tumors is a double-edged sword with both oncogenic and
anti-tumor potentials.

A total of ten PCD genes were included in the
prognostic model. These genes were attributed to
apoptosis (ERO1A, ITPRIP, FGA and NDUFA13), au-
tophagy (CDK5R1 and TRIM6), lysosome-dependent cell
death (DNASE2B, MRGPRX2 and CD68) and pyroptosis
(NLRP2), which might be more related with the prognosis
of LUAD as compared with other types of PCD. ERO1A
primarily promotes apoptosis by mediating endoplasmic
reticulum stress. Through the ERO1A-IP3R pathway, it
can activate IP3R, thereby triggering IP3-induced calcium
release and consequently mediating calcium-dependent
apoptosis [18]. Apoptosis is an early recognized non-
immunogenic type of PCD [19], which is precisely encoded
by the sequential cleavages of caspases [17]. The prepon-
derance of model genes (three out of four) implicated in
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Fig. 6. Construction of Nomogram Based on CDI. (A,B) Forest plots displaying HR values, 95% CI, and p-values for CDI in single-
factor Cox analysis and multi-factor Cox analysis, respectively. (C) Nomogram based on AJCC, age, and CDI, explaining how to predict
a patient’s 1/3/5-year survival probability. (D) KM curves for high-risk and low-risk groups predicted by nomogram for TCGA and
CPTAC datasets. (E) ROC curves for 1/3/5-year survival prediction based on nomogram for TCGA and CPTAC datasets. (F) Calibration
curves for 1/3/5-year survival prediction based on nomogram for TCGA and CPTAC datasets. HR, hazard ratio.
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Fig. 7. Assessment of CDI-Related Immune Microenvironment. (A) Bar chart illustrating the correlation between CDI and various
immune regulatory genes in LUAD patients from TCGA, with panel descriptions of each immune regulatory gene’s properties and type.
(B) Heatmap displaying the proportion levels of 22 immune cells in each LUAD patient from TCGA, stratified into high and low CDI
groups. (C) Heatmap further showing the correlation between 22 immune cells, CDI, and the 10 CDI modeling genes, with asterisks
indicating statistically significant correlations (p < 0.05). (D) Box plots summarizing the average levels and differences in 22 immune
cells between high CDI and low CDI groups. *, p < 0.05; **, p < 0.01; ***, p < 0.001; ****, p < 0.0001; ns, non-significant.
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Fig. 8. Prediction of CDI-Related Drug Sensitivity. (A) Bubble plot demonstrating the correlation prediction between CDI score, CDI
genes, and sensitivity to various anticancer drugs in LUAD patients from TCGA, with bubble colors indicating the level of correlation
and bubble size representing statistical significance. (B) Box plots presenting IC50 values for common chemotherapy and targeted drugs
in high CDI and low CDI groups. (C) Box plots showing TIDE score, Exclusion score, and Dysfunction score in high CDI and low CDI
groups. (D) Scatter plots describing the correlation between CDI score and Tumor Immune Dysfunction and Exclusion (TIDE) score,
Exclusion score, and Dysfunction score. **, p < 0.01; ****, p < 0.0001; ns, non-significant.
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apoptosis correlates with unfavorable survival outcomes in
LUAD patients. This association may be explained by the
non-immunogenic consequences of apoptosis.

Two autophagy genes, CDK5R1 and TRIM6, stand
out as significant independent risk factors in the prognostic
model, each with HRs >1 and p values < 0.01, indicating
that autophagymight play a relatively critical role in the cell
death profile of LUAD.CDK5R1, or Cyclin-Dependent Ki-
nase 5 Regulatory Subunit 1, serves as a subunit of CDK5
(Cyclin-Dependent Kinase 5). CDK5 exerts diverse bio-
logical effects by phosphorylating various regulatory sub-
strates. The functionality of CDK5 is intimately associated
with autophagy, and animal models lacking CDK5 func-
tionality exhibit reduced autophagy occurrence and short-
ened lifespan [20]. The tumor microenvironment has long
been recognized as a nutrient-depleted setting, while au-
tophagy acting as a surviving process adopted by eukaryotic
cells in response to nutrient stress circumstances [21]. The
fusion of autophagosome with lysosome can thus supply an
additional energy support. Tumor cells can also undergo
autophagy process which might inhibit cytokine-mediated
apoptosis and thus avoid T cell-induced cytotoxicity [22].
The suppression of tumor cell autophagy has the potential
to promote tumor cell clearance within the tumor microen-
vironment [23]. Furthermore, autophagy has the capacity
to interact with various types of PCD such as apoptosis,
thereby collectively influencing tumor metastasis and anti-
cancer immune reactions [11,24].

Pyroptosis, similar to necroptosis, represents an im-
munogenic cell death program characterized by plasma
membrane perforation, subsequently leading to the release
of pro-inflammatory cellular contents [25]. Pyroptosis in
the tumor microenvironment can result in the release of
proinflammatory cytokines such as IL-1β, IL-18 to enable
the infiltration of immunocytes into the tumor microen-
vironment, indicating that pyroptosis could be developed
in anti-cancer treatment [26]. Employing a biorthogonal
strategy to elucidate the pyroptotic processes in live organ-
isms, it was determined that a proportion of 15% of tu-
mor cells undergoing pyroptosis could potentiate T cell re-
sponse, ultimately contributing to the complete remission
of solid tumor [27]. Pyroptosis can also be activated by
specific nanoparticles, thereby promoting anti-cancer im-
munity through stimulating effector-memory T cells and in-
hibiting cancer cell proliferation and invasion [28,29]. The
present study reveals that the pyroptosis gene NLRP2 is an
independent protective factor (Hazard Ratio (HR) = 0.893,
p = 0.0019), indicating that the pyroptosis process is related
with a higher probability of survival. NLRP2 is character-
ized by an N-terminal pyrin domain and is implicated in
the activation of caspase-1 through Toll-like receptors. Ad-
ditionally, it participates in protein complexes that trigger
proinflammatory caspases, crucially contributing to the py-
roptosis process. Several studies investigating pyroptosis
or genes associated with pyroptosis have demonstrated a

significant correlation between NLRP2 and both pyropto-
sis and disease prognosis [30]. Other investigations have
indicated that NLRP2 is positively associated with survival
rates, while exhibiting a negative correlation with cancer
metastasis [31]. Gain- and loss-of-function studies con-
ducted in vitro and in vivo have revealed that the overex-
pression of NLRP2 significantly inhibits the growth and
metastasis of breast cancer cells in xenograft models. Fur-
thermore, NLRP2 enhances the H2O2-induced elevation of
p53 and Bax, consequently leading to a substantial increase
in the rate of apoptosis. Moreover, NLRP2 facilitates the
nuclear entry of p53, promoting apoptosis. These findings
collectively suggest that NLRP2 may play a pivotal role in
the biological responses of tumors, particularly in the py-
roptosis process.

Despite that the prognostic model exhibited good per-
formance in both the internal and external database, there
are several limitations. For instance, the patients included
in the study were retrospectively enrolled, which might re-
sult in unavoidable bias. Besides, there is limited clinical
trials to clarify the value of the prognostic PCD model in
decision-making of patient selection who might be sensi-
tive to specific treatment such as EGFR-TKI.

5. Conclusions
In conclusion, the PCD gene signature identified in the

current research holds practical utility for prognostic pre-
diction and evaluation of the immune status for LUAD pa-
tients. The gene patterns of twelve programmed cell death
might provide insights into deeper mechanism and offer po-
tential novel targets for lung cancer treatment.
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