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Abstract

Background: The extracellular matrix (ECM) modeling induced by the metalloproteinases is a vital characteristic for tumor progres-
sion. Previous studies mainly focus on the functions of two subgroups of metalloproteinases: matrix metalloproteinases (MMPs) and a
disintegrin and metalloproteases (ADAMs) in tumors. The roles of another important group: the ADAMs with thrombospondin motifs
(ADAMTS) remain unclear. This study aimed to perform a pan-cancer analysis of procollagen N-propeptidase subgroup of ADAMTS
(PNPSA).Methods: We systematically analyzed expression landscape, genomic variations, prognostic value, and cell expression clus-
ters of PNPSA in pan-cancer based on the multiple integrated open databases. Besides, we also analyzed the impacts of expressions
and genomic variations of PNPSA members on tumor immune microenvironment (TIME) and immune-related molecules in pan-cancer
based on the immune-related open databases. The Gene Set Variation Analysis (GSVA) was performed to evaluate the associations of
the whole PNPSA with prognosis, tumor indicators, TIME, and drug sensitivities. Meanwhile, the Kyoto Encyclopedia of Genes and
Genomes (KEGG) was performed to reveal related signaling pathways. Finally, immunohistochemical staining was used to validate the
differential analysis results. Results: We found a dual prognostic role of PNPSA members in pan-cancer and they were significantly
correlated with TIME and immune-related molecules. Interestingly, the copy number variations (CNVs) of all PNPSA members were
revealed to be negatively correlated with NK cell infiltration in most cancers. Single-cell sequencing analysis reveals expressions of
PNPSA gene family members on some specific tumor and immune cells in addition to the fibroblasts. The GSVA score was found
to have some predictive value for survival status in Brain Lower Grade Glioma (LGG), Mesothelioma (MESO), and Uveal Melanoma
(UVM) and to be significantly correlated with tumorigenesis-related pathways such as PI3K-Akt, AGE-RAGE, etc. The GSVA score
also shows some predictive value for chemotherapy and immunotherapy efficacy in some tumors. Conclusions: PNPSA was correlated
with tumor development and might be potential tumor biomarker and therapeutic target.

Keywords: extracellular matrix (ECM); ADAMTS; prognosis; tumor immune microenvironment (TIME); signaling pathways; drug
sensitivities

1. Introduction
The extracellular matrix (ECM) is a complex molecu-

lar network that surrounds cells within tissues and provides
structural support for maintaining tissue integrity. The ma-
jor ECM components include collagens, glycoproteins and
proteoglycans. The balanced synthesis and degradation of
ECM components is thought to be crucial for normal tissue
homeostasis. However, this homeostasis becomes highly
dysregulated during tumorigenesis due to various factors
[1]. The disequilibrium of ECM components can cause ad-
ditional ECM remodeling in the microenvironment of solid
tumors. This remodeled ECM interacts with neighboring
cells and activates diverse signaling pathways to promote
tumor growth.

ECM remodeling can be induced by various metallo-
proteinases, including matrix metalloproteinases (MMPs),
a disintegrin and metalloproteases (ADAMs), and ADAMs
with thrombospondin motifs (ADAMTS) [2,3]. MMPs
are the major class of ECM-degrading protease and have
been widely studied in cancer. ADAMs are transmem-
brane proteins with proteolytic activity that have recently
been shown to regulate the shedding of membrane-bound
proteins, growth factors, cytokines, ligands, and receptors.
ADAMTS is a unique and novel family of secreted enzymes
with characteristic thrombospondin motifs [4]. Studies on
the role of ADAMTS in tumorigenesis and the tumor im-
mune microenvironment (TIME) are still quite rare com-
pared with studies on MMPs and ADAMs [3].
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Previous studies reported that ADAMTS family mem-
bers regulate angiogenesis and cell adhesion, proliferation
and interaction with the ECM [5]. Moreover, the func-
tional sites for some matricellular proteins are released fol-
lowing proteolytic cleavage byADAMTS and subsequently
serve as mediators of cell–cell and cell–matrix interactions
in cancer [6]. The ADAMTS family can be divided into
several subgroups according to their substrates. Amongst
these is the procollagen N-propeptidase subgroup (PNPS),
which includes ADAMTS2, ADAMTS3 and ADAMTS14.
Unlike other metalloproteinases involved mainly in ECM
degradation, PNPS are essential for ECM collagen forma-
tion and maturation and their elevated expression can sig-
nificantly increase ECM stiffness [7]. Therefore, the PNPS
of ADAMTS members (PNPSA) can influence ECM re-
modeling in cancer by altering ECM stiffness [7].

PNPSA members may play vital roles in tumor de-
velopment. First, high expression levels of the PNPSA
family can lead to the accumulation of collagen fibrils and
increased matrix stiffness. This in turn induces cellular
mechanical signals that promote the rapid proliferation of
tumor cells [2]. Second, PNPSA-induced ECM stiffen-
ing can promote tumor metastasis through various mecha-
nisms. For example, phosphorylation of the ephrin receptor
EPHA2 by matrix stiffening leads to LYN kinase-mediated
Twist1 phosphorylation and nuclear translocation, thereby
promoting epithelial-mesenchymal transition (EMT) and
tumor cell metastasis [8]. Third, ECM stiffening can pro-
mote EMT-related cancer drug resistance [9]. Moreover,
some previous studies have reported that ECM stiffening
decreased the sensitivity of hepatocellular carcinoma and
ovarian cancer cells to platinum therapy through integrin-
, FAK-, Akt-, STAT3-, and YAP-dependent mechanisms
[10,11]. Fourth, ECM stiffening-related mechanical signal-
ing through the integrin receptor may activate TGFβ and
promote immune evasion [12]. Several components of the
TGF-β network were identified as substrates for PNPSA
including, LTBP1, LTBP2, and TGFBR3 [13]. In sum-
mary, the PNPSA family may regulate tumorigenesis and
tumor progression through diverse mechanisms. Although
PNPSA show great potential as novel prognostic signa-
tures and cancer therapeutic targets, very few studies have
been published on this topic [3]. The relationship between
PNPSA and cancer therefore requires urgent evaluation. In
the present study, we systematically analyzed the impacts
of PNPSA (ADAMTS2, ADAMTS3, and ADAMTS14) gene
expression and variation on the prognosis and TIME of pan-
cancer. This analysis was based on multiple, integrated
databases. Moreover, we constructed PNPSA-related Gene
Set Variation Analysis (GSVA) scores to predict progno-
sis, vital tumor indicators, TIME, and drug sensitivities.
Immunohistochemistry was used to validate the results of
differential mRNA expression analysis at the protein level.
The workflow for this study is shown in Fig. 1.

2. Materials and Methods
2.1 Databases and Cohorts Used in this Study

Transcriptomics and proteomics methods were used in
the Human Protein Atlas (HPA) database to quantify gene
expression in normal and tumor tissues [14,15]. The HPA
database was used to evaluate the expression of the PNPSA
gene family (ADAMTS2, ADAMTS3, ADAMTS14) in pan-
cancer. GEPIA2 is an updated version of the Gene Expres-
sion Profiling Interactive Analysis (GEPIA) database and
provides insights into gene expression based on The Can-
cer Genome Atlas (TCGA, https://www.cancer.gov/ccg/res
earch/genome-sequencing/tcga) and the Genotype-Tissue
Expression Project (GTEx) databases (https://www.gtexpo
rtal.org/home/) [16]. We used the GEPIA2 database (ht
tp://gepia2.cancer-pku.cn) for differential expression anal-
ysis, tumor stage comparisons, and prognostic analysis.
The cBioPortal database (https://www.cbioportal.org) is an
open platform for exploring multidimensional cancer ge-
nomics data such as gene mutations and copy number
variations (CNVs) [17]. It was used here to investigate
PNPSA mutations and CNV landscapes across 27 common
cancer types. The DNA Methylation Interactive Visual-
ization Database (DNMIVD, http://119.3.41.228/dnmivd/)
contains a large amount of DNA methylation data from
the TCGA cohort and was used here to conduct differ-
ential methylation analysis of the TCGA pan-cancer data
[18]. The Tumor Immune Estimation Resource (TIMER)
2.0 (http://timer.cistrome.org/) and the TISIDB databases
(http://cis.hku.hk/TISIDB/) are two open platforms based
on the TCGA cohorts that reveal associations between gene
profiles and the immune landscape [19,20]. The TIMER
database was used in this study to examine the influence
of PNPSA gene family expression and variation profiles on
immune cell infiltration. The TISIDB database was used
to explore associations between PNPSA expression and
immune-related molecules [20]. We used the GeneMANIA
database (https://genemania.org) to study the interaction
network for genes co-expressed with PNPSA [21]. Finally,
the single-cell tumor immune microenvironment (scTIME)
portal database (http://sctime.sklehabc.com/#/home) is an
online tool that reveals the tumor microenvironment land-
scape at the single-cell level. It was used to identify cell
subpopulations with significant PNPSA gene expression
[22]. The corresponding full names of tumor abbreviations
from the TCGA database are shown in Supplementary Ta-
ble 1.

2.2 Data Acquisition and Processing
Gene expression data for 8 cancer types in which prog-

nosis was significantly correlated with the PNPSA gene
family were downloaded from the UCSC Xena database
[23]. These were Cervical squamous cell carcinoma and
endocervical adenocarcinoma (CESC), Colon adenocarci-
noma (COAD), Glioblastoma multiforme (GBM), Kidney
renal clear cell carcinoma (KIRC), Brain Lower Grade
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Fig. 1. The workflow of the whole study. ADAMTS, ADAMs with thrombospondin motifs; PNPSA, procollagen N-propeptidase
subgroup of ADAMTS; HPA, Human Protein Atlas; DNMIVD, DNA Methylation Interactive Visualization Database; GEPIA, Gene
Expression Profiling Interactive Analysis; TIMER, Tumor Immune Estimation Resource; scTIME, single-cell tumor immune microen-
vironment; ROC, receiver operating characteristic; GSVA, Gene Set Variation Analysis; KEGG, Kyoto Encyclopedia of Genes and
Genomes.

Glioma (LGG), Mesothelioma (MESO), Uterine Corpus
Endometrial Carcinoma (UCEC), and Uveal Melanoma
(UVM). Paracancerous tissue samples were first deleted
and the Ensemble gene IDs were then transformed into offi-
cial gene symbols. Subsequently, any duplicate gene sym-
bols were deleted and the one with the highest average ex-
pression across all samples was kept in order to maximize
the gene expression information for these cancers. Raw
FPKM data was normalized by log2(FPKM+1) to avoid the
influence of any extreme expression values. Patients with
incomplete clinical information were excluded, and sam-
ples with complete follow-up information on patient sur-
vival were retained for later analysis.

2.3 Gene Set Variation Analysis (GSVA) of the PNPSA
Gene Family

GSVA is a bioinformatics method for converting the
gene expression matrix into a gene set or pathway expres-
sion matrix for evaluating the degree of enrichment for
the entire gene set [24]. Specifically, Kernel estimation
of the cumulative density function (KCDF) is performed
first. The genes are subsequently ranked by CDF score
and divided into two sets: in-gene set (target gene set) and
out-of-gene set. Kolmogorov-Smirnov-like rank statistics
and distributions are then calculated. Finally, the sum of
the maximum spacing between two distributions represents
the GSVA score for the target gene set [24]. To quantify

the activity of the entire PNPSA gene family, we calcu-
lated the corresponding enrichment scores of each sample
in 8 specific cancer types by GSVA based on ADAMTS2,
ADAMTS3, and ADAMTS14 gene expression. GSVA was
performed using the gsva function of the GSVA R package
[24]. Because the RNA-seq data was normalized, the ‘kcdf
= Gaussian’ and ‘method = gsva’ were selected as appro-
priate parameters in GSVA R package.

2.4 Receiver Operating Characteristic (ROC) Curves of
the GSVA Score in Pan-Cancer

Survival data for pan-cancer samples was obtained
from the UCSC Xena database and matched with the gene
expression data [23]. The receiver operating characteris-
tic (ROC) curve method estimates the predictive value of
specific variables by setting several different critical val-
ues for continuous variables and then calculating the corre-
sponding sensitivities and specificities for outcome events.
A curve is subsequently plotted with sensitivity as the ver-
tical coordinate and (1 - specificity) as the horizontal coor-
dinate. The area under the ROC curve is called the AUC
value and represents the predictive value [25]. To evalu-
ate the predictive power of the entire PNPSA gene family
for survival in pan-cancer, ROC curves of the GSVA score
were drawn for CESC, COAD, GBM, KIRC, LGG,MESO,
UCEC, and UVM using the timeROC package. The param-
eters were set as follows: ‘weighting = marginal’ to com-
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pute theweights, ‘cause = 1’ to represent the outcome event,
and ‘times = c (12, 36, 60)’ to identify time points.

2.5 Kyoto Encyclopedia of Genes and Genomes (KEGG)
Enrichment Analysis across Eight Cancer Types

Spearman correlation analysis between the GSVA
score and gene expression was performed with the cor and
cor.test functions of R software (version 4.2.2, https://ww
w.r-project.org/). r > 0.5 and the p < 0.05 were used as
the screening criterion for identifying co-expressed genes
in the PNPSA gene family. KEGG enrichment analysis es-
timates the degree of enrichment of a group of genes in spe-
cific pathways. The statistical principle is to test the sig-
nificance of a functional pathway class in a set of genes
(co-expressed or differentially expressed) using a hyperge-
ometric distribution pattern [26]. The DAVID database is
an open database for the functional annotation of gene lists
and has been used to show different enriched KEGG path-
ways across 8 cancer types [27]. p < 0.05 was considered
significant and all pathways were ranked according to de-
scending order of –log10P. The top 10 enrichment results
were visualized using the online tool Sangerbox [28].

2.6 Associations between GSVA Scores of the PNPSA
Gene Family and the Tumor Immune Microenvironment
(TIME) in Eight Cancer Types

The ESTIMATE algorithm is a method for estimating
stromal and immune composition based on gene expression
data. This algorithm identifies specific signatures related to
the infiltration of stromal and immune cells from the major
non-tumor constituents present in tumor tissue. Stromal and
immune scores then predict the levels of infiltrating stromal
and immune cells, respectively, and are calculated based on
single-sample gene set enrichment analysis (ssGSEA) [29].
The stromal and immune infiltration scores were calculated
by the estimate R package from RNA sequencing data and
reflect the relative amounts of stromal and immune compo-
nents, respectively [29]. Correlation analysis between the
GSVA score and these two scores was performed in the 8
cancer types using the cor and cor.test functions in R soft-
ware. To reveal the TIME landscape of these cancers, the
infiltration levels of 22 specific immune cell types were cal-
culated with the cibersort algorithm based on the CIBER-
SORTx database. Correlation analysis between the GSVA
score and the immune cell infiltration levels was conducted
with the cor and cor.test functions in R software.

2.7 Analysis of mRNA
Expression-Based Stemness Index (mRNAsi), Tumor
Mutation Burden (TMB), and Microsatellite Instability
(MSI)

The human stem cell reference dataset was down-
loaded using the synapser R package. The gelnet function
of the gelnet R package was used to construct a predictive
model to calculate the mRNAsi [30]. Specifically, RNA ex-
pression data for human stem cells was obtained from the

synapser R package, and a predictive model for stem cells
was constructed based on this data. The model was then
used to estimate the similarity with stem cells and to calcu-
late the mRNAsi based on our datasets. Somatic mutation
data for the 8 cancer types (based on the Muse algorithm)
was downloaded from the UCSC Xena database [23]. The
maftools R package was used to calculate the TMB scores
for these cancer types [31]. The MSI score for every sam-
ple in pan-cancer was obtained from a previous study [32].
The cor and the cor.test functions in R software were used to
perform Spearman correlation analysis between the GSVA
score and the common tumor indicator indexes (mRNAsi,
TMB, and MSI scores).

2.8 Drug Sensitivity Analyses

To study the predictive value of the PNPSA gene fam-
ily for sensitivity to common chemotherapy drugs, the on-
coPredict R package was used to estimate the IC50 of 5-
fluorouracil, cisplatin, irinotecan, docetaxel, paclitaxel, and
gemcitabine in pan-cancer [33]. Reference IC50 datasets
were obtained from the Genomics of Drug Sensitivity in
Cancer (GDSC) database. The oncoPredict R package is
able to extract experimental results for the drug sensitivities
of cell lines and the corresponding gene expression matrix.
OncoPredict R then constructs a predictive model that as-
sociates mRNA expression with drug sensitivity. Finally,
it was used to predict the IC50 of 5-fluorouracil, cisplatin,
irinotecan, docetaxel, paclitaxel, and gemcitabine for 8 spe-
cific cancer types based on their mRNA expression results
in the UCSC database [33]. Correlation analysis between
the GSVA score and IC50 was performed by R software and
the results visualized with the corrplot R package. The Tu-
mor Immune Dysfunction and Exclusion (TIDE) database
is an open platform for the prediction of immune dysfunc-
tion and the efficacy of immunotherapy [34]. In the current
study, the TIDE score obtained from the TIDE database was
used as a predictive marker for the efficacy of immunother-
apy in pan-cancer.

2.9 Verification with Immunohistochemical Staining

This study was approved by the Ethics Committee at
the First Affiliated Hospital of Chongqing Medical Univer-
sity (approval No. 2020-049). Sections of tumor and corre-
sponding paracancerous tissue fromKIRC, Esophageal car-
cinoma (ESCA), Stomach adenocarcinoma (STAD), Liver
hepatocellular carcinoma (LIHC), CESC, and Pancreatic
adenocarcinoma (PAAD) were obtained from the First Af-
filiated Hospital of Chongqing Medical University. Xylene
and absolute alcohol was used to dewax and dehydrate sec-
tions, and citrate antigen retrieval buffer (pH= 6.0) was then
used for antigen retrieval in a microwave. Sections were
subsequently placed into a 3% hydrogen peroxide solution
and incubated for 25 min at room temperature in the dark
to block endogenous peroxidase. They were then placed in
PBS (pH = 7.4) and washed three times on a shaking table
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for 5 min each. A 3% BSA solution was added to cover the
tissue, and the sections incubated for 30 min at room tem-
perature. After washing off the blocking solution, diluted
anti-ADAMTS2 antibody was added to the KIRC, ESCA,
STAD, PAAD, LIHC, and CESC tissue sections. Diluted
anti-ADAMTS14 antibody was also added to PAAD tissue
sections. All sections were then placed in a wet box and in-
cubated overnight at 4 °C. The next day, the corresponding
secondary antibody was added and the sections incubated
at room temperature for 50 min. They were then placed
in PBS (pH = 7.4) and washed three times for 5 min each
on a decolorizing shaker. Freshly prepared DAB dye solu-
tion was added dropwise and the staining visualized by mi-
croscopy. Hematoxylin was then used to counterstain cells,
and SlideViewer software for recording final images. The
IHC Profiler in ImageJ (version 1.54d, LOCI, University of
Wisconsin, Madison, WI, USA) infers the degree of stain-
ing (high positive, positive, low positive, and negative) in
immunohistochemically stained sections. Six views each of
tumor and paracancerous tissue were selected randomly for
analysis. IHC Profiler was then used to score and record the
staining in tumor and corresponding paracancerous tissues
from KIRC, ESCA, STAD, LIHC, CESC, and PAAD.

2.10 Screening of Anti-Tumor Drugs

The BindingDB database stores interaction informa-
tion between protein targets and compounds obtained from
various literature and experimental data. Potential chemical
compounds that target the PNPSA family were identified
from this database (https://www.bindingdb.org/bind/index
.jsp). The ADMETab 2.0 database (https://admetmesh.sc
bdd.com) can be used to calculate and predict various drug-
likeness characteristics, including absorption, distribution,
metabolism, excretion and toxicity [35]. This database
was used to screen potential drugs from the chemical com-
pounds according to drug-likeness characteristics. Interac-
tions between PNPSA family members and the screened
compounds were further verified using Autodock Vina for
molecular docking. Briefly, the 3D structures of PNPSA
members were downloaded from the UniProt database (ht
tps://www.uniprot.org). Autodock Tools software was then
used to export PNPSA members as the receptor proteins,
and the compounds as ligands. Finally, AutoDock Vina
software was used to simulate the molecular docking, and
PYMOL software to visualize the docking results [36,37].

2.11 Statistical Analysis

Differences between groups were compared with the
t-test. All correlation analyses were conducted using the
Spearman or Pearson method with R 4.2.2 software. A p-
value < 0.05 was considered to be statistically significant.
Correction for multiple testing can reduce the number of
positive results. However, as in previous studies [38–40],
the uncorrected p-value was set as the significance thresh-
old in order to avoid missing potential associations and to

provide a more comprehensive and wider pan-cancer anal-
ysis. For all correlation analyses, p < 0.05 was therefore
considered to indicate a significant correlation, with the cor-
relation coefficient representing the relative strength of cor-
relation.

3. Results
3.1 PNPSA Gene Family in Pan-Cancer: Expression,
Mutation Analysis, CNV Landscape, and Differential
Methylation

The pattern of mRNA expression for the PNPSA gene
family in pan-cancer was analyzed with the HPA database
(Fig. 2A–C). The highest expression of ADAMTS2 mRNA
was observed in pancreatic cancer, but a high level of ex-
pression was also found in head and neck, stomach, and
breast cancers (Fig. 2A). Glioma, thyroid cancer, liver
cancer, and prostate cancer expressed very low levels of
ADAMTS2 (Fig. 2A).ADAMTS3mRNAwas expressed less
abundantly in tumor tissue compared to ADAMTS2. The
expression of ADAMTS3 was highest in glioma, renal can-
cer, prostate cancer, and testicular cancer, but hardly ex-
pressed in the other cancer types studied here (Fig. 2B).
ADAMTS14 mRNA expression was highest in pancreatic
cancer (Fig. 2C), with most cancer types showing some
expression except for liver and prostate cancer. Of note,
the expression levels of ADAMTS2 and ADAMTS14 ap-
peared to show a stable ratio in pan-cancer (Fig. 2A,C).
This observation suggests that ADAMTS14 may interact
with ADAMTS2 to form a complex, although further veri-
fication is needed.

Fig. 3A–F shows the results of the mutation analysis
and CNV landscape for the PNPSA gene family derived
from the cBioPortal database. Overall, mutations were
uncommon, with only about half of the pan-cancers hav-
ing mutations. The highest mutation frequency was 12%,
and mutation frequencies for ADAMTS2, ADAMTS3, and
ADAMTS14 were similarly high in lung and colorectal can-
cers (Fig. 3A–C). PNPSA members might therefore predict
poor prognosis for colorectal and lung cancer patients, and
treatment strategies that target these genes may not be ef-
fective.

CNVs in the PNPSA gene family were more
commonly observed than gene mutations in pan-cancer
(Fig. 3D–F). CNVs inADAMTS2weremost frequent in cer-
vical and endometrial cancer (Fig. 3D), while in ADAMTS3
they were most frequent in bladder cancer (Fig. 3E) and in
ADAMTS14 they were most frequent in soft tissue sarcoma
(Fig. 3F). Therefore, inhibition of the corresponding gene
in these tumors may result in a better treatment effect.

The analysis of differential DNA methylation was
performed using the DNMIVD database. The defini-
tion of differentially methylated genes was: |difference|
>0.2 and independent student’s t-test adjusted p-value ≤
0.05, Hypermethylation: beta difference >0.2 and ad-
justed p-value ≤ 0.05, Hypomethylation: beta differ-
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Fig. 2. mRNA expression distribution of PNPSA gene family members in pan-cancer. (A) MRNA expression distribution of
ADAMTS2 in pan-cancer. (B) MRNA expression distribution of ADAMTS3 in pan-cancer. (C) MRNA expression distribution of
ADAMTS14 in pan-cancer. PNPSA, Procollagen N-propeptidase subgroup of ADAMTS.

ence <–0.2 and adjusted p-value ≤ 0.05. ADAMTS2
was found to be hypermethylated in Cholangiocarcinoma
(CHOL), COAD, PAAD, and Rectum adenocarcinoma
(READ) (Fig. 3G–J). ADAMTS14 was hypermethylated in
COAD (Fig. 3K), whereas ADAMTS3 was hypomethylated
in COAD (Fig. 3L). These results suggest that aberrant
DNA methylation of PNPSA members occurs in CHOL,
COAD, PAAD, and READ.

3.2 Prognostic Analysis of PNPSA Gene Family Members
in Pan-Cancer

Prognostic analysis of the PNPSA gene family was
conducted based on the GEPIA2.0 database. Differ-
ent expressions levels for ADAMTS2, ADAMTS3, and
ADAMTS14 were found at different tumor stages in all
31 TCGA cancer types (Fig. 4A–C). Moreover, the ex-
pression levels of ADAMTS2 and ADAMTS14 were pos-
itively correlated with tumor stage (Fig. 4A,C). Differ-
ences in ADAMTS2 expression according to tumor stage
were observed in Bladder Urothelial Carcinoma (BLCA),
ESCA, Kidney Chromophobe (KICH), Kidney renal pap-
illary cell carcinoma (KIRP), Lung squamous cell carci-
noma (LUSC), STAD, and Thyroid carcinoma (THCA)
(Supplementary Fig. 1A–G). ADAMTS3 expression was
significantly correlated with tumor stage in BLCA, Head

and Neck squamous cell carcinoma (HNSC), THCA, and
UCEC (Supplementary Fig. 1H–K), while ADAMTS14
expression was significantly correlated with tumor stage in
BLCA, CHOL, KICH, KIRC, LUSC, Testicular Germ Cell
Tumors (TGCT), and THCA (Supplementary Fig. 1L–R).
Therefore, mRNA expression of the PNPSA family could
be a potential biomarker of tumor stage in these cancer
types.

The GEPIA2.0 database is based on the TCGA
and GTEx datasets. Analysis of differential expres-
sion in this database showed that ADAMTS2 expres-
sion was significantly increased in ESCA, HNSC, KIRC,
PAAD, and STAD compared with corresponding nor-
mal tissue, but significantly reduced in Adrenocorti-
cal carcinoma (ACC), CESC, LIHC, Lung adenocarci-
noma (LUAD), LUSC,Ovarian serous cystadenocarcinoma
(OV), Prostate adenocarcinoma (PRAD), THCA, UCEC,
and Uterine Carcinosarcoma (UCS) (Fig. 4D). The ex-
pression of ADAMTS3 was significantly downregulated in
Acute Myeloid Leukemia (LAML), OV, and UCEC com-
pared with normal samples (Fig. 4E). The expression of
ADAMTS14was significantly increased in PAAD and UCS,
but lower in LAML (Fig. 4F). Overall, PNPSA members
appear to have a dual role for tumorigenesis in pan-cancer.
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Fig. 3. Genomic variations landscape and differential DNA methylation analysis in pan-cancer based on the cBioPortal and DN-
MIVD databases. (A–C) Gene mutation analysis of ADAMTS2, ADAMTS3, and ADAMTS14. (D–F) Copy number variations analysis of
ADAMTS2, ADAMTS3, and ADAMTS14 in pan-cancer. (G–L) Cancers with significantly differential DNAmethylation levels of PNPSA
gene family members. Definition of differentially methylated genes: |difference|>0.2 & independent student’s t-test adjusted p-value≤
0.05, Hypermethylation: beta difference >0.2 & adjusted p-value ≤ 0.05, Hypomethylation: beta difference <–0.2 & adjusted p-value
≤ 0.05. **, 0.001 < p-value < 0.01; ***, p-value < 0.001.

To explore associations between the PNPSA gene
family and clinical prognosis, survival analysis was per-
formed for 33 tumor types based on the GEPIA2.0 database.
The association betweenmRNA expression of each PNPSA
gene family member and patient survival is shown in
Fig. 4G,H. High expression levels of ADAMTS2 and
ADAMTS14 were strongly associated with poor prognosis
in UVM, suggesting they had more clinical impact in this
cancer type than in other tumors. Importantly, higher ex-
pression of the entire PNPSA gene family was significantly
associated with shorter overall survival (OS) and disease-

free survival (DFS) in all pan-cancer samples (Fig. 4I,J).
Next, we analyzed the influence of the entire PNPSA gene
family on patient outcome for individual tumor types. The
OS of CESC, COAD, GBM, KIRC, LGG, MESO, UCEC,
and UVM patients showed significant or near significant
associations with the activity of the entire PNPSA gene
family (Fig. 4K–R). The DFS of ACC, CESC, COAD,
GBM, KICH, KIRC, LGG, MESO, and UVM patients also
showed significant or near significant associations with ex-
pression of the entire PNPSA gene family (Supplementary
Fig. 2A–I).
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Fig. 4. Prognostic analysis of PNPSA gene family members based on the GEPIA2 database. (A–C) Associations of PNPSA gene
family with tumor stages of all TCGA cancers. (D–F) Differential mRNA expression analysis of ADAMTS2, ADAMTS3, and ADAMTS14
between tumors and normal tissues in pan-cancer. Red represents significantly high expression in tumors and green represents signifi-
cantly low expression in tumors than in corresponding normal tissues. (G–H) Survival prognosis correlation analysis of PNPSA gene
family members. Red represents a risk factor and blue represents a protective factor. The border of a square represents a significant
statistical level. (I,J) Survival curves based on the whole PNPSA gene family signature in all cancers. The survival curves are based on
the 3-signatures enrichment expression as a whole which was derived from the ADAMTS2, ADAMTS3, and ADAMTS14. All patients
were divided into low-risk and high-risk groups according to the median enrichment expression of the whole PNPSA gene family. (K–R)
Overall survival curves of eight prognostic tumors. Enrichment expression of the whole PNPSA gene family was significantly or nearly
significantly correlated with survival prognosis only in these eight tumors. CESC, Cervical squamous cell carcinoma and endocervical
adenocarcinoma; COAD, Colon adenocarcinoma; GBM, Glioblastoma multiforme; KIRC, Kidney renal clear cell carcinoma; LGG,
Brain Lower Grade Glioma; MESO, Mesothelioma; UCEC, Uterine Corpus Endometrial Carcinoma; UVM, Uveal Melanoma.
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3.3 TIME, Immune-Related Molecules, and PNPSA Gene
Family Members in Pan-Cancer

We selected ten representative immune cell types
and analyzed their tumor infiltration levels in relation to
ADAMTS2, ADAMTS3, and ADAMTS14 gene expression
based on the TIMER2.0 database. In most cancer types,
ADAMTS2 expression was found to be positively corre-
lated with the infiltration levels of macrophages, DC cells,
and Tregs, but negatively correlated with the infiltration
levels of B cells, Th1 cells, and NK cells. This result sug-
gests that ADAMTS2 may promote antigen presentation
and have anti-tumor immune suppression functions in pan-
cancer (Fig. 5A). ADAMTS3 expression showed different
associations with these immune cell types in specific tumor
types, except for Th1 cells (Fig. 5B). ADAMTS3 expression
showed a significant negative correlation with infiltrating
Th1 cells in nearly all cancer types, suggested a potential
suppressive impact on cellular immunity. ADAMTS14 ex-
pression showed positive correlations with M1macrophage
and DC infiltration levels, and negative correlations with
Th1 cells in most pan-cancers. This result indicates that
ADAMTS14 promotes antigen presentation and has cellular
immune suppressive functions in cancer (Fig. 5C).

As described above, genomic variations in the PNPSA
gene family are common in pan-cancer. Therefore, we
also analyzed correlations between these genomic varia-
tions in PNPSA gene family members and TIME. Corre-
lations between mutations in ADAMTS2, ADAMTS3, and
ADAMTS14 and the infiltration levels of 10 common im-
mune cell types are shown in Fig. 5D–F. In several tumor
types, mutations in PNPSA gene family members were sig-
nificantly associated with TIME landscapes. Immune cell
infiltration levels were also influenced by CNVs in PNPSA
gene family members. CNVs of ADAMTS2 and ADAMTS3
were associatedwith less neutrophil infiltration in the TIME
of most cancer types (Fig. 5G–J). Moreover, the CNVs of
all PNPSA gene family members were negatively corre-
lated with NK cell infiltration levels in most cancer types
(Fig. 5G–L), suggesting that PNPSA members may have
an anti-tumor immune suppression function when overex-
pressed. Overall, the results of immune cell infiltration
analysis suggest that expression and genomic variations in
PNPSA gene family members are significantly associated
with TIME in pan-cancer.

The TISIDB database was used in this study to explore
associations between the PNPSA gene family and immune-
related molecules. ADAMTS2 expression was found to
be positively correlated with the expression of most im-
mune checkpoints in the majority of cancer types, with the
exception of LGG and TGCT. Therefore, cancer patients
with high ADAMTS2 expression might benefit from im-
munotherapy (Fig. 5M). In addition, ADAMTS2 was neg-
atively correlated with CD160 expression in almost all can-
cer types (Fig. 5M). As shown in Fig. 5N, strong positive
correlations were found between ADAMTS2 and the Major

histocompatibility complex (MHC) molecules in BLCA,
COAD, LIHC, LUSC, PAAD, PRAD, READ, and UVM.
This suggests that ADAMTS2 may promote antigen pre-
sentation in these cancer types. ADAMTS3 expression was
found to have different correlations with the expression of
immune checkpoints and MHC molecules depending on
the tumor type (Fig. 5O,P), although the associations were
particularly strong in PAAD. For ADAMTS14, its expres-
sion was also found to be associated with different immune
checkpoint expressions (Fig. 5Q).ADAMTS14was strongly
and positively correlated with most MHC molecules in
THCA and UVM, but showed a strong negative association
with MESO (Fig. 5R). In summary, the analysis of TIME
and immune-related molecules revealed that expression of
ADAMTS2 and ADAMTS14 can promote antigen presenta-
tion in some cancer types, but also suppress anti-tumor im-
mune cells. ADAMTS3 appears to have a dual role in TIME.

3.4 Single-Cell Sequencing Analysis Reveals the
Expression Characteristics of PNPSA Gene Family
Members in Cell Subgroups

The GeneMANIA database was used to identify genes
co-expressed with the PNPSA gene family and potential
connections at the protein expression level (Fig. 6A). As re-
ported above, the expression of each member of the PNPSA
gene family was found to be associated with patient OS in
specific tumor types (Fig. 4G). We next performed single-
cell sequencing analysis based on the scTIME database in
order to identify the cell subgroups in these tumors that ex-
press PNPSA gene family members. The unified cell clas-
sifyingmethodwas used with this database to identify accu-
rate cell clusters in 5 specific tumors. Single-cell landscape
and expression characteristics of the PNPSA gene family
are shown in Fig. 6B–M.ADAMTS2 in UVMwas expressed
mainly in some immune cells and fibroblasts (Fig. 6B,C).
ADAMTS3 in gliomas was expressed in macrophages, fi-
broblasts, tumor cells, endothelial cells, and oligodendro-
cytes (Fig. 6E,F). ADAMTS3 in STAD was expressed in fi-
broblasts and enterocytes (Fig. 6H,I). ADAMTS14 expres-
sion in gliomas was expressed in tumor cells and oligo-
dendrocytes (Fig. 6E,G), and in UVM it was expressed
in immune cells, fibroblasts and tumor cells (Fig. 6B,D).
In kidney cancer, ADAMTS14 was expressed in many cell
types including CD8+ T cells, CD4+ Tregs, macrophages,
and DCs, with the highest level of expression observed in
a macrophage subtype (Fig. 6J,K). In LIHC, ADAMTS14
was expressed in many immune cell subtypes, with the
highest expression level found in a CD8+ T cell subtype
(Fig. 6L,M). Overall, these results show that PNPSA mem-
bers are expressed not only in fibroblasts but also in some
immune cells, tumor cells, and endothelial cells. This sug-
gests that accumulation of ECM collagen fibers may result
from multiple cells working synergistically.
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Fig. 5. Associations of mRNA expression and genomic variations of PNPSA gene family members with tumor immune mi-
croenvironment and immune-related molecules. (A–C) Associations of PNPSA gene family members expressions with immune cell
infiltration levels. (D–F) Impacts of PNPSA gene family members mutations on immune cell infiltration levels. (G–L) Associations
of PNPSA gene family members’ genomic variations with immune cell infiltration levels. (M–R) Associations of PNPSA gene family
members with immune checkpoint expressions and Major histocompatibility complex (MHC) molecules.

3.5 Construction of GSVA Score for the PNPSA Gene
Family and Signaling Pathway Analysis

As shown earlier, the entire PNPSA gene family
showed significant or near significant association with the

OS of CESC, COAD, GBM, KIRC, LGG, MESO, UCEC,
and UVM patients (Fig. 4K–R). PNSPA-related biolog-
ical signatures were further explored in these 8 cancer
types with the long-term goal of improving OS by target-
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Fig. 6. Single-cell sequencing analysis of PNPSA gene family members based on the scTIME portal database. (A) Co-expressed
genes interaction network of PNPSA gene family. (B–D) Single-cell landscape and cell expression cluster of ADAMTS2 and ADAMTS14
in UVM. (E–G) Single-cell landscape and cell expression cluster of ADAMTS3 and ADAMTS14 in glioma. (H,I) Single-cell landscape
and cell expression cluster of ADAMTS3 in STAD. (J,K) Single-cell landscape and cell expression cluster of ADAMTS14 in kidney cancer.
(L,M) Single-cell landscape and cell expression cluster of ADAMTS14 in LIHC.

ing the PNPSA gene family. Therefore, we calculated the
GSVA scores of PNPSA gene sets, including ADAMTS2,
ADAMTS3, and ADAMTS14, as gene family signatures in
the 8 tumor types. ROC curves for these signatures are

shown in Fig. 7A–H. The GSVA signature for the PNPSA
gene family exhibited some discrimination ability and pre-
dictive value for the OS of LGG, MESO, and UVM pa-
tients.
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Fig. 7. ROC curves of GSVA score in eight prognostic tumors. (A) CESC, (B) COAD, (C) GBM, (D) KIRC, (E) LGG, (F) MESO,
(G) UCEC, and (H) UVM.

We also performed KEGG analysis of co-expressed
genes with the PNPSA gene family in order to explore
PNPSA-related signaling pathways (Fig. 8A–H). Some
pathways associated with the original functions of the
PNPSA gene family were enriched in the 8 cancer types,
including protein digestion and absorption, ECM-receptor
interaction, and focal adhesion. In addition, some pathways
related to tumorigenesis were also found to be enriched,
such as the PI3K-Akt signaling pathway, the AGE-RAGE
signaling pathway, and the NF-kappa B signaling pathway.
It is worth noting that the PNPSA gene family was also cor-
related with metabolic pathways in LGG.

3.6 Predictive Value of GSVA Signatures for TIME and
Tumor Cell Stemness Indexes in Eight Cancer Types

Based on the estimate algorithm, we next analyzed the
predictive value of the GSVA signature for stromal and im-
mune scores in the 8 cancer types of interest (Fig. 9A). As
expected, GSVA scores were positively correlated with the
stromal scores in all 8 tumor types. Moreover, GSVA sig-
natures were positively correlated with immune scores in
UVM,KIRC, COAD, andGBM. Subsequently, immune in-
filtration analysis was performed using the CIBERSORTx
database to explore the association of GSVA signatures
with specific immune cell types (Fig. 9B). GSVA signatures
showed different correlations with TIME in the 8 cancer
types. In UVM, the signature strong negative correlations
with monocytes, resting mast cells and eosinophils, but
strong positive correlations with activated memory CD4+
T cells and CD8+ T cells. The GSVA signature showed

stronger remodeling effects on the TIME of UVM than any
of the other cancer types investigated. In contrast, it showed
barely any association with the TIME of UCEC.

The mRNA expression-based stemness index (mR-
NAsi) score was used to represent the tumor cell stemness
index in this study and was calculated for all samples from
the 8 cancer types. Interestingly, this index was found to
be negatively correlated with the GSVA scores in all 8 tu-
mor types (Fig. 9C). The strongest negative correlation be-
tween the GSVA score and the tumor cell stemness index
was observed in COAD. We further analyzed for associa-
tions between the GSVA score and expression of the tumor
cell stemness marker PROM1 (CD133) (Fig. 9D–K). The
GSVA score showed a significant positive correlation with
PROM1 expression in LGG, UCEC, KIRC, and a strong
trend in UVM (p = 0.06). However, the results of the
PROM1 expression analysis were not consistent with those
of the mRNAsi score analysis (reviewed in the Discussion).

3.7 Correlations between GSVA Signatures and Drug
Sensitivities

We next evaluated the PNPSA gene family in relation
to the sensitivity of different cancer types to chemother-
apy drugs. The IC50s for 6 common chemotherapy drugs
were predicted with the oncoPredict R package, and Spear-
man correlation analysis was then conducted between the
GSVA score and IC50s (Fig. 10A). A higher GSVA score
was found to be associated with lower sensitivity to com-
mon chemotherapy drugs in UCEC, LGG, and CESC. The
GSVA scores showed positive correlations with the sensi-
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Fig. 8. KEGG analysis of the PNPSA gene family in eight prognostic tumors ((A)CESC, (B) COAD, (C) GBM, (D) KIRC, (E)
LGG, (F) UVM, (G) MESO, (H) UCEC).

tivity of KIRC and COAD to cisplatin, irinotecan, and gem-
citabine. The GSVA score was also positively correlated
with the sensitivity of GBM to 5-fluorouracil and gemc-
itabine. Therefore, although high expression of the PNPSA
gene family is often associated with poor prognosis in the
8 cancer types, it may increase the sensitivity of KIRC,
COAD, and GBM to some chemotherapy drugs.

The maftools R package was used to calculate the
TMB score, which is a common indicator for predicting the
efficacy of immunotherapy. The GSVA score showed a sig-
nificant negative correlation with the TMB score in UCEC,
but no correlation was seen in any of the other tumor types
(Fig. 10B). The MSI score is another predictive indicator

of the efficacy of immunotherapy and was obtained from
an earlier study [32]. A lower MSI score usually indicates
poorer responsiveness to immunotherapy. GSVA scores
showed significant negative correlations withMSI scores in
UCEC and KIRC (Fig. 10C). To further evaluate the predic-
tive value of the GSVA score for immunotherapy efficacy,
TIDE score results were also obtained for the 8 cancer types
and Pearson correlation analysis was performed (Fig. 10D–
K). A higher TIDE score indicated poor responsiveness to
immunotherapy. GSVA scores showed significant positive
correlations with TIDE scores in COAD,KIRC, andUCEC.
In summary, the GSVA score for the PNPSA gene family
may have predictive value for immunotherapy responsive-
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Fig. 9. Associations of GSVA score with TIME and tumor cell stemness in eight prognostic tumors (CESC, COAD, GBM, KIRC,
LGG, MESO, UCEC, UVM). (A,B) TIME correlation analysis of GSVA score in eight prognostic tumors. (C) Associations of GSVA
score with mRNAsi. (D–K). Associations of GSVA score with Tumor stem cell marker PROM1 (CD133). CESC, Cervical squamous
cell carcinoma and endocervical adenocarcinoma; COAD, Colon adenocarcinoma; GBM, Glioblastoma multiforme; KIRC, Kidney renal
clear cell carcinoma; LGG, Brain Lower Grade Glioma; MESO, Mesothelioma; UCEC, Uterine Corpus Endometrial Carcinoma; UVM,
Uveal Melanoma.

ness in UCEC, COAD, and KIRC. A higher GSVA score in
these tumor types could indicate poorer responsiveness to
immunotherapy.

3.8 Verification of PNPSA Gene Family Expression by
Immunohistochemical Staining

We validated protein-level expression of the PNPSA
gene family in several common solid tumor types (KIRC,
ESCA, STAD, LIHC, CESC, and PAAD) using immunohis-

tochemical staining. The results showed that ADAMTS2
protein expression was higher in KIRC, ESCA, STAD, and
PAAD tumor tissue compared to corresponding paracancer-
ous tissue (Fig. 11A–H). However, in LIHC and CESC
the ADAMTS2 protein expression level was higher in the
paracancerous tissue than in the tumor tissue (Fig. 11I–L).
ADAMTS14 protein expression was higher in PAAD tumor
tissue than in corresponding normal tissue (Fig. 11M,N).
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Fig. 10. Correlations between the GSVA score signature and drug sensitivities in eight prognostic tumors (CESC, COAD, GBM,
KIRC, LGG,MESO,UCEC,UVM). (A) Correlation analysis between the GSVA score and predicted IC50s of 6 common chemotherapy
drugs. (B) Correlation analysis between the GSVA score and TMB score. (C) Correlation analysis between the GSVA score and MSI
score. (D–K) Correlation analysis between the GSVA score and TIDE score based on the TIDE database.

In conclusion, the immunohistochemical staining results
for the PNPSA gene family were consistent with those of
mRNA differential expression analysis.

3.9 Screening for Anti-Tumor Drugs that Target PNPSA
Family Members

Our initial screening found no chemical compounds
that targeted the PNPSA family. In view of the struc-
tural similarity between ADAMTS family members, we
then screened compounds targeting other ADAMTS fam-
ily members and identified 515 and 1411 potential com-
pounds for ADAMTS4 and ADAMTS5, respectively. From
these, two suitable compounds were selected for drug

development based on their drug-likeness characteristics
(Fig. 12A,B). The screening criteria are shown in Supple-
mentary Table 2. A detailed explanation of each indicator
was obtained from the ADMETab 2.0 database. Molecu-
lar docking simulation with AutoDock Vina was conducted
to predict possible binding of PNPSA members to the two
compounds, with the results shown in Table 1. The bind-
ing energies of the two compounds with PNPSA members
were all <0, indicating good binding affinity. Visualiza-
tion of the results and of the amino acid residues involved
in binding are shown in Fig. 12C–H.
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Fig. 11. Immunohistochemical staining verification of differential mRNA expression analysis results. (A–L) Immunohistochemical
staining of ADAMTS2 in tumors and corresponding paracancerous tissues of KIRC, ESCA, STAD, PAAD, LIHC, and CESC. (M,N)
Immunohistochemical staining of ADAMTS14 in tumors and corresponding paracancerous tissues of PAAD. KIRC, Kidney renal clear
cell carcinoma; ESCA, Esophageal carcinoma; STAD, Stomach adenocarcinoma; PAAD, Pancreatic adenocarcinoma; LIHC, Liver hep-
atocellular carcinoma; CESC, Cervical squamous cell carcinoma and endocervical adenocarcinoma.
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Table 1. The docking results of PNPSA family members with the 2 compounds.
Compounds

O=C(CCc1[nH]c(=O)[nH]c1O)N1CCN(C2CCCCC2)CC1 Cc1ccccc1C1CCN(C(=O)CCc2[nH]c(=O)[nH]c2O)CC1

Targets ADAMTS2 ADAMTS3 ADAMTS14 ADAMTS2 ADAMTS3 ADAMTS14

Active pocket (X,Y,Z)
–11.222 –0.972 3.083 –11.222 –0.972 3.083
0.806 3.611 1.444 0.806 3.611 1.444
5.583 4.417 0.139 5.583 4.417 0.139

Binding energy (kJ/mol) –7.899 –7.005 –6.681 –8.528 –7.164 –7.154

RMSD/A 0.769 3.383 3.325 2.107 1.904 1.954

RMSD, Root Mean Square Deviation.

4. Discussion
The ECM is the acellular component of all tissues and

organs and plays a crucial role in tissue development and
repair. Changes in homeostasis between the synthesis and
degradation of ECM components are thought to correlate
with tumorigenesis. Metalloproteinase is a vital proteinase
that promotes the degradation of normal ECM components
and facilitates its replacement with tumor ECM. This en-
zyme is known to cause ECM remodeling in tumors and is
thus associated with tumorigenesis [1]. Most studies to date
have focused on the roles of the MMP and ADAM metal-
loproteinase families in tumorigenesis, with studies on the
ADAMTS family still lacking. Therefore, in the present
workwe systematically analyzed the prognostic value of the
PNPSA gene family in pan-cancer. Different family mem-
bers were found to play different roles in the various can-
cer types. Genomic variations in the PNPSA gene family
were also found to be widespread in pan-cancer. Single-
cell sequencing analysis indicated the PNPSA gene family
was expressed not only in fibroblasts but also in tumor cells
and some immune cell types. We subsequently developed
a GSVA signature based on PNPSA gene sets (ADAMTS2,
ADAMTS3, and ADAMTS14) and evaluated its predictive
value for patient survival status, TIME landscape, stem-
ness index, and drug sensitivity in 8 cancer types (CESC,
COAD, GBM, KIRC, LGG, MESO, UCEC, and UVM).
These results deepen our understanding of the PNPSA gene
family in tumorigenesis, while also providing new direc-
tions for the investigation of novel tumor biomarkers.

ADAMTS2, ADAMTS3 and ADAMTS14 belong to
the procollagen N-propeptidase subgroup of ADAMTS.
Their main function is to cleave amino-propeptides from
fibrillar collagens, thereby promoting collagen fiber pro-
duction in ECM [41]. The carboxy-terminal region of
ADAMTS is highly variable, giving these proteinases
unique properties to interact with more substrates in the
ECM and on the cell surface [42]. The PNPSA gene fam-
ily could therefore influence tumor development by reg-
ulating angiogenesis, altering cell proliferation, adhesion,
and migration, and remodeling the ECM [5]. Depending
on the cancer type, ADAMTS may have pro- or anti-tumor

roles. Dupont et al. [43] demonstrated that ADAMTS2
and ADAMTS14 are key players in pro-VEGFC process-
ing, which is thought to be critical in lymphangiogene-
sis. ADAMTS2 and ADAMTS3 may also promote tumor
metastasis. A previous study showed that ADAMTS2 ex-
pression was significantly increased in gastric cancer cells
and tumor-associated fibroblasts compare to normal cells
[44]. Moreover, multivariate analysis showed that ele-
vated expression of ADAMTS2 in both the gastric cancer
cells and fibroblasts was an independent prognostic fac-
tor. Kim et al. [45] reported that ADAMTS3 was in-
volved in the maintenance of glioma cell stemness and
was significantly correlated with prognosis. A previous
study showed that lower expression of ADAMTS14 was
associated with poor prognosis in oral squamous cell car-
cinoma [46]. In the present study, we also found higher
expression of ADAMTS2 in gastric cancer cells than in
normal cells. Moreover, ADAMTS2 expression was pos-
itively correlated with tumor stage in STAD, with a p-value
that approached significance. ADAMTS2 was expressed
at high levels in ESCA, HNSC, KIRC, and PAAD com-
pared to corresponding normal tissues, but at low levels in
ACC, CESC, LIHC, LUAD, LUSC, OV, PRAD, THCA,
UCEC, and UCS. However, ADAMTS3 mRNA expres-
sion was not significantly altered in GBM and LGG, and
ADAMTS14mRNA expression was significantly downreg-
ulated in HNSC. In addition to changes in the mRNA ex-
pression of PNPSA gene family in tumors, we also found
widespread genomic variations in pan-cancer. A previ-
ous study reported that ADAMTS14mutations, in combina-
tion with environmental risks, strongly influenced the risk
of oral cancer [47]. Therefore, genomic variations in the
PNPSA gene family could also influence tumorigenesis in
pan-cancer.

The TIME is the landscape of immune cells within
and surrounding tumor cells [48]. Previous studies have
shown that metalloproteinases can influence the activation
and migration of immune cells in TIME by interacting with
other ECM components [49]. Kang et al. [50] found that
macrophages with MMP11 overexpression promoted the
migration of HER2-positive breast cancer cells and the re-
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Fig. 12. The screening of potential anti-tumor drugs targeting PNPSA family members. (A,B) The potential chemical compounds
that might interact with PNPSA family members. (C,D) Themolecular docking models of the two chemical compounds with ADAMTS2.
(E,F) The molecular docking models of the two chemical compounds with ADAMTS3. (G,H) The molecular docking models of the two
chemical compounds with ADAMTS14.

cruitment of monocytes. Hammad et al. [51] reported
that expression of ADAM on the cell surface committed
the differentiation of B cells into marginal zone B cells.
Salti et al. [52] found that release of CD154 from the in-
tracellular environment and T cell surface cleavage were
highly dependent onADAM10 orADAM17, and correlated
strongly with B cell proliferation. Similarly, ADAM10 and
ADAM17 are involved in the cleavage of CD137 to pro-
duce soluble CD137, which may lead to increased T cell
proliferation [53]. Wu et al. [54] found that ADAM17

may be a regulatory checkpoint for CD16A, while facilitat-
ing the detachment of NK cells from antibody-coated target
cells. Metalloproteinases have also been shown to inter-
act with other immune checkpoints, such as PD-L1, LAG3,
and TIM3, thereby profoundly influencing the immune re-
sponse and the efficacy of immunotherapy [55,56]. New
emerging technologies and methods have led to numer-
ous studies focused on metalloproteinases in TIME. How-
ever, the involvement of the ADAMTS family in TIME has
been much less studied compared to MMPs and ADAMs.
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Therefore, we systematically analyzed the associations be-
tween a vital subgroup of the ADAMTS family and TIME
in pan-cancer. mRNA expression and genomic variations in
PNPSA gene family members were found to significantly
influence the infiltration of various immune cell types. Of
note, the CNVs of all PNPSA gene family members were
negatively correlated with the level of NK cell infiltration
in most cancer types, which may lead to reduced anti-tumor
immunity and immunotherapy response. The GSVA score
is a signature of PNPSA gene family activity and was found
to have some predictive value for both anti-tumor and pro-
tumor TIMEs in pan-cancer. This observation indicates the
PNPSA gene family can have different roles depending on
the cancer type. The current study also evaluated the corre-
lation of PNPSA gene family members with the expression
of MHC molecules and immune checkpoints. The expres-
sion of ADAMTS2 and ADAMTS14 was found to promote
antigen presentation but suppress anti-tumor immune cells
in some cancer types. ADAMTS3 also showed a clear dual
role in TIME. Overall, these results indicate that PNPSA
gene family members have potential immunomodulatory
effects.

Cancer stem cells (CSCs) have stem cell-like proper-
ties such as self-renewal ability and differentiation poten-
tial. CSCs are thought to be closely associated with tumor
development and therapeutic resistance [57]. The ECM
plays a crucial role in maintaining the plasticity of CSCs
through integrin-related signaling pathways [58]. A previ-
ous study showed that type-1 collagen may be a vital com-
ponent of the niche for glioblastoma stem cells (GSCs) by
maintaining the adherence of these cells [59]. Kesh et al.
[58] reported that type-1 collagen hinders CSC differen-
tiation and promotes the expression of stem cell markers
in colorectal cancer. Moreover, abnormal collagen forms
crosslinks after ECM remodeling in tumorigenesis gener-
ates mechanical pressure that increases its stiffness. Tan
et al. [60] suggested that stem cell marker expression in
colorectal cancer was enhanced following the activation
of YAP in response to greater ECM stiffness. You et al.
[61] found that greater ECM stiffness increased the stem-
ness and self-renewal abilities of CSCs, as well as their
chemotherapy resistance. However, in the present study
the GSVA score was found to be negatively correlated with
the stemness index in all 8 cancer types. To further inves-
tigate this result, we performed Pearson correlation analy-
sis between the GSVA score and the expression of PROM1
(CD133), which has been widely used as a CSC marker.
We obtained different results between these two methods
for CESC, COAD, LGG,MESO, UCEC, UVM, and KIRC.
The most likely reason is that PNPSA gene family mem-
bers are responsible for collagen formation, and thus high
expression of these genes can increase the ratio of stromal
components and decrease the tumor cell ratio. Therefore,
the stem index used to represent the CSC ratio showed neg-
ative correlations with the GSVA score for the PNPSA gene

family. We speculate that analysis of the stem index may
not reflect the true association between tumor cell stemness
and the GSVA score. Instead, the analysis of PROM1 ex-
pression may be more accurate.

The ECM is a complex, interconnected network of
macromolecules that supports cells and tissues. It is there-
fore not surprising that it can also affect the response to
cancer therapy [2]. Different mechanisms have been im-
plicated in the anti-cancer drug resistance properties of
the ECM. Rice et al. [62] showed that ECM stiffness in
pancreatic cancer could induce EMT, leading to chemore-
sistance. Joyce et al. [63] reported that triple-negative
breast carcinoma cells showed ECM stiffness-related resis-
tance to doxorubicin due to the activation of YAP. It was
also found that growth factors stored in the ECM were re-
leased, thus amplifying the circuitry between tumor cells
and ECM and eventually contributing to treatment resis-
tance [64]. In summary, the ECM can influence tumor
chemoresistance through multiple pathways. However, the
role of the ADAMTS family in regulating ECM remodel-
ing and chemoresistance is not fully understood and rele-
vant studies are still lacking. An observational study found
that ADAMTS mutations in ovarian carcinoma were asso-
ciated with longer patient survival and greater sensitivity
to chemotherapy [65]. Arechederra et al. [66] found that
ADAMTSL5 may act as a key regulator of tumorigene-
sis and drug resistance in hepatocellular carcinoma. Ab-
dullah et al. [67] reported that increased methylation of
ADAMTSL5 was associated with chemoresistance in lym-
phoblastic leukemia patients. In the current study, the
IC50s for five common chemotherapy drugs were predicted
using the oncoPredict R package and then correlated with
the GSVA scores in 8 cancer types. As mentioned above,
increased ECM stiffness caused by excessive accumula-
tion of collagen fibers can lead to chemoresistance through
various pathways. Therefore, GSVA scores could in the-
ory be positively correlated with IC50s in these 8 cancer
types. However, GSVA scores were found to have dual
impacts on IC50s and on the resistance to five common
chemotherapy drugs in the 8 cancer types. This result
suggests the PNPSA gene family may influence chemore-
sistance through other mechanisms, such as by activating
non-ECM stiffness-related signaling pathways, or by inter-
acting with specific inflammatory factors without altering
ECM stiffness. This finding and the possible associated
mechanism require further experimental verification. Im-
munotherapy is another important treatment choice for can-
cer patients, especially those with late-stage disease. Un-
fortunately, only a minority of patients benefit from im-
munotherapy [68,69] and novel biomarkers of efficacy are
therefore urgently required. We analyzed the predictive
value for immunotherapy response of the GSVA score for
the PNPSA gene family in 8 cancer types. The TMB,
MSI, and TIDE score algorithms indicated the GSVA score
may have predictive value for immunotherapy response in
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UCEC, COAD, and KIRC. A higher GSVA score was as-
sociated with poorer responsiveness to immunotherapy in
these cancer types. However, this result was obtained with
public databases and additional clinical cohorts are needed
for verification.

To more accurately identify the cell subgroups that ex-
press the PNPSA gene family, we also analyzed single-cell
sequencing results in the scTIME portal database. Interest-
ingly, members of the PNPSA gene family were expressed
not only in fibroblasts but also in tumor cells, immune cells
and endothelial cells. This observation suggests the ac-
cumulation of ECM collagen fibers might result from the
synergistic action of multiple cell types. We also analyzed
KEGG enrichment pathways in the 8 cancer types. Sev-
eral pathways related to tumorigenesis were found to be
enriched, including the PI3K-Akt, AGE-RAGE, and NF-
kappa B signaling pathways. Therefore, experiments de-
signed to investigate possible associations between the ex-
pression of key genes in these signaling pathways and the
PNPSA gene family may be more meaningful.

Most of the results obtained in this study were based
on data from earlier research or programs, and hence there
may be potential biases. The accuracy of the data could
obviously influence the reliability of the results. Tumor
mRNA transcript data in the HPA database is derived
mainly from the TCGA database, while the mRNA data
for normal tissue is based on the GTEx database. The
DNMIVD database is based on methylation data and clini-
cal information from the TCGA. These data were normal-
ized before analysis for differential expression, expression
of methylated quantitative trait loci, etc. The GEPIA2.0
database integrates gene expression data from the TCGA
and GTEx databases and performs some routine analy-
sis. The cBioPortal database screens almost all types of
data from the TCGA, including mRNA expression, gene
mutation, CNVs, and even protein/phosphoprotein levels.
The TISIDB database extracts immune-related data from
the TCGA and performs correlation analysis. The data
mentioned above are mainly from the TCGA and GTEx
databases. The TCGA database was based on the cancer
genome atlas project, with tumor samples collected from
hospitals worldwide and with a large sample size. There-
fore, gene-related data from the TCGA is likely to be rep-
resentative. The GTEx database collected gene expression
information from normal tissues. Integrated analysis based
on the TCGA and GTEx databases helps to reduce statisti-
cal error. However, these data are all retrospective, as are
the analyses from the online databases. Some of the com-
mon biases encountered in retrospective studies, such as
confounding bias, were therefore unavoidable in the current
study. Moreover, results obtained for several TCGA tumor
types with small sample sizes may be due to chance, e.g.,
the results for CHOL compared to tumor types with a large
sample size. Such results require verification in further
studies with a larger sample size. The TIMER 2.0 database

was used here to estimate immune cell ratios. A possible
bias with this mRNA bulk sequence method is tumor purity.
However, we minimized this bias by using the tumor purity
adjustment tool in the TIMER 2.0 database. The scTIME
database provides a single-cell atlas across different tumor
types. It is based on data from the Gene Expression Om-
nibus (GEO), which performed standard single-cell tran-
scriptome sequencing analysis. Considering the different
sequencing platforms and data construction methods used,
we obtained results from each single dataset.

The GSVA method requires synergistic input genes
to decrease bias and errors. ADAMTS2, ADAMTS3, and
ADAMTS14 were used in the current study to perform
GSVA analysis. Because they are all members of the
PNPSA family, these genes are highly correlated, thus lim-
iting the bias of GSVA. The GDSC database mainly stores
information on the drug sensitivities of cell lines grown in
vitro. However, the RNA-seq data was based on analysis
of tumor tissue in vivo. Hence there is undoubtedly some
bias in predicting clinical drug sensitivities with the onco-
Predict R package based on the GDSC database, since the
properties of in vivo tumor cells are different to those of
in vitro tumor cells. The results are therefore an estima-
tion only and further studies are needed. The immune cor-
relation and KEGG enrichment results were not corrected
statistically for multiple testing, which might increase the
risk of Type I error. Although correction for multiple tests
can increase the statistical power, we found that many sig-
nificant results disappeared following the correction. This
study aimed to provide a comprehensive pan-cancer analy-
sis of the PNPSA gene family. As in previous studies [38–
40], we set an uncorrected p-value (<0.05) as the signif-
icance threshold in order not to miss possible positive re-
sults. The uncorrected p-value was less stringent than the
corrected p-value. It therefore included not only the posi-
tive results with corrected p-value, but also retained addi-
tional potential results that disappeared when the p-value
was corrected. This study suggests potential directions for
further experiments on the PNPSA gene family.

Data for the 8 cancer types were downloaded from
UCSC Xena (https://xena.ucsc.edu) and a series of qual-
ity control measures and steps were performed to minimize
the biases. First, the paracancerous tissue samples were
deleted, thereby improving the reliability and stability of re-
sults. Second, duplicate gene symbols were deleted and the
one with the highest average expression across all samples
was kept to maximize the retention of gene expression in-
formation in the 8 cancer types. This measure decreased the
calculation error in the later bioinformatics analyses caused
by duplicate gene symbols. Third, the raw FPKM data was
normalized by log2(FPKM+1) to avoid the influence of ex-
treme expression values in the bioinformatics analysis.

Finally, we performed immunohistochemical verifica-
tion of the expression of PNPSA gene family members in
several common solid tumors. The experimental verifica-
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tion results were consistent with the results for differential
mRNA expression analysis. However, the full experimen-
tal verification of PNPSA gene family expression is still in-
complete and requires additional study. Importantly, the
results of our analysis provide avenues for further experi-
mentation, and this work is being continued by our group
in additional research projects. Therefore, we anticipate the
current results will be validated and extended by more ex-
perimental data in the near future.

5. Conclusions
We systematically analyzed the expression landscape,

genomic variations, prognostic value, and cell expression
subgroups of PNPSA gene family members in pan-cancer.
Importantly, we also analyzed associations between the ex-
pression and genomic variations of PNPSA gene family
members with TIME and immune-relatedmolecules in pan-
cancer. The prognosis for overall survival in 8 cancer types
was found to be significantly associated with the activity of
the PNPSA gene family. Subsequently, we calculated the
GSVA score based on the PNPSA gene family and evalu-
ated its predictive value for patient survival, TIME, and the
drug sensitivities of 8 cancer types. The potential signaling
pathways associated with the PNPSA gene family in these
cancers were also revealed through KEGG analysis. As far
as we are aware, research that focuses on the relationship
between ADAMTS and cancers are still lacking. Therefore,
our study provides a deeper understanding of the role of
ADAMTS in tumorigenesis, as well as possible directions
for further experiments to explore novel tumor biomark-
ers. The conclusions in this study require confirmation with
more experiments and clinical cohorts.
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