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Abstract

Alzheimer’s disease (AD) is an age-related progressive neurodegenerative disorder characterized by aberrant amyloid precursor protein
(APP) cleavage, pathological aggregations of beta-amyloid (Aβ) that make up Aβ plaques and hyperphosphorylation of Tau that makes
up neurofibrillary tangles (NFTs). Although progress has been made in research on AD, the fundamental causes of this disease have not
been fully elucidated. Recent studies have shown that vascular dysfunction especially the loss of pericytes plays a significant role in the
onset of AD. Pericytes play a variety of important roles in the nervous system including the regulation of the cerebral blood flow (CBF),
the formation and maintenance of the blood–brain barrier (BBB), angiogenesis, and the clearance of toxic substances from the brain.
Pericytes participate in the transport of Aβ through various receptors, and Aβ acts on pericytes to cause them to constrict, detach, and
die. The loss of pericytes elevates the levels of Aβ1-40 and Aβ1-42 by disrupting the integrity of the BBB and reducing the clearance of
soluble Aβ from the brain interstitial fluid. The aggravated deposition of Aβ further exacerbates pericyte dysfunction, forming a vicious
cycle. The combined influence of these factors eventually results in the loss of neurons and cognitive decline. Further exploration of the
interactions between pericytes and Aβ is beneficial for understanding AD and could lead to the identification of new therapeutic targets
for the prevention and treatment of AD. In this review, we explore the characterization of pericytes, interactions between pericytes and
other cells in the neurovascular unit (NVU), and the physiological functions of pericytes and dysfunctions in AD. This review discusses
the interactions between pericytes and Aβ, as well as current and further strategies for preventing or treating AD targeting pericytes.
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1. Introduction
Alzheimer’s disease (AD) is an age-related progres-

sive neurodegenerative disorder characterized by cognitive
dysfunction and behavioral impairment. In addition, AD
is the primary cause of dementia [1]. The two typical
neuropathological changes in AD include neuritic plaques
formed by the deposition of beta-amyloid (Aβ) in the brain
parenchyma and intracellular Tau that makes up neurofib-
rillary tangles (NFTs) formed by the accumulation of hy-
perphosphorylated tau proteins [2,3].

The plaques of Aβ also deposit on vessel walls caus-
ing cerebral amyloid angiogenesis (CAA) [4,5]. However,
the Aβ plaques in AD and CAA are distinct. Aβ1-40
and Aβ1-42 are the most common subtypes of Aβ pep-
tide. Aβ1-42 is more prone to form insoluble aggregates
in the parenchyma [6], constituting the major component
of neuritic plaques in AD. In contrast, Aβ1-40 aggregates
more slowly and ultimately deposits in the walls of vessels
through perivascular drainage [4,7,8]. Abnormal perivas-
cular drainage is the main pathogenesis of CAA [4,9,10],
which also explains why the Aβ deposited on the vascular
wall in CAA is mainly Aβ1-40. Neuron loss and synapse
dysfunction caused by the toxicity of Aβ will ultimately
contribute to dementia and degeneration of the central ner-

vous system (CNS) [11,12]. Moreover, a substantial body
of research has demonstrated that the occurrence of CAA
and AD largely overlap [13–15]. Cerebrovascular dysfunc-
tion caused by CAA is related to severe cognitive impair-
ment in AD patients [15–18].

The shared role of Aβ in AD and CAA is likely the
most apparent interaction between neurodegenerative dis-
eases and cerebrovascular diseases. Moreover, there is ev-
idence indicating that vascular dysfunction plays a signif-
icant role in the onset of AD. Recent studies have demon-
strated that a reduction in the cerebral blood flow (CBF)
is the earliest detectable clinical change in mild cognitive
impairment and AD patients [19–21] and that capillaries
exhibit focal constriction. The greatest vascular resistance
occurs in the capillary bed rather than in the penetrating ar-
terioles [22]. At the capillary level, the neurovascular unit
(NVU) is composed of endothelial cells (ECs), pericytes,
glial cells and neurons. Pericytes are the only contractile
cells responsible for regulating blood flow in capillaries.
Pericytes likely plays an important role in the pathogenesis
of AD. Pericytes, which are indispensable components of
the NVU, play an essential role in the formation and main-
tenance of the blood-brain barrier (BBB), the regulation of
the CBF, angiogenesis and the phagocytosis of toxic sub-
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stances including Aβ from the brain. A significant loss of
pericytes in AD patients has been observed, and the accu-
mulation of Aβ may be the potential cause. Conversely, the
loss of pericytes could lead to impaired clearance of Aβ,
exacerbating the deposition of Aβ and leading to a vicious
cycle.

Currently, there are no effective drugs that can effec-
tively reverse cognitive decline and there are no therapeutic
strategies targeting pericytes [23]. Further understanding of
the pathological changes in pericytes in AD and the interac-
tions between pericytes and Aβ may provide new therapeu-
tic directions for the prevention and treatment of AD. In this
review, we summarize the characterization of pericytes, the
signaling pathways linking pericytes and other cells in the
NVU, the physiological effects of pericytes, the functional
changes in pericytes in AD, the pathways through which
pericytes clear Aβ, the effects of Aβ on pericytes and the
current strategies for preventing or treating AD targeting
pericytes.

2. The Characterization of Pericytes
Pericytes were originally characterized by Eberth and

Rouget in the 1870s (Eberth, 1871; Rouget, 1873) and
firstly named by Zimmermann in 1923 based on their loca-
tion within the vascular basement membrane (BM) and the
extension of cytoplasmic processes to wrap ECs. Both peri-
cytes and vascular smooth muscle cells (VSMCs) are called
mural cells [24]. In addition to ring-shaped VSMCs with
circumferential processes on arteries and arterioles [25],
pericytes are classified into three subtypes based on their
morphology and location: ensheathing pericytes which
have more circumferential processes on precapillary arteri-
oles; thin-strand or helical pericytes, which have protruding
nuclei and longitudinal processes on the middle capillary,
which is themost widely acceptedmorphology of pericytes;
and stellated pericytes on the postcapillary space [26,27].

Many cell surface proteins such as platelet-derived
growth factor receptor-β (PDGFR-β), neural/glial antigen
2 (NG2) and CD13 [28–33] are expressed on both peri-
cytes and VSMCs, and these two cell types can be distin-
guished by morphology. Additionally, vitronectin (VTN)
and interferon-induced transmembrane protein 1 (Ifitm-1)
label pericytes specifically [31]. However, there is cur-
rently a lack of specific markers for distinguishing subpop-
ulations of pericytes. Pericytes and VSMCs exhibit con-
tractile alpha-smooth muscle actin (α-SMA) and desmin
expression [26,30,34]. Notably, there is a difference in
the expression level of α-SMA between the subtypes of
pericytes, which may be related to their distinct functions
[27,30]. These markers, especially PDGFR-β, NG2 and α-
SMA, are widely applied in studies. PDGFR-β can outline
the contours of pericytes [35]. Because they are labeled
by PDGFR-β, pericytes are easily recognized by their pro-
truding soma. Therefore, relying solely on morphology is
sufficient to reliably identify pericytes [26,27]. However, it

is worth noting that adequate experience is needed for ob-
servers [36]. NG2 is the first discoveredmarker of pericytes
that can be used to identify pericytes through combination
with morphology, but not all pericyte subsets express NG2
[37]. α-SMA is not sensitive enough to identify pericytes in
capillary beds, because pericytes on precapillary tubes ex-
press more α-SMA while pericytes on capillary beds may
be negative [27,30].

3. The Interactions between Pericytes and
other Cells in the Neurovascular Unit

TheNVU is composed of endothelial cells, mural cells
(vascular smooth muscle cells, pericytes), glial cells (astro-
cytes, microglia, oligodendrocytes) and neurons [38–40].
The cellular components vary with the branching of the
cerebral vascular tree. At the capillary level, pericytes are
located centrally between endothelial cells, the endfeet of
pericytes and neurons, and the BM is shared with pericytes
[26,41]. They communicate with their neighboring cells
and generate corresponding responses which are crucial for
normal functions of the CNS [26]. We reviewed the inter-
actions between pericytes and ECs, astrocytes and neurons
in Table 1 (Ref. [26,35,38,42–50]).

4. The Functions of Pericytes and
Dysfunctions in AD

As pericytes are indispensable components of the
BBB and NVU, we review the roles of pericytes in the CNS
and their dysfunctions in AD.

4.1 Regulation of the Cerebral Blood Flow (CBF)
Mural cells are cellular components with contractile

properties in the NVU, that enable them to regulate vascu-
lar tone and the CBF [22]. As pial arteries branch into arte-
rioles and capillaries after penetrating into parenchyma, the
mural cell population composed of the NVU changes [51].
Penetrating arteries consist of one to three layers of VSMCs
while arterioles contain only one layer [41,51]. After de-
scending to capillary level, pericytes replace VSMCs and
embedwithin the endothelial BM [51]. Previously, the CBF
was shown to be regulated solely by VSMCs [52]. How-
ever, with the study of pericytes, this viewpoint has been
challenged.

In a series of studies, pericyte were confirmed to
constrict or dilate in response to neurotransmitters [53],
for example, glutamate evokes pericyte dilation, and per-
icytes constrict in response to a gamma-aminobutyric acid
(GABA) receptor blocker suggesting that pericytes partici-
pate in the regulation of the CBF [52,54–57]. Moreover, an
in vivo experiment in which mice expressed DsRed in per-
icytes, revealed that capillary dilation precedes penetrating
arterioles, demonstrating that capillary dilation is a result of
active relaxation of pericytes rather than a passive response
to elevated blood pressure caused by arteriole dilation [52].
In ischemic stroke, capillaries constrict segmentally at re-
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Table 1. The interactions between pericytes and other cells in the NVU.
Cell type Signaling pathway with pericytes Functions Ref

ECs PDGF-BB-PDGFRβ pathway PDGF-BB secreted by ECs combines with PDGFRβ on
pericytes in high affinity. PDGF-BB-PDGFRβ signaling
promotes pericytes survival, proliferation and migration.

[26,35,42]

TGF-β–TGFβR2 pathway TGF-β is activated though interactions between ECs and
pericytes to promote proliferation and differentiation of
pericytes, and stabilization of vessels.

[43,44]

Ang-Tie2 pathway Ang1 secreted by pericytes combines with Tie2 on ECs.
Ang-Tie2 signaling regulate angiogenesis and vascular per-
meability.

[26,35,45]

VEGF-A-VEGFR2 pathway VEGF-A secreted by pericytes and ECs to promote the sur-
vival and proliferation of pericytes as well as angiogenesis.

[26,38,46]

Astrocytes CypA–NFκB–MMP-9 pathway ApoE secreted by astrocytes interacts with LRP1 on peri-
cytes triggering the degradation of the extracellular matrix
and tight junction.

[26,47,48]

Pericytes regulate the AQP4 distribution of astrocytes to
regulate the polarization of astrocytic endfeet.

[49,50]

Neurons Pericytes secrete neurotrophic factors to promote the sur-
vival of neurons whereas neurons secrete neurotransmitters
to regulate pericytes contractility.

[26,50]

Abbreviations: NVU, neurovascular unit; EC, endothelial cells; PDGF-BB, platelet-derived growth factor-BB; PDGFRβ,
platelet-derived growth factor receptor-β; TGF-β, transforming growth factor-β; TGFβR2, transforming growth factor-β
receptor 2; Ang1, angiopoietin-1; Tie2, tyrosine protein kinase receptor; VEGF-A, vascular endothelial growth factor-A;
VEGFR2, vascular endothelial growth factor receptor 2; CypA, cyclophilin A; NFκB, nuclear factor kappa-B; MMP-9, matrix
metalloproteinase-9; ApoE, apolipoprotein E; LRP1, LDL receptor-related protein-1; AQP4, aquaporin 4.

gions near pericytes, after which pericytes contract and sub-
sequently die rigidly [58]. Damages to pericytes contributes
to long-lastingmicrocirculatory reflow impairment even af-
ter reperfusion [59].

Pericytes degeneration and neurovascular dysfunction
have been observed in AD [51,52]. Moreover, the oxida-
tive stress caused by Aβ leads to capillary constriction. A
reduction in the CBF reduces the oxygen supply and glu-
cose availability to the brain, resulting in the impairment
of neurons and neurodegenerative changes [60]. A recent
study showed that white matter lesions (WMLs) induced
by persistent cerebral hypoperfusion is a driving factor for
dementia [61]. Moreover, the two-hit vascular hypothesis
suggests that prior to neurodegeneration and cognitive im-
pairment, genetic, vascular and environmental factors cause
vascular damage (hit1), and neurovascular dysfunction con-
tributes to the accumulation of Aβ (hit 2) [40,41]. A pre-
vious study using APPsw/0 Pdgfrβ+/− mice found that the
loss of pericytes results in a series of AD-like neurodegen-
eration pathological changes including accelerated Aβ de-
position, tau pathology and neuronal dysfunction [62]. No-
tably, vascular damage (hit1) has been observed in pericyte-
deficient APPsw/0 mice, indicating that vessel damage and
pericyte degeneration may be mutually causal [62]. To-
gether, these findings suggest that pericyte degeneration is
an early and key event in AD neurodegeneration.

However, due to differences in stimulation methods,
transgenic mice, and other factors, the function of pericytes
in regulating the CBF has not been fully elucidated.

4.2 Formation and Maintenance of the Blood-Brain
Barrier (BBB)

The blood-brain barrier (BBB) is a special protective
barrier that exists between capillaries and the brain, and is
composed of ECs, endothelial tight junctions (TJs), the BM,
pericytes and astrocyte endfeet [63,64]. The BBB protects
the brain from invasion by blood-derived harmful factors,
thus maintaining the homeostasis of the CNS [65]. Using
quail-chick transplantation chimeras, BBB was shown to
develop in response to the neural tissue environment [66].
During embryogenesis in rodents, astrocytes and pericytes
are required to wrap immature vessels. It is widely ac-
cepted that immature vessels are covered preferentially by
astrocytes postnatally. However, Daneman et al. [67] re-
ported that pericytes were recruited during embryogenesis,
more than one week before the generation of astrocytes,
thus revealing the role of pericytes in the formation of the
BBB. The permeability of the BBB is increased in pericyte-
deficient mice, indicating the essential role of pericytes in
maintaining BBB integrity [49]. Pericytes maintain the in-
tegrity of the BBB through two pathways, forming and pre-
serving the TJs of ECs, and transcytosing in the CNS ECs.
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The breakdown of the BBB has been observed in AD
[68], which is attributed to the loss and detachment of peri-
cytes destroying the integral structure of the BBB and in-
creasing BBB permeability [69]. Interestingly, sirtuin-1
(SIRT1), an anti-aging gene, is markedly suppressed ex-
posed to Aβ [70]. The decreased expression of SIRT1 also
increased the permeability of the BBB and accelerated the
process of senescence [71].

4.3 Angiogenesis
Angiogenesis is the formation of new blood vessels

from existing vessels. Angiogenesis involves three steps:
initiation, sprouting/migration, and maturation. In angio-
genesis, the complex signaling pathways between ECs and
pericytes which include the platelet-derived growth fac-
tor (PDGF)-BB/PDGF receptor beta (PDGFRβ) pathway
[72,73], the angiopoitin1/tyrosine protein kinase receptor
(Tie2) signaling pathway [74], the vascular endothelial
growth factor (VEGF)/VEGF receptor (VEGFR) pathway
[46], the sphingosine-1-phosphate (S1P) signaling pathway
[75], transforming growth factor beta (TGF-β) [76] are the
foundation for the formation and stabilization of new blood
vessels. Pericytes regulate the expression of VEGF, re-
sulting in the instability of blood vessels and initiating the
angiogenesis [77]. Pericytes detach from blood vessels to
pave the way for endothelial sprouting [78]. The migrating
ECs secrete VEGF to stabilize nascent vessels and signal
to pericytes to recruit VEGF. Moreover, the recruited per-
icytes communicate with ECs to promote the stabilization
and maturation of new blood vessels [78]. The coverage of
pericytes is a marker of vascular maturation and a lack of
pericytes results in vascular hyperplasia [79].

5. Mechanisms through which Pericytes
Regulate Aβ

Aβ is continuously generated by neurons and other
cells in the healthy brain, and is subsequently cleared
through various pathways [80–82] including receptor-
dependent transport [80,83–86], cytosolic protease-
mediated intracellular degradation [87] and glymphatic
clearance [88]. In AD, the clearance of Aβ is impaired,
and an imbalance between Aβ production and clearance
leads to the aberrant accumulation of Aβ [7]. Moreover,
pericytes play a considerable role in the clearance of Aβ,
while the loss of pericytes in AD exacerbates the deposition
of Aβ in the parenchyma.

5.1 Pericytes Clear Aβ by LDL Receptor-Related
Protein-1 (LRP-1)

LDL receptor-related protein-1 (LRP-1) is an apoE re-
ceptor that mediates the clearance of Aβ. Using freshly
isolated cortical slices incubated with Aβ, Ma et al. [80]
showed that pericytes rapidly remove Cy3-Aβ42. In ad-
dition, in AD and APPswe/0 mice, the abundant accumula-
tion of Aβ in pericytes indicates the important role of these

cells in clearing Aβ at the BBB. Additionally, in an LRP-
1 conditional knockout model, Cy3-Aβ42 uptake by peri-
cytes was reduced by 80% compared with that in the con-
trol group. The process of clearing Aβ by pericytes can
be inhibited by antibodies against LRP-1 [80,84], further
confirming that the clearance of Aβ is mediated by LRP-
1 (Fig. 1A). Compared with that in adult wild-type mice,
clearance in apoE knockout mice is substantially reduced,
indicating that LRP-1-mediated transport can be influenced
by apoE, a definite risk factor for AD [85]. ApoE is required
for Aβ clearance and is isoform- specific. A study re-
vealed that apoE3, but not apoE4, normalizes Aβ clearance
in mouse pericytes with silenced mouse apoE [80], while
another study revealed that the binding of Aβ to apoE3 re-
duces its clearance rate at the BBB. It has also been reported
that Aβ binding to apoJ significantly accelerates the BBB
clearance rate [86,89].

The expression of LRP-1 is downregulated in AD pa-
tients exacerbating Aβ pathology [90]. By injecting peri-
cytes into APP/PS1 mice, Tachibana et al. [91] showed that
microcirculation improved in the pericyte-injected hemi-
sphere and that the deposition of Aβ decreased in a manner
dependent on the expression of LRP-1 on pericytes. How-
ever, in a recent phase I clinical trial in which mesenchy-
mal stem cells (MSCs) were stereotactically injected to the
brains of AD patients, no significant effects on cognitive
function were observed. The use of transplanted pericytes
or MSCs in the brain to prevent or treat AD has not been
validated [92].

5.2 Aβ40 is Degraded into Aβ34 in Pericytes through
β-Site Amyloid Precursor Protein (APP) Cleaving Enzyme
1 (BACE1)

Amyloid precursor protein (APP) is cleaved by β-
Site Amyloid Precursor Protein (APP) Cleaving Enzyme
1 (BACE1) and γ-secretase, which sequentially results in
the formation of Aβ peptides, including Aβ40 and Aβ42
[93]. In addition to “amyloidogenic” activity, BACE1 also
possesses “amyloidolytic” activity, whereby it degrades
longer Aβ isoforms at position 34 into Aβ34 intermediates
[94] (Fig. 1A). A previous study demonstrated that BACE1
is expressed in pericytes [95]. Treating pericytes with a
BACE inhibitor resulted in a dose-dependent decrease in
Aβ34 levels, indicating the role of BACE1 in the cleavage
of Aβ peptides and the formation of Aβ34 in pericytes [95].
Notably, the substrate of BACE1 is Aβ40, but not Aβ42
[94,95].

In AD, the Aβ34/Aβ40 ratio is decreased signifi-
cantly, and the level of Aβ34 is correlated with disease pro-
gression [96]. The progression of AD can be divided into
six stages. AD in Braak stage I-II is clinically silent, AD
in Braak stage III–IV is incipient and AD in Braak stage
V–VI is fully developed [97–99]. Kirabali et al. [95] re-
vealed that in Braak stage II, Aβ34 levels peak, while in
Braak stages III and IV, the immunoactivity of Aβ34 signif-
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icantly decreases which explains the dysfunction and loss of
brain pericytes in AD pathogenesis. Moreover, analysis of
PDGFRβ immunoactivity revealed that the loss of pericytes
had already occurred at Braak stage II [37].

5.3 Pericytes Regulate Aβ Clearance via RAGE

AGEs (advanced glycation end-products) are the fi-
nal products of the nonenzymatic glycation of proteins
(Maillard reaction) [100], which is irreversible. AGEs
can bind and destroy various histocytes through a process
called cross linking. A series of studies have shown that
AGEs accelerate aging and cause neurodegenerative dis-
orders including AD [101–103]. Receptors for advanced
glycation end products (RAGE), a multiligand receptor of
the immunoglobulin family, can not only specifically bind
to AGEs, but also bind to various ligands such as high-
mobility group box-1 (HMGB1), S100 and Aβ [104,105],
and play vital roles in the occurrence and development of
various diseases. RAGE plays a critical role in regulating
the influx of circulating Aβ into the brain via the BBB as a
transporter [106]. Moreover, RAGE promotes the genera-
tion and accumulation of Aβ by enhancing the activity of β-
secretase and γ-secretase [107]. In addition, RAGE induces
dysfunction of synapses and neuronal circuits, which is the
structural foundation of cognition [108,109]. According to
its structure, RAGE is classified into three isoforms: N-
truncated, and C-truncated, which are also called endoge-
nous secretory RAGE (esRAGE) [110]. Moreover, RAGE
can be cleaved by proteolytic enzymes to form cRAGE. The
soluble form of RAGE (sRAGE) is composed of esRAGE
and cRAGE. Notably, sRAGE can interact with Aβ to form
sRAGE-Aβ interactions which can inhibit the neurotoxicity
of RAGE and promote Aβ clearance from the brain [110].

It has been proven that RAGE is expressed on peri-
cytes [111]. Using small interfering RNA (siRNA) tech-
nology to suppress the expression of the pericyte RAGE
gene, Lue et al. [111] showed that the level of Aβ dra-
matically decreased, indicating that the Aβ (1-42)-RAGE
interaction may function by tethering Aβ to the cell sur-
face of pericytes, advancing the Aβ-Aβ interaction and fur-
ther promoting fibrillogenesis. By blocking RAGE with
an anti-RAGE antibody, the levels of Aβ-induced VEGF
and monocyte chemoattractant protein-1 (MCP-1) were de-
creased, indicating that RAGE-Aβ interactions in pericytes
contribute to the vascular remodeling that is observed in AD
(Fig. 1A). The combination of Aβ and pericyte RAGE can
induce oxidative stress and a subsequent inflammatory re-
sponse by activating a variety of signaling pathways, in-
cluding mitogen-activated protein kinase (MAPK), glyco-
gen synthase kinase 3 (GSK-3) and nuclear factor kappa-B
(NF-κB) [112]. Oxidative stress and inflammatory reac-
tions can thicken the BM and increase the deposition of Aβ,
eventually leading to vascular amyloidosis and disruption
of the BBB [111]. In addition, the Aβ-RAGE interaction re-
sults in cognitive impairment by accelerating the aging pro-

cess and inducing oxidative stress [113]. In AD, elevated
RAGE levels may account for neuronal death and cognitive
impairment. However, the level of sRAGE is lower [114].
In view of this, RAGE inhibitors may be potential targets
for treating AD and these agents have been proven to be
effective in preclinical and clinical studies [115], although
the results have been unsatisfactory.

5.4 Pericytes Efflux Aβ via P-Glycoprotein (P-gp)
P-gp, a subtype of the ATP binding cassette (ABC)

transporter family, is an ATP-dependent transporter respon-
sible for the efflux of various substrates from the brain to
the blood [116,117]. Using an immunogold technique with
monoclonal anti-P-gp antibodies, Bendayan et al. [118]
showed that gold particles are present in ECs, astrocytes
and pericytes, suggesting that pericytes can express P-gp.
In human studies, the expression level of P-gp was shown
to be negatively correlated with the accumulation of Aβ
[119,120].

Moreover, it has been proven that inhibiting P-gp leads
to increased intracellular deposition of Aβ in brain capil-
laries [121,122], suggesting that P-gp plays a crucial role
in the clearance of Aβ. However, the mechanism by which
P-gp affects Aβ transport remains controversial. A variety
of studies support the notion that Aβ stimulates the ATPase
activity of P-gp [123,124]. However, Bello et al. [125] re-
ported that Aβ has no effect on the adenosine triphosphate
(ATP) hydrolysis activity of P-gp. In previous research,
McCormick et al. [123] noted that the activation of P-gp
ATPase by Aβ depends on the lipid environment, which
may account for the differences between those studies. In
addition, Aβ can affect P-gp conversely. By treating trans-
genic human amyloid precursor protein (hAPP) overex-
pressing mice with an irreversible inhibitor of the ubiquitin-
activating enzyme E1, Hartz et al. [126] showed that re-
tained P-gp results in a decreased level of Aβ, suggesting
that Aβ induces P-gp degeneration through the ubiquitina-
tion pathway. In addition, the brains of AD patients exhibit
marked decrease in P-gp and a significant increase in Aβ
deposition and ubiquitinated Aβ [126–128].

5.5 Pericytes Uptake Aβ1-40 via CD36
CD36, a glycosylated membrane protein, is widely

expressed in the nervous system, including in pericytes
[129]. CD36 is involved in a variety of pathological pro-
cesses, such as vascular oxidative stress, the inflammatory
response, mitochondrial dysfunction and neurovascular un-
coupling [129–131].

Immunofluorescence staining revealed that, CD36
and Aβ1-40 colocalize with PDGFRβ, a marker of peri-
cytes, suggesting that CD36 may be involved in the clear-
ance of Aβ1-40 by pericytes [132]. In transgenic mice lack-
ing CD36, Li et al. [132] showed a reduction in Aβ1-40
and cerebral amyloid angiopathy (CAA), suggesting that
CD36 promotes the deposition of Aβ1-40 resulting in vas-

5

https://www.imrpress.com


Fig. 1. The interactions betweenAβ and pericytes. (A) LRP-1 and P-gpmediate the efflux of Aβ while RAGE regulate the influx of Aβ
into brain parenchyma. BACE1 on pericytes degrades Aβ1-40 into Aβ34 intermediates and the Aβ (1-42)-RAGE interaction induces the
generation of VEGF and MCP-1 contributing to the vascular remodeling. (B) CD36 mediates the clearance of Aβ1-40 by pericytes. The
reduced expression of CD36 promotes the deposition of Aβ1-40 resulting in CAA. (C) Oligomeric Aβ1-42 activates NOX4 in pericytes to
produce ROS and ET in sequence, and ET binds to ETA-R on pericytes, triggering capillary constriction. Capillary constriction results in
the reduction of CBF and the glucose and oxygen it contains. Hypoxia in turn upregulates the expression of BACE1, further increasing the
generation of Aβ and forming an amplified positive loop, ultimately leading to synapse dysfunction and neuron loss. (D) Fibrillar Aβ1-42
activates MMP-9 to induce NG2 sheds from pericytes leading to the detachment of pericytes and the destruction of endothelial TJs which
is the significant part of BBB. (E) Aβ1-40 induces pericytes mitophagy through the CD36/PINK1/Parkin pathway and increases oxidative
stress in pericytes. The increased lipid ROS and iron ions caused by oxidative stress in pericytes inducing pericytes ferroptosis dependent
on mitochondrial autophagy. (F) Fibrillar Aβ1-40 reduces the viability and proliferation of pericytes, and increases the activity of the key
apoptotic proteins caspase3/7 while the effects of monomer Aβ1-40 are completely opposite. LRP-1, LDL receptor-related protein-1;
RAGE, receptors for advanced glycation end products; Aβ, beta-amyloid; BACE1, β-site amyloid precursor protein (APP) cleaving
enzyme 1; VEGF, vascular endothelial growth factor; CAA, cerebral amyloid angiogenesis; NOX4, nicotinamide adenine dinucleotide
phosphate oxidase 4; ROS, reactive oxygen species; ET, endothelin; CBF, cerebral blood flow; MMP-9, matrix metalloproteinase-9;
NG2, neural/glial antigen 2; TJs, endothelial tight junctions; BBB, blood–brain barrier; PINK1, PTEN-induced putative kinase 1; sAPPβ,
soluble amyloid precursor protein beta; MCP-1, monocyte chemoattractant protein-1; ETA-R, endothelin receptor type A.
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cular dysfunction (Fig. 1B).Moreover, the transcription and
expression levels of CD36 in pericytes treated with Aβ1-
40 increased in a concentration-dependent manner aggra-
vating vascular dysfunction [132]. Aβ1-40 increases the
permeability of the BBB in vitro, which can be reversed
by inhibiting the expression of CD36 in pericytes, suggest-
ing that inhibiting the expression of CD36 increases BBB
tightness [133], providing a new therapeutic target for pre-
venting BBB destruction during AD progression.

6. The Effects of Aβ on Pericytes
Aβ exerts toxic effects on pericytes through various

pathways, and a significant loss of pericytes has been ob-
served in AD patients. We have summarized the patholog-
ical effects of interactions among targets of pericytes and
different species of Aβ, as well as the pathological changes
observed in AD, in Table 2 (Ref. [36,37,128,134–141]).

6.1 Aβ1-42 Evokes the Constriction of Pericytes
Previous studies have shown that a decrease in the

CBF is the earliest change in AD patients [19], and cap-
illaries exhibit focal constriction [142]. Vascular resistance
in the brain mainly occurs in capillaries, and the CBF is
regulated by pericytes, indicating that pericytes dysfunction
contributes to vascular disturbances in AD [22]. One of the
most characteristic changes in AD is the aberrant deposi-
tion of Aβ, which results in the formation of Aβ plaques in
the brain parenchyma, suggesting that Aβ may be the latent
culprit.

In human brain slices, Aβ1-42 (oligomeric and
monomeric) can trigger a slowly progressive constriction of
capillaries near pericytes, suggesting that Aβ1-42 induces
the constriction of human pericytes in a concentration-
dependent manner within limits [36]. Reactive oxygen
species (ROS) are generated by nicotinamide adenine dinu-
cleotide phosphate (NADPH) oxidase and can be removed
by superoxide dismutase 1 (SOD1) [134]. Recently, Nort-
ley et al. [36] discovered that oligomeric Aβ1-42 evoked
capillary constriction could be blocked by endothelin re-
ceptor type A (ETA-R), SOD1 and NADPH oxidase in-
hibitors, suggesting that ROS and endothelin (ET) partic-
ipate in the constriction induced by Aβ1-42. Moreover, ev-
idence has shown that ROS in pericytes are produced by
reduced nicotinamide adenine dinucleotide phosphate oxi-
dase 4 (NOX4) [135] rather than other isoforms. After ET
was applied alongwith SOD1, the capillaries remained con-
stricted, demonstrating that ET functions downstream of
ROS. Moreover, ET combined with ETA-Rs on pericytes
triggers intense constriction [143]. In summary, Aβ1-42
activates NOX4 in pericytes to generate ROS, and these
ROS induce the generation of downstream ETs, which then
interact with ETA-Rs on pericytes, triggering strong cap-
illary constriction [36,144]. The constriction of capillar-
ies increases vascular resistance, causing a reduction in the
CBF, which leads to a decrease in glucose and oxygen sup-

plies, ultimately leading to synapse dysfunction and neuron
loss [145]. In addition, hypoxia in turn upregulates the ex-
pression of BACE1, further increasing the generation of Aβ
and forming an amplified positive loop [143] (Fig. 1C). The
discovery of this mechanism overturns the previous view
that the reduction in the CBF is the result of arteriole con-
striction.

It has been observed that the level of ET increases in
AD with the upregulation of enzymes responsible for syn-
thesizing ET [136]. Similarly, compared to those in nonde-
mented controls, Sengillo et al. [69] reported a remarkable
loss of pericytes in the cortex and hippocampus of AD pa-
tients, which may be attributed to the fact that chronic ex-
posure to Aβ1-42 results in the constriction and rigid death
of pericytes. Fortunately, blocking NOX4 and ETA-Rs pre-
vent further contraction caused by Aβ, although the capil-
lary diameter does not return to baseline levels. Moreover,
C-type natriuretic peptide (CNP) successfully reverses the
Aβ-evoked constriction [136] and may be applied in the
treatment of AD in the future.

6.2 Aβ1-42 Induces the Detachment of Pericytes by
Activating MMP-9 to Induce NG2 Shedding from Pericytes

Neural/glial antigen 2 (NG2), a transmembrane pro-
teoglycan, is an original marker of pericytes [30]. NG2 not
only plays a significant role in the proliferation and motility
of pericytes, but also promotes the formation and matura-
tion of endothelial TJs [38].

Aβ1-42 is the principal component of neuritic plaques
characterized in AD. Different aggregated forms of Aβ1-42
have been proven to influence the shedding of NG2 from
pericytes differently. NG2 sheds pericytes to form solu-
ble NG2 (sNG2). Fibrillar Aβ1-42 decreases the level of
sNG2, while the level of sNG2 increases after exposure
to oligomer-enriched preparations of Aβ1-42 [137]. After
exerting inhibitors of matrix metalloproteinase (MMP, an
angiogenic factor secreted by pericytes) [138], the conse-
quences of fibrillar Aβ1-42 remain, while increase in sNG2
resulting from oligomeric Aβ1-42 is eliminated, suggesting
that the shedding of NG2 induced by Aβ is mediated by
MMP-9. Moreover, fibrillar Aβ1-42 decreases the activ-
ity of MMP-9 while oligomeric Aβ1-42 increased MMP-9
activity [137]. However, oligomeric Aβ1-42 does not alter
the concentration ofMMP-9, indicating that Aβ1-42 affects
the activity rather than the secretion of MMP-9.

Taken together, in the early stage of AD, Aβ1-42 ex-
ists as oligomers and activatesMMP-9, which subsequently
increases the level of sNG2. The finding coincides with
the discovery of increased MMP-9 in cerebrospinal fluid
(CSF) during early AD pathogenesis [139]. sNG2 has been
demonstrated to promote angiogenesis, resulting in unsta-
ble blood vessels and dysfunction of the BBB [146], and
the level of sNG2 is increased in the CSF of AD patients
[147]. In addition, the release of NG2 from the cell surface
of pericytes drives pericyte detachment and contributes to

7

https://www.imrpress.com


Table 2. Interactions among targets in pericytes and different species of Aβ (f: fibrillar; o: oligomeric; m: monomeric), pathological effects and pathological changes in AD.
Study type Markers of pericytes Targets The species of Aβ Pathological effects Pathological changes in AD Ref.

In vitro PDGFRβ NOX4 oAβ1-42 NOX4 activated byAβ1-42 induce oxidative stress in
pericytes. ROS trigger the generation of ET, which
interact with ETA-R on pericytes, triggering strong
capillary constriction.

The level of ET increases. [36,134–136]

In vitro NG2, PDGFRβ and
αSMA

MMP-9 fAβ1-42 f Aβ1-42 decreases the activity of MMP-9, prevent-
ing the detachment of pericytes.

In early stage of AD, the level of MMP-9
and sNG2 in CSF are increased.

[137–139]

oAβ1-42 oAβ1-42 increases the activity ofMMP-9, promoting
the detachment of pericytes.

Both in vitro and
vivo

PDGFRβ and NG2 CD36/PINK/Parkin Aβ1-40 Aβ1-40 induces ferroptosis of pericytes by activating
mitochondrial autophagy.

Pericytes exposed to Aβ1-40 exhibit fer-
roptosis in TEM.

[128,140]

In vitro PDGFRβ and NG2 Caspase3/7 fAβ1-40 f Aβ1-40 reduces the viability and proliferation of
pericytes by increasing the activity of caspase 3/7.

Aggregated Aβ1-40, the major compo-
nent of deposition in CAA may account
for the loss of pericytes in AD.

[37,141]

mAβ1-40 m Aβ1-40 decreasing the mortality of pericytes by
decreasing the activity of caspase 3/7.

Abbreviations: AD, Alzheimer’s disease; PDGFRβ, platelet-derived growth factor receptor-β; NOX4, nicotinamide adenine dinucleotide phosphate oxidase 4; ROS, reactive oxygen species; ET,
endothelin; NG2, neural/glial antigen 2; αSMA, alpha-smooth muscle actin; MMP-9, matrix metalloproteinase-9; CSF, cerebrospinal fluid; TEM, transmission electron microscopy; CAA, cerebral
amyloid angiogenesis.

8

https://www.imrpress.com


the loss and dysfunction of TJs. Even worse, this effect
could be aggravated by the enhanced degradation of the
extracellular matrix and TJs caused by increased MMP-9
activity [148]. The detachment of pericytes and destruc-
tion of endothelial TJs destroy the integral structure of the
BBB and increase the permeability of the BBB (Fig. 1D).
Subsequently, the hazardous substances enter the brain and
neurotoxicity caused by Aβ could cause neuronal loss and
cognitive decline. As the disease progresses, fibrillar Aβ1-
42 accumulates, which may be the protective mechanism of
the body [149].

Researchers found that the SIRT1 activator, resvera-
trol, reduced serum MMP-9 levels in AD patients, thus re-
ducing neuro-inflammation [141]. Additionally, resvera-
trol was able to slow down the progressive decline in daily
living scores (ADLs) in AD patients [141]. In spite of this,
the relationship between the delay in cognitive decline and
the decrease in MMP-9 remains unknown. The discovery
that Aβ1-42 influences the shedding of NG2 on pericytes
via MMP-9 may explain the pathology of AD and provide
a new therapeutic strategy, such as specifically inhibiting
MMP-9, to prevent AD dysfunction.

6.3 Aβ1-40 Induces Pericyte Mitophagy-Dependent
Ferroptosis through the CD36/PINK/Parkin Pathway

Aβ1-42 (<10%) and Aβ1-40 (<80%) are two typical
soluble monomeric subtypes of Aβ [49]. Aβ1-42 is more
likely to form insoluble aggregates than Aβ1-40 [6], but
Aβ1-40 can be deposited in the vascular system to form
CAA [150]. Recently, it has been reported that more than
90% of patients with AD have CAA and CAA usually pre-
cedes the formation of neuritic plaques that are composed
mainly of Aβ1-42 [151]. Aβ1-40 is presumed to have a
particular toxicity to pericytes [152] and could accelerate
the disruption of the BBB.

A recent study showed that pericytes treated with
Aβ1-40 exhibit a prominent decrease in proliferation and
a marked increas in mitochondrial ROS (Mito SOX) in a
manner dependent on both time and concentration [132].
The results also demonstrated that Aβ1-40 activates mito-
chondrial autophagy through the CD36/PINK/Parkin path-
way (PINK, PTEN-induced putative kinase) [132]. Mito-
chondrial damage and autophagy induced by Aβ1-40 often
lead to apoptosis [140]. Notably, Aβ1-40 rather than apop-
tosis increases oxidative stress in pericytes. An increase in
lipid ROS is accompanied by an increase in the concentra-
tion of iron ions, indicating that Aβ1-40 may induce peri-
cyte ferroptosis [153]. The morphological features of peri-
cytes exposed to Aβ1-40 according to transmission electron
microscopy (TEM) also correspondwith ferroptosis. More-
over, inhibiting mitochondrial autophagy prevents peri-
cyte ferroptosis and ferroptosis inhibitors could prevent
mitochondrial autophagy evoked by Aβ1-40, suggesting
that ferroptosis is dependent on mitochondrial-related au-
tophagy [132] (Fig. 1E).

6.4 Aβ1-40 Affects Pericytes in an
Aggregation-Dependent Manner

The expression of pericyte markers is dynamic, and
depends on the functional state of pericytes; for example,
PDGFRβ labels relatively immature pericytes [33], NG2
stimulates the proliferation and migration of pericytes [34],
and laminin is expressed in active or mature subsets of per-
icytes [154]. In the hippocampus of AD patients, a signif-
icant reduction in the number of pericytes expressing NG2
[37], CD13 and PDGFRβ [70] is observed, while the num-
ber of pericytes expressing other markers is not affected. It
can be concluded that the subsets of pericytes that partici-
pate in activation, migration, and proliferation are affected
by the pathology of AD.A previous study demonstrated that
the CAA formed by Aβ1-40 is associated with pericyte de-
generative changes [150]. Interestingly, Aβ1-40 levels are
associated with the number of pericytes [37]. Since aggre-
gatedAβ1-40 is toxic [150], it is speculated that monomeric
Aβ1-40 may be beneficial.

Schultz et al. [37] showed that fibrillar Aβ1-40 re-
duces the viability and proliferation of pericytes in vitro,
and increases the activity of the key apoptotic proteins cas-
pase3/7. These findings are consistent with the discovery
of pericyte degeneration near fibrillar Aβ1-40 [150]. More-
over, the monomer Aβ1-40 decreases the mortality of peri-
cytes by decreasing the activity of caspase3/7, and promot-
ing pericyte proliferation, which could explain the positive
correlation between the levels of monomeric Aβ1-40 and
the number of pericytes (Fig. 1F).

The occurrence of CAA and AD largely overlap [13–
15] and the occurrence of advanced CAA is related to more
severe cognitive impairment in patients with AD [15,16].
Aggregated Aβ1-40, the major component of deposition in
the CAA may account for the loss of pericytes in AD pa-
tients [155].

7. Strategies to Prevent or Treat AD via
Pericytes

Further understanding of the interactions between per-
icytes and Aβ could lead to new insights for the treatment
of AD. Superoxide dismutase-1 (SOD1) can eliminate ROS
generated by NOX4 activated by Aβ [36]. Using SOD1
to eliminate ROS may be effective at preventing the con-
striction of pericytes. Indeed, overexpression of SOD1 or
topical application of exogenous SOD could reverse vascu-
lar dysfunction and premature mortality in transgenic mice
overexpressing APP [156]. Pterostilbene (PTE), the natu-
ral dimethylated analog of resveratrol, can upregulate the
expression of SIRT1 and SOD to exert neuroprotective ef-
fects [157]. Moreover, since Aβ cannot induce the con-
striction of pericytes without ET [143], reducing the gener-
ation of ET or blocking the combination of ET and ETA-R
may be effective. It has been proven that blocking NOX4
or ETA-Rs could prevent further constriction of capillar-
ies evoked by Aβ and CNPs could successfully reverse the
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constriction of capillaries mediated by ET [36]. In addi-
tion, Aβ induces endothelial dysfunction characterized by
attenuated endothelium-dependent relaxation and increased
endothelium-dependent constriction since Aβ inactivates
vasodilators produced by the endothelium and increases
the production and release of ET [158]. In APP overex-
pressing mice, bosentan, an antagonist of both ETA and
the ETB receptor, was shown to preserve the endothelial
function of the aorta and carotids [159]. Autopsy evidence
has shown that the majority of Alzheimer’s disease patients
suffer from vascular diseases such as CAA [13,15]. Sev-
eral ET receptor antagonists, including bosentan have been
applied to treat pulmonary hypertension, and recent stud-
ies have demonstrated the beneficial effects of bosentan in
restoring the cerebrovascular function of diabetic rats and
preventing coronary endothelial functions in hypercholes-
terolemic pigs [160–162]. The ability of bosentan to pre-
serve endothelial functions in Aβ overexpressing Tg2576
mice demonstrated the potential of ET receptor antagonists
for the prevention and treatment of AD.

Another promising approach might be to implant per-
icytes or mesenchymal stem cells (MSCs) into the brain.
In APP/PS1 mice, the CBF was increased and Aβ plaques
were significantly reduced in the pericyte-injected hemi-
sphere [91]. However, no significant effects on cognitive
function were observed in a recent phase I clinical trial in
which stereotactically injected MSCs were administered to
the brains of AD patients [92]. Many studies have shown
that RAGE inhibitors may be potential targets for treating
AD [107,163,164]. Recently, PF-04494700, an oral in-
hibitor of RAGE has attracted widespread attention. How-
ever, two clinical trials on PF-04494700 have shown that
although PF-04494700 is safe and well-tolerated, it has no
apparent benefit in improving cognitive decline [165,166].
Notably, high-dose PF-04494700 could also increase ad-
verse reactions and exacerbate cognitive impairment [165].

8. Conclusion
Pericytes are multifunctional cells of the vascular sys-

tem and important components of the BBB and NVU. Peri-
cytes regulate the CBF in response to neurotransmitters and
neuronal activity and are essential for endothelial TJs and
they are necessary for the formation and maintenance of the
BBB. Bidirectional communication between ECs and per-
icytes is necessary for angiogenesis. Moreover, pericytes
mediate phagocytosis to maintain homeostasis in the brain.

The aberrant deposition of Aβ is the predominant
pathological change inAD. Pericytes can clear Aβ via LRP-
1, RAGE, P-gp, and CD36, and Aβ is degraded in pericytes
via BACE1. The impairment of these pathways may ac-
count for the pathogenesis of AD. Aβ1-42 evokes the con-
striction of pericytes and causes death after chronic expo-
sure. A decrease in the CBF caused by capillary constric-
tion leads to hypoxia and glucose deficiency, contributing
to the neuronal dysfunction and cognitive decline. Aβ1-

42 also induces the detachment of pericytes. Aβ1-40 in-
duces pericyte mitophagy-dependent ferroptosis through
the CD36/PINK/Parkin pathway. The loss of pericytes ex-
acerbates the aggregation of Aβ in AD. Conversely, the loss
of pericytes is a result of the action of Aβ. Further explo-
ration of the interactions between pericytes and Aβ is ben-
eficial for understanding AD and provides new therapeutic
targets for the prevention and treatment of AD.
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