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Epilepsy is one of the most common neurology diseases. It is charac-
terized by recurrent, spontaneous seizures and accompanied by var-
ious comorbidities which can significantly affect a person's life. Ac-
cumulating evidence indicates an essential pathophysiological role
for neuroinflammation in epilepsy, which involves activation of mi-
croglia and astrocytes, recruitment of peripheral leukocytes into the
central nervous system, and release of some inflammatory media-
tors, including pro-inflammatory factors and anti-inflammatory cy-
tokines. There is complex crosstalk between the central nervous
system and peripheral immune responses associated with the pro-
gression of epilepsy. This review provides an update of current
knowledge about the contribution of this crosstalk associated with
epilepsy. Additionally, how gut microbiota is involved in epilepsy
and its possible influence on crosstalk is also discussed. Such recent
advances in understanding suggest innovative methods for targeting
the molecules correlated with the crosstalk and may provide a better
prognosis for patients diagnosed with epilepsy.
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1. Introduction
Epilepsy, one of the most common neurology diseases,

affects nearly 65 million individuals worldwide [1]. It is a
clinical entity characterized by recurrent, stereotypical, and
spontaneous seizures (a process is known as “epileptogene-
sis”, which leads to the onset and progression of the disease),
followed by various comorbidities that seriously affect a per-
son’s life. Accumulating experimental and clinical data has
shown innate and adaptive immunity to be activated and that
related inflammatory responses may be induced in epilepto-
genic foci [2, 3]. The inflammatory response, termed “neu-
roinflammation”, is restricted to brain resident cells, includ-
ing neurons, microglia, and astrocytes [2, 4]. Furthermore,
it has been suggested that neuroinflammatory signals play
a significant role in the progression of epilepsy [5], which
involves different conditions, such as release of inflamma-

tory factors (involving pro-inflammatory cytokines and anti-
inflammatory factors), activation of microglia and astrocytes,
as well as recruitment of peripheral leukocytes into the cen-
tral nervous system (CNS) [2, 6].

Seizures may induce blood–brain barrier (BBB) leak-
age [7], which may contribute to crosstalk between resi-
dent and peripheral immune responses; specifically, resul-
tant BBB dysfunctionmay provide a favorablemicroenviron-
ment for communication between peripheral immune cells
(e.g., monocytes and macrophages) and CNS resident im-
mune cells (e.g., microglia and astrocytes), which may be in-
volved in neurogenesis, synaptogenesis, neurotransmission,
and angiogenesis after epilepsy or seizures [8–12].

Importantly, the role of gut microbiota has become an in-
creasing focus in neurological investigations. Lines of evi-
dence have already shown that they are implicated in immu-
nity, inflammation, and central and peripherally associated
signaling pathways related to epileptogenesis [13]. Addition-
ally, several lines of evidence have also demonstrated that the
composition of gut microbiota can impact not only suscepti-
bility to epilepsy but also its progression [14, 15].

First, evidence originating from studies investigating how
the peripheral immune responses and CNS immune re-
sponses communicate with each other in epilepsy is reviewed
from various perspectives. The goal is to identify novel tar-
gets for intervention. Second, the effects of gut microbiota
on neuro-immune crosstalk are discussed.

2. Monocytes/macrophages
There is growing evidence that monocytes which invade

from the peripheral circulation contribute significantly to
neuroinflammation and the inevitable consequences that fol-
low a brain insult [16]. For example, in an animal model of
encephalitis-induced seizures and hippocampal damage, af-
ter the injection of Theiler’s virus into the brain, two groups
have separately shown that brain-infiltrated inflammatory
monocytes injure the hippocampus [17, 18], which gives rise
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to the progression of acute seizures [19]. Intriguingly, in-
hibiting monocyte invasion by injection of clodronate lipo-
somes did not prevent hippocampal damage in a viral en-
cephalitis model [20]. Nevertheless, neuroinflammation ac-
companied by microglial activation and the infiltration of
monocytes was detected in both animal models and patients
with temporal lobe epilepsy (TLE) [21–23]. Taken together,
these findings suggest that infiltrating monocytes may in
these circumstances be a potential target for preventing or
modifying epilepsy.

Macrophages originate from monocytes and enter the
CNS via the peripheral circulation after CNS injury [24].
Macrophages can be divided into pro-inflammatory M1 and
anti-inflammatory M2 phenotypes [25]. M1 macrophages
are neurotoxic, while the M2 subtype enhances axonal re-
growth after CNS insult [26–28]. Interestingly, following
spinal cord injury (SCI), a population ofmacrophages derived
from infiltrating monocytes facilitates recovery via the anti-
inflammatory cytokine interleukin (IL)-10 [29].

Importantly, chemokines are significant proinflammatory
mediators which make leukocytes penetrate into the brain
following seizures. C-C motif chemokine ligand (CCL)2,
alternatively named monocyte chemoattractant protein-1
(MCP-1), serves as a chemoattractant for the monocyte lin-
eage, which itself is constituted by microglia, monocytes, and
macrophages [30–33]. The monocyte lineage could inter-
pret the enhanced expression of monocytes or macrophage
in patients with epilepsy and their animal models. An in-
creased level of CCL2, produced by macrophages, monocytes
or astrocytes, results in disruption of the BBB [34], thus con-
tributing to epileptogenesis and the onset of epilepsy [35–
37]. With the exception of CCL2, tumor necrosis factor-α
(TNF-α) and IL-β have been discovered to influence the re-
cruitment and function of monocytes [38–40]. Furthermore,
IL-6 and TNF-α produced by infiltrating macrophages and
resident microglia, have implications for the progression of
acute seizures induced by Theiler’s murine encephalomyeli-
tis virus (TMEV) [19]. A recent study has demonstrated that
preventing CCR2+ monocytes from penetrating the brain
following status epilepticus (SE) contributed to neuropro-
tective outcomes, including lessened BBB opening, damp-
ened inflammation, and enhanced functional recovery [41].
With respect to seizures and epilepsy, some experiments
have shown that CCL2 is highly up-regulated in models of
SE and patients with epilepsy [41–45]. Signal transducer
and activator of transcription 3 (STAT3) activation in mi-
croglia/macrophages was triggered by CCL2–CCR2 signal-
ing, then it facilitated to the generation of IL-1βwhich results
in neuronal cell death after seizures [42]. Additionally, it has
been revealed that there is an apparent decrease in monocyte
infiltration into the brain following SE while CCR2 is sup-
pressed, further demonstrating the importance of the CCL2-
CCR2 axis [41, 42]. It is worth noting that 2-cyano-3,12-
dioxolane-1,9-dien-28-oic acid methyl ester (CDDO-Me) re-
duces both SE-induced monocyte infiltration in the fron-

toparietal cortex (FPC) and microglial activation, by sup-
pressingCCL2 expression and p38mitogen-activated protein
kinase (p38 MAPK) signaling, independent of the activity of
nuclear factor-erythroid 2-related factor 2 (Nrf2) [46].

CCR5 and its ligands have further been shown to be in-
volved in vascular inflammation, while lowered expression of
CCR5may be neuroprotective and lead to increased neuroge-
nesis [47]. Endogenous astrocytic transforming growth fac-
tor (TGF)-β signaling inhibits CCL5 generation via the nu-
clear factor-κB (NF-κB) signaling pathway, reducing CCL5-
mediated recruitment of macrophages and T-cells to undam-
aged places within an infected brain [48].

3. T-lymphocytes
Lymphocytes infiltrate the CNS accompanied by mono-

cytes, macrophages, and neutrophils following SE [21, 49,
50], which leads to BBB disruption and accelerates epilepto-
genesis [49, 51]. Notably, CD3+ T-cell infiltration into the
CNS has been shown both for mice following SE induced by
kainate and for TLE patients who undergo epilepsy surgery
[22].

A recent experiment showed a biphasic increase of CD45+
immune cells in the hippocampus was implicated in innate
macrophages during the first four days as well as CD3+
T-lymphocytes at 28 days following pilocarpine-induced
SE. Correspondingly, one study has suggested pilocarpine-
induced SE of C57BL/6 mice leads to either the infiltration
of activated macrophages into the hippocampus or activation
of resident glial cells, which are predicted to induce a pro-
inflammatory immune response that may attract more im-
mune cells and allow T-lymphocytes to enter the CNS by af-
fecting the permeability of the BBB [52]. Infiltrated T-cell
then an attack on distinct hippocampal neurons sufficient
to make a contribution to cellular and structural dynamics
that displayed signs of limbic encephalitis that induced TLE-
hippocampal sclerosis (HS) [53].

Furthermore, the epileptic brain was observed to be in-
filtrated by CD8+ cytotoxic and activated memory CD4+
helper T lymphocytes. In the study, IL-17-producing γδ T
lymphocytes, which are positively related to seizure severity,
were found in the epileptogenic zone for the first time; alter-
natively, the number of regulatory T-cells (Tregs) infiltrat-
ing the brain was negatively correlated with the severity of
seizure [54].

Future studies should be conducted to explore specific sig-
naling pathways of peripheral immune cells, especially in the
context of refractory epilepsy, to provide further interven-
tion targets originating in the peripheral circulation.

4. Astrocyte
4.1 Astrocyte, BBB disruption and epilepsy

Astrocytes take part in regulating the immune response
in the CNS, maintaining the BBB, secreting cytokines (i.e.,
chemokines and neurotrophic factors [55, 56]) as well as
generating anti-epileptogenic neurosteroids [57]. Astrocytes
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also take part in the modulation of inhibitory and excita-
tory synapses as well as the mediation of synaptogenesis [58],
which significantly contributes to neurogenesis related to the
mediation of the microenvironment [59, 60]. Some reactive
astrocytes have been proposed to re-express factors essential
for synaptogenesis [61] and axonal guidance [62] and possi-
bly contribute to cerebral plasticity and repair. Reactive as-
trocytes can be divided into an A1 phenotype (serving a neu-
rotoxic role) and an A2 phenotype (serving a neuroprotec-
tive role) [63]. Disruption of the BBB has been extensively
demonstrated both in patients and animals following acute
seizures [35, 49, 64–66]. Astrocytes in the epileptic brain also
undergomorphological and functional changes, including al-
tered expression of K+ and water channels, which affect BBB
function [67–69]. Cytokines produced by perivascular mi-
croglia and astrocytes promote the breakdown of the BBB in
epilepsy [70]. For example, vascular endothelial growth fac-
tor (VEGF), astrocytic IL-1β and microglial IL-1β have been
revealed to increase BBB permeability [71]. There are also
other mechanisms for BBB disruption after seizures. For in-
stance, increases in glutamate levels in the brain induced by
seizuresmay lead to barrier dysfunction [72, 73]. A recent ex-
periment has revealed that the release of glutamate induced
by seizures enhances the levels of matrix metalloproteinases
(MMP-9 andMMP-2) in the BBB, which leads to barrier dys-
function [74]. Another MMP member such as MMP-12, is
also involved in BBB disruption after seizures and inhibition
of it could protect hippocampal neurons against cell death oc-
curring after SE [75]. However, a recent study has shown
that immune-associated cells andMMP-2 andMMP-9 are es-
sential for promoting the migration of leukocytes [76]. Fur-
thermore, leukocyte-originated inflammatory factors, such
as interferon-γ (IFN-γ), TNF-α, and the homeostasis be-
tween them, are activated by astrocytes and mediate the se-
cretion of MMP-9, which has an impact on the chemokines
which infiltrate the T-cells into the CNS [76]. Additionally,
inflammatory pathways activated by activated astrocytes may
facilitate the development of seizures [77, 78].

4.2 Crosstalk between astrocytes and peripheral infiltrated cells
Astrocytes are able to communicate with infiltrated pe-

ripheral immune components [55]. While the integrity of
the BBB is compromised, peripheral adaptive and innate im-
mune cells, involving neutrophils, monocytes, T-cells, and B-
cells, may infiltrate into the CNS, where they mediate differ-
ent effects including those that are neuroprotective or neu-
rotoxic [16, 22]. Moreover, peripheral leukocytes seem to
contribute to the progression of epilepsy by interfering with
the BBB [79]. Interestingly, the recruitment of leukocytes
is thought to be caused by chemoattractant factors activated
by microglia, as well as in response to cytokine signaling
[38]. The peripheral leukocytes stick to the endothelial cells
of a capillary via adhesion molecules and their relevant lig-
ands and extravasate through the BBB, and produce local in-
flammation within the BBB. The inflammation contributes
to changes in neurotransmission, probably by disrupting the

BBB, ultimately leading to the changes in susceptibility to
seizure and possible epilepsy [49]. Indeed, several studies
have revealed that there is successive recruitment of periph-
eral immune cells into the CNS after a seizure, paralleled by
activation of immune cells in both the periphery and CNS
[80, 81]. The mechanism of leukocyte-endothelial interac-
tions and leukocyte trafficking has been confirmed to make
an important contribution to the pathogenesis of seizures and
epilepsy [82, 83]. A leaky barrier can cause seizures via a posi-
tive feedback, thereby promoting the progression of epilepsy.
Thus, barrier leakage is not only a result but also a cause of
seizures and epilepsy [84].

Astrogliosis is considered to be a protective reaction of
astrocytes to inflammation, trauma, pathological neurode-
generation, or ischemic insult [85]. Pro-inflammatory cy-
tokines may greatly influence astrocytes and preserve as-
trogliosis as well as enhance epileptogenesis [86, 87], which
can be generated by activated microglia [88] and reactive as-
trocytes [89, 90]. Cytokines are involved in both reactive as-
trogliosis [91] and epilepsy [5]. Chemokine C-X-C ligand
(CXCL)1/CXCR2 signaling has been reported to mediate re-
active astrogliosis which is closely related to epileptogene-
sis [92]. Additionally, inhibiting scar formation in STAT3-
knockout mice may induce extended lesions, upregulate the
loss of neurons and enhance functional deficits after CNS in-
jury, whereas, promoting the formation of scar in mice by a
protein suppressor of cytokine signaling 3-knockout exerts
the opposite effect [93, 94]. This suggests that astrogliosis
and glial scar formation have dual roles and may be neuro-
protective in a given context after brain injury [95].

IL-1β, IL-6, and TNF-α as the cytokines associated with
astrogliosis and epilepsy, are widely studied, have been
shown to regulate astrocytic responses, and downregulate the
astrocyte purinergic receptor P2Y1 (P2Y1R) to facilitate tis-
sue repair [63]. Additionally, high expression of IL-6 can
result in lowered astrocytic glutamate uptake via an excita-
tory amino acid transporter 2 (EAAT2), and the enhance-
ment of the glutamate release via ameliorating astrocytic cys-
teine or glutamate antiporter’s activity [96]. Ultimately, IL-6
increases the permeability of the BBB [97]. Some studies have
found that preventing astrocytic TGFβ R1 activation blocks
the progress of epilepsy in a pilocarpine model of epileptoge-
nesis [98].

In the mouse model of TLE induced bylithium-
pilocarpine, specific genetic elimination of brain-derived
neurotrophic factor (BDNF) in astrocytes prevented an
increase in the number of firing neurons; TrkB in astrocytes
was genetically deleted and greatly preserving the spatial
learning abilities, which suggested that the astrocytic BDNF
and TrkB molecules serve as promising targets for the
treatment of TLE [99]. The restoration of the normal mode
of astroglial Ca2+-dependent activity by blocking P2Y1R-
mediated signals suggests that changed synaptic plasticity
may be primarily related to aberrant crosstalk between
astrocytes in the epileptic hippocampus [100]. Recently, a
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study showed that Fingolimod played an anti-seizure role
in experimental TLE via impairing T-cell migration to the
CNS, indicating that infiltrated T-cells and their releasing
cytokines may be involved in epileptogenesis [101].

5. Microglia
5.1 Microglia and epilepsy

Microglia may have both pro-epileptic and anti-epileptic
effects on the epileptic brain [102]. On the one hand, the ac-
tivation of microglia may exert an anti-epileptic role by sup-
pressing activity in abnormal neural circuits after SE [103,
104]. On the other hand, chronic activation of microglia may
play a pro-epileptic role via inflammatory immune responses
[105]. A growing body of evidence has shown that microglial
activation can also be beneficial, as it is capable of increasing
neurotrophic and anti-inflammatory factors, producing anti-
epileptogenic neurosteroids [106], clearing debris, and pos-
sibly accelerating repair [107, 108]. Therefore, short-term
microglial activation might be favorable [109], whereas, the
chronic activation of microglia is possibly detrimental [110]
to the development of epilepsy. Reactivemicroglia have been
discovered in animal models of TLE [111] and in surgical
samples of patients with epilepsy [112, 113].

Recently, a variety of studies have indicated that activa-
tion of microglia induced by seizures in early life could ag-
gravate susceptibility to seizures in later life [114–116]. Also,
the activation of microglia in response to seizures is con-
sidered to be the crucial mediator of post-seizure cytokine
production [117–119]. Microglia are the primary produc-
ers of pro-inflammatory cytokines in response to brain injury
[120]. Activated microglial cells can generate cytokines such
as IL-1β and TNF-α at the onset of seizure [121–123]. High
mobility group protein B1 (HMGB1), has been shown to be
involved in the toll-like receptor 4 (TLR4)/NF-κB signal-
ing pathway, resulting in activation of microglia in seizures
[124].

Adult seizures may induce a variety of pathological out-
comes, including neuronal loss, mossy fiber sprouting, and
gliosis and synaptic reorganization in the hippocampus [125–
127]. Microglia can regulate structural and functional alter-
ation of the hippocampus following early-life seizures [128],
and microglia can also take part in neurogenesis [129, 130],
mediation of axonal processes [131], synapse formation [132,
133], neurotransmitter clearance [134], as well as neuronal
phagocytosis [135]. Recent evidence suggests that different
phenotypes of microglia may have either positive or negative
effects on neurogenesis after brain damage. For example, the
M1 phenotype of activated microglia undermines basal neu-
rogenesis [136, 137] and axonal regeneration [138, 139]. On
the contrary, the M2 phenotype of activated microglia en-
hances basal neurogenesis [137, 140] and oligodendrogene-
sis [137]. The activation state of microglia has been viewed
as a key factor in BBB repair and angiogenesis [141] as well as
synaptic plasticity after CNS injuries [142, 143]. Therefore,
the correct phenotype must be enhanced at the right time to

promote appropriate neural repair after CNS damage [144].

5.2 Crosstalk between microglia and peripheral infiltrated cells
A recent experiment revealed that betaine induced mi-

croglia to transform into the M2 phenotype perhaps via hin-
dering TLR4/NF-κB signaling [145]. Concordantly, an-
other experiment showed that dynorphin activating kappa
opioid receptor (KOR) stimulated microglia polarization to-
ward the M2 phenotype through the TLR4/NF-κB path-
way. This may provide a novel method for the treatment of
neuroinflammatory diseases including epilepsy [146]. One
study has suggested that Protein kinase R (PKR)-like en-
doplasmic reticulum (ER) kinase (PERK) siRNA not only
downregulated IFN-β expression, transcription factor inter-
feron regulatory factor 3 (IRF-3) phosphorylation, TANK-
binding kinase 1 (TBK-1) phosphorylation, and Stimula-
tor of Interferon Genes (STING) phosphorylation, but also
greatly decreased M1 microglia polarization with a trans-
fer to M2 polarization, as well as lowering CXCL10- pro-
duction and T-helper 1 (Th1) lymphocytes trafficking into
the brain and white matter injury [147]. Rosiglitazone re-
versed microglial polarization to the M2 phenotype and
played a neuroprotective role in SE induced by pilocarpine
without remarkably changing inflammation in the brain
[148]. Additionally, inhibiting the HMGB1-RAGE (recep-
tor for advanced glycation end products) axis effectively
hinders macrophages/microglia’s pro-inflammatory polar-
ization, with a neuroprotective outcome of reducing the loss
of neurons and myelin, and ameliorating functional recovery
after SCI in rats [149].

Transient receptor potential vanilloid type 1 (TRPV1) is
a nonselective cationic channel that is temperature-sensitive
and usually activated by hyperthermia [150, 151]. It is
generally suggested that activation of TRPV1 directly fa-
cilitates synaptic transmission and neurogenesis [152, 153].
More interestingly, a recent study has demonstrated that
TRPV1 makes a contribution to the progression of repeti-
tive hyperthermia-induced seizures (rFS) by blocking the ac-
tivation of microglial M2 phenotype via TGF-β1 signaling,
which serves as an additional method for the activation of the
microglial M1 phenotype to promote seizure [154].

Recently, it has been found that myeloid differentia-
tion factor 88 (MyD88) is upregulated in epilepsy models,
and that suppression of MyD88 inhibits seizure and neu-
ronal apoptosis [155, 156]. Importantly, inhibition or defi-
ciency of MyD88 has been found to transform microglia and
macrophages from the M1 to the M2 phenotype, to finally
ameliorate the neurological outcome after SE [157]. Collec-
tively, microglia and their phenotype transformation make
an important contribution to the neuro-immune crosstalk
between the CNS and the peripheral immune response, an
interaction which is likely involved in epileptogenesis.

6. Gut microbiota and epilepsy
The role of gut microbiota has become increasingly at-

tractive in recent neurological research. The immune cells
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within intestinal tissues account for about 70% of the total
number of human immune cells [158]. Many reports have
shown that interplay exists between gut microbiota and CNS
[159], whichmay influence neuroimmunity. It is known that
microbiota and their metabolites are able to affect both hu-
man physiology and pathology [160]. For example, the short
chain fatty acids (SCFAs), a gut microbiota metabolite, have
been demonstrated to insert into the BBBvia the bloodstream
and directly influence its integrity [161]. The absence of gut
microbes induces structural changes in the BBB, these are
characterized by reduced tight junction protein levels, con-
sequently enhancing the permeability of the BBB when com-
pared with unaffected mice [162].

SCFAs serve as the necessary metabolites with anti-
inflammatory features and decreasing their level may en-
hance BBB permeability, which consequently enhances neu-
roinflammation [163]. Intriguingly, administrating sodium
butyrate intravenously or intraperitoneally can inhibit BBB
breakdown and encourage neurogenesis after traumatic brain
injuries [164–166]. Additionally, treatment with a low dose
of penicillin can increase the integrity of the BBB and increase
the tight junction density in young mice through long-term
alterations in gut microbiota [167].

Recent experiments have demonstrated that gut micro-
biota is involved in immunity, inflammation, and both cen-
tral and peripherally associated signaling pathways related
to epileptogenesis [13]. Indeed, the composition of the gut
microbiota could impact not only human susceptibility to
epilepsy but also its progression [14, 15]. Gut microbiota is
regarded as an early biomarker of epilepsy [168] and there is
a strong correlation between the two [169]. Especially with
relation to epilepsy, the gut microbiota can change the func-
tion of microglia and astrocytes, the metabolism of carbo-
hydrates and amino acids, the activity of vagal neuronal ac-
tivity, and hippocampal neurotransmitter release. The ke-
togenic diet (KD) also plays an anti-epileptic role via micro-
biota [170]. A KD changes the gut microbiota [171, 172],
facilitating selection of microbial interplays that reduce bac-
terial γ-glutamylation activity, lessen the level of peripheral
ketogenic γ-glutamylated amino acids, upregulates bulk hip-
pocampal GABA and glutamate ratios, as well as protects
against seizures [172, 173]. Several other metabolic elements
have also been thought to be involved in the anticonvulsant
role of a KD, such as changes in the plasma levels of ketone
bodies, polyunsaturated fatty acids, brain pH, and altered reg-
ulation of the synthesis of neuropeptides and peripheral hor-
mones in response to a KD [174].

Recent studies have reported that both physical and psy-
chological stress factors have an impact on gut microbiota
[175] and it has further been suggested that stress-related
changes in gut microbiota may influence the progression of
seizures [168]. Recently, it has also been demonstrated that
dysbiosis related to chronic stress can promote epileptoge-
nesis, while fecal microbiota transplantation (FMT) from
sham-stressed controls transplanted to rats with chronic

stress eases the pro-epileptic role of restraint stress [168].
Some experiments have shown that gut microbiota may

be involved in both central and peripheral immune growth
processes, as well as in the maintenance of the host home-
ostasis [176, 177]. It has been demonstrated that both a large
number of cases of epilepsy preserve an immune-related basis
and that immunotherapy is effective in retarding the develop-
ment of epilepsy [178]. Observational studies have also con-
firmed that patients with epilepsy may obtain benefits from
immunotherapy for controlling seizures [179–182].

The level of IL-17A has been reported to be greatly up-
regulated in the peripheral blood or cerebrospinal fluid (CSF)
in those with epilepsy and to be associated with seizure fre-
quency and severity [183]. The secretion of IL-17 and IL-6
can be mediated by Bacteroides, and Prevotella may gener-
ate great amounts of SCFAs to take part in regulating cere-
bral functions [172]. Importantly, symbiotic gut bacteria
have been proposed to modulate Th17 cells [184]. In pedi-
atric epilepsy andRasmussen encephalopathy, γδ T cells have
been considered as a component of infiltrating lymphocytes
into the brain [185, 186], which are located in the gut epithe-
lium and contribute to intestinal homeostasis, inflammation,
and repair. Except for Tregs, SCFAs have also been demon-
strated to induce retinoic acid to express in the intestine. This
can impede the differentiation of Th17 and enhance the pro-
liferation of Treg, thereby being beneficial to neuroinflam-
mation [187].

There is evidence showing that inadequate neurogene-
sis can be alleviated by specific strains of probiotic bacteria,
hence linking microbiota to hippocampal neuronal regrowth
[188, 189].

Also, it is worth noting that recently the function of as-
trocytes has been found to be influenced by gut microbiota
and the cross-talk between them may have great significance
in the understanding of CNS diseases [190, 191]. Different
kinds of gut bacteria may mediate the astrocytic inflamma-
tory signaling response positively or negatively [191–193].

Increasingly, methods utilized for changing gut micro-
biota and reversing dysbiosis are emerging, involved in KD,
treatment by probiotics, and as FMT [168, 194–197].

7. Concluding remarks
This review has focused on the crosstalk between CNS

immunity and peripheral immunity in epilepsy (Fig.1), an
interaction that possibly provides intervention targets for
epilepsy, in particular the specific immune-associated signal-
ingmolecules involved in the crosstalk to treat drug-resistant
epilepsy. In pathological conditions (i.e., here, epilepsy), pe-
ripheral monocytes (or macrophages), T-cells and metabo-
lites of gut microbiota can enter the brain through an im-
paired BBB and thus interact with central immune compo-
nents (e.g., microglia, astrocyte). Some possible related path-
ways may be involved in the crosstalk process, such as the
Wingless/integrase-1 (Wnt) signaling pathway, the mam-
malian target of rapamycin (mTOR) signaling pathway, and
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Fig. 1. Pathophysiological cascade of events leading from inflammation and microbiota to epilepsy. See Crosstalk between central immunity and
peripheral immunity in epilepsy for explanation.

zinc signaling [198]. However, the mechanism that describes
how and when the peripheral immune components infiltrate
and influence the disease (especially during different disease
periods) has not been fully elucidated and more study is re-
quired.

On the basis of recent articles, this review discov-
ered differences in epilepsy and other diseases (such as
stroke/amyotrophic lateral sclerosis (ALS)) in the crosstalk
between peripheral and brain-resident immune components.
For instance, an immune-related crosstalk between the CNS
and the periphery has been clarified as beneficial for neuronal
repair and functional recovery after a stroke [199]. In the
context of ALS, peripheral immune components (e.g., mono-
cytes/macrophages, T-cells) and gut microbiota metabolites
can infiltrate into the spinal cord and directly interact with
motor neurons (MNs) or surrounding microglia/astrocytes,
potentially contributing to either protecting or injuring the
MNs as well as resultantly correlating with the survival of pa-
tients with ALS [200]. However, crosstalk between the CNS
and the periphery in epilepsy mentioned above ultimately
contributes to the progression of disease.

Understanding how the crosstalk between the peripheral
and the brain-resident immune system influences the initia-
tion and progression of epilepsy may provide a potential ap-
proach for clinical treatment. Therefore, it is very important
to understand how the peripheral immune components in-
filtrate into the CNS from the peripheral circulation and in-
tervention at any part of the process may provide interesting
and new outlooks into the treatment of epilepsy. Mesenchy-

mal stem cells treatment [201] and immunomodulatory treat-
ment for epilepsy has attracted increasing attention in recent
years and needs to be further applied in the clinic. Gut mi-
crobiota, especially, play a major role in epilepsy and their al-
teration or regulation by exogenous interventionmay reduce
or prevent the disease. A growing number of treatments,
containing KD [202], probiotics [203] and FMT [204] have
been steadily employed, offering promise for the treatment
of epilepsy and its complicated comorbidities. Further stud-
ies on gut microbiota and their metabolites in patients with
refractory epilepsy will assist in the development of novel in-
tervention targets in the occurrence and progression of the
disease.

Abbreviations
CNS, central nervous system; BBB, blood brain barrier;

TLE, temporal lobe epilepsy; IL, interleukin; SCI, spinal cord
injury; CCL,C-Cmotif chemokine ligand;MCP-1,monocyte
chemoattractant protein-1; TNF-α, tumor necrosis factor-
α; TMEV, Theiler’s murine encephalomyelitis virus; SE,
status epilepticus; STAT3, signal transducer and activator
of transcription 3; CDDO-Me, 2-cyano-3,12-dioxolane-1,9-
dien-28-oic acid methyl ester; FPC, frontoparietal cortex;
p38 MAPK, p38 mitogen-activated protein kinase; Nrf2, nu-
clear factor-erythroid 2-related factor 2; TGF, transforming
growth factor; NF-κB, nuclear factor-κB; HS, hippocampal
sclerosis; Tregs, regulatory T cells; VEGF, vascular endothe-
lial growth factor; MMPs, matrix metalloproteinases; IFN-
γ, interferon-γ; CXCL, Chemokine C-X-C ligand; P2Y1R,
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purinergic receptor P2Y1; EAAT2, excitatory amino acid
transporter 2; BDNF, brain-derived neurotrophic factor;
HMGB1, high mobility group protein B1; TLR4, toll-like
receptor 4; KOR, kappa opioid receptor; PKR, Protein ki-
nase R; ER, endoplasmic reticulum; PERK, Protein kinase
R (PKR)-like endoplasmic reticulum (ER) kinase; IRF-3,
interferon regulatory factor 3; TBK-1, TANK-binding ki-
nase 1; STING, Stimulator of Interferon Genes; Th1, T-
helper 1; TRPV1, transient receptor potential vanilloid type
1; rFS, repetitive hyperthermia-induced seizures; MyD88,
myeloid differentiation factor 88; SCFAs, short chain fatty
acids; KD, ketogenic diet; FMT, fecal microbiota transplan-
tation; CSF, cerebrospinal fluid;Wnt,Wingless/integrase-1;
mTOR, mammalian target of rapamycin; ALS, amyotrophic
lateral sclerosis; MNs, motor neurons.
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