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Abstract

Background: To enhance the information transfer rate (ITR) of a steady-state visual evoked potential (SSVEP)-based speller, more
characters with flickering symbols should be used. Increasing the number of symbols might reduce the classification accuracy. A hybrid
brain-computer interface (BCI) improves the overall performance of a BCI system by taking advantage of two or more control signals. In
a simultaneous hybrid BCI, various modalities work with each other simultaneously, which enhances the ITR.Methods: In our proposed
speller, simultaneous combination of electromyogram (EMG) and SSVEP was applied to increase the ITR. To achieve 36 characters,
only nine stimulus symbols were used. Each symbol allowed the selection of four characters based on four states of muscle activity.
The SSVEP detected which symbol the subject was focusing on and the EMG determined the target character out of the four characters
dedicated to that symbol. The frequency rate for character encoding was applied in the EMG modality and latency was considered in
the SSVEP modality. Online experiments were carried out on 10 healthy subjects. Results: The average ITR of this hybrid system
was 96.1 bit/min with an accuracy of 91.2%. The speller speed was 20.9 char/min. Different subjects had various latency values. We
used an average latency of 0.2 s across all subjects. Evaluation of each modality showed that the SSVEP classification accuracy varied
for different subjects, ranging from 80% to 100%, while the EMG classification accuracy was approximately 100% for all subjects.
Conclusions: Our proposed hybrid BCI speller showed improved system speed compared with state-of-the-art systems based on SSVEP
or SSVEP-EMG, and can provide a user-friendly, practical system for speller applications.
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1. Introduction
Patients with severe motor paralysis caused by brain

stroke or amyotrophic lateral sclerosis (ALS) [1] may lose
the ability to use their peripheral nervous system respon-
sible for controlling voluntary muscle contractions. The
brain-computer interface (BCI) enables a communication
pathway between the patient’s brain and their surroundings
[2,3].

Brain activity can be measured using several
techniques such as electroencephalography, magne-
toencephalography (MEG), and electrocorticography
(ECoG) [4–6]. The electroencephalogram (EEG) is used
as the input in most BCI systems. BCI systems can be
based on the brain patterns in event–related desynchro-
nization/synchronization [7], steady-state visual evoked
potentials (SSVEP) [8], the P300 component of event
related potentials (ERP) [9], and slow cortical potentials
[10]. BCI systems have been applied in various applica-
tions such as diagnosis [11], rehabilitation and restoration
[12,13], and smart environment [14] games [15] and
entertainment [16]. The use of these systems as a speller is
one of the most common applications.

Different BCI spellers have been developed based on
various control signals such as P300 and SSVEP [17–19].
One of the primary BCI spellers is a P300-based speller

[20–23] in which P300 responses are quantified to select
the characters. These spellers have been developed based
on various kinds of stimuli including visual, auditory, and
tactile [20–22]. The most common P300 BCI is the visual-
based BCI. In the visual paradigm, characters flash ran-
domly in different patterns. The flashing pattern may be
single character (SC), row-column (RC), or region-based
(RB) [24]. Recently, SSVEP-based BCI spellers have at-
tracted increasing attention [25] in comparison with other
modalities. This modality has several benefits including
high information transfer rate [26], desirable accuracy, the
use of fewer channels, and short training time [27–30]. In
the simplest structure of SSVEP-based BCI spellers, many
symbols and stimulation frequencies equal to the number of
characters are needed [31–33]. A large number of flickers
on the screen requires symbols to be smaller in size and ar-
ranged more closely to each other. Neighbor flickers have a
destructive effect on SSVEP frequency recognition [34,35].
Conversely, the stimulation frequency range in which the
SSVEP response has higher amplitude is limited. There-
fore, in order to devote several frequencies to a short span,
a shorter frequency step should be selected, which in turn
increases the detection error. Decreasing the classification
accuracy has a negative impact on the information transfer
rate (ITR). These spellers are therefore usually developed
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with fewer flickers and a tree structure. In this method, a
character is selected in a hierarchical manner over several
consecutive steps. Various spellers have been implemented
with a 2-level [36–38] or 3-level [39–41] structure. Despite
favorable accuracy, these systems are slow and so they of-
ten cannot achieve a high ITR.

A hybrid brain-computer interface (HBCI) takes ad-
vantages of two or more control signals with the aim of im-
proving the system performance. In an HBCI system, a BCI
control signal is combined (simultaneously/sequentially)
with another BCI control signal or with a human-machine
interface biological signal [42]. One of the most widely
used combinations in spellers is the combination of SSVEP
and P300 [43–45]. P300-based BCI systems are time con-
suming as they require many trials to reach desirable ac-
curacy, which decreases the ITR [46–48]. Conversely,
both SSVEP and P300 require visual stimulation which
causes visual fatigue. To overcome these disadvantages, re-
searchers have used some residual abilities in other organs
and combined BCI control signals with other biological sig-
nals. Lin et al. [34,49] have achieved desirable accuracy
and ITR by combining the SSVEP and the electromyogram
(EMG). Other studies have also combined high-frequency
SSVEP and surface EMG for spelling applications [50,51].

SSVEP and EMG have few interactions with each
other and they both require no training. The signal-to-noise
ratio (SNR) of EMG is high and the classification procedure
of this signal is simple, which is implemented in less time
with high accuracy [34]. The combination of these signals
is therefore advantageous. By simultaneous combination of
these two signals with the use of less flickering symbols, we
can increase the ITR along with the desired accuracy.

Character encoding technique is an important issue in
BCI spellers [52]. The occurrence probability of different
characters affects the character encoding. Devoting easier
code to characters with higher occurrence probability in-
creases the accuracy. In this regard, in some hierarchical
spellers, a distinct frequency has been considered for the
‘Delete’ key as the most widely used key, but the usage rate
of other characters has not been considered [37,39,41]. It
is evident that various characters appear with different fre-
quencies [52]. However, few studies have assessed the real
occurrence probability of characters [53–57]. The encod-
ing procedure based on character frequency rate therefore
has a major impact on system performance.

The SSVEP potential takes multiple cycles to reach a
stable state [58]. Thalamocortical oscillations must reach a
synchronous state in which the classifier attains an accept-
able accuracy level [59]. There will therefore be latency
between the onset of cue flickering and satisfactory classi-
fication. SSVEP oscillation in the target symbol does not
disappear immediately [35]. Some studies have applied the
first 100–150 ms duration of the trial as the latency of the
brain to SSVEP stimulation [60], so this period of the signal
is not used in data processing [61,62]. Considering SSVEP

latency in the analysis of SSVEP can improve the classifi-
cation accuracy [61].

In the proposed speller in the present study, we com-
bined the SSVEP and EMG simultaneously. The idea of
using the frequency rate for character encoding was con-
sidered in the EMGmodality. For this purpose, less muscle
activity was assigned to the group of characters with higher
occurrence probability. We selected a processing time win-
dow of 2 s after the latency. Ten subjects participated in
online experiments and results were reported for each sub-
ject separately.

2. Materials and Methods
2.1 Subjects and Data Recording

Ten subjects (mean age 30 years ± 5 years) par-
ticipated in the experiment. The number of individuals
was acceptable in comparison with the relevant studies in
this field [34,45,63,64]. All subjects had normal vision.
All subjects gave their informed consent for inclusion be-
fore they participated in the study. The study was con-
ducted in accordance to the ethical principles and the na-
tional norms and standards approved by the Ethics Commit-
tee of Semnan University of Medical Sciences and Health
Services (approval number: IR.SEMUMS.REC.1398.133).
Subjects were seated on a comfortable chair at a dis-
tance of approximately 70 cm from the monitor. EEG
and EMG data were recorded simultaneously using a 16-
channel electromyograph (EEG V.16.24, Bayamed Incor-
poration, Tehran, Iran). The sampling rate was 1000 Hz.
Applying fewer electrodes improves the processing speed,
facilitates system installation, reduces the preparation time,
and enhances user-friendliness [65]. We therefore used
only three EEG channels in the experiment. The SSVEP
signal is very strong in the occipital lobe, which is very
close to the primary visual cortex. Therefore, pursuant to
the International Society for Clinical Electrophysiology of
Vision (ISCEV) standard [66,67], we considered electrode
sites O1, O2, and Oz. The reference and ground channels
were at AFz and the right ear lobe, respectively. Electrode
impedances were below 10 kΩ.

Variousmuscles can be used to record the EMG signal.
In some studies, EMG signal has been recorded from the
forearm [34,49,68] and in some others, facial muscles have
been used [69–73]. The number of repetitions is also differ-
ent in various studies. In many studies, various commands
have been implemented using only one muscle and a differ-
ent number of repetitions of muscle activity [34,49]. Previ-
ous studies have showed a declining trend in accuracy with
the number of repetitions. In our study, the flexor carpi ra-
dialis of both hands were used with only one degree of wrist
flexion to achieve more commands. To record the EMG of
each muscle, two electrodes were used. The first electrode
was considered as the re-reference, while the second one
was applied to record the EMG. Fig. 1 shows the channel
placement for the EEG and EMG electrodes.
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Fig. 1. Placement of three EEG electrodes SSVEP channels
(blue), ground and reference (black) and four EMG electrodes
(green). EEG, electroencephalogram; SSVEP, steady-state visual
evoked potential; EMG, electromyogram; REF, reference; GND,
ground.

2.2 Stimulus Design

A 15.6-inch light-emitting diode (LED) monitor of
a laptop (ideapad, Lenovo, Bejing, China) with a refresh
rate of 60 Hz was utilized. The stimuli presentation was
managed using the psychophysics toolbox ofMatlab (URL:
http://psychtoolbox.org) [74,75], which provides precise
stimuli [76]. Nine flashing symbols were used on the
screen. The flash frequencies were 5.88, 6.25, 6.66, 7.14,
7.69, 8.33, 9.09, 10, and 11.11 Hz. This frequency range
has a strong SSVEP response [77,78].

2.3 Character Encoding

Various studies have assessed the occurrence proba-
bility of letters and sorted them based on the frequency
rate [79–83]. This issue was investigated more comprehen-
sively in [79], but the ‘Space’ was not included. In [80],
the frequency rate was reported for the ‘Space’, whereas it
was not reported for any other characters. We recalculated
the frequency rate of 26 Latin letters with consideration of
the ‘Space’, as shown in Table 1. First, we considered the
frequency rate of the ‘Space’ equal to 18.43% based on [79–
83]. To calculate the frequency rate of other letters, wemul-
tiplied the frequency rate of each letter reported in [79–83]
by 81.57%.

Encoding Based on Character Frequency Rate

The proposed system consists of 36 characters (26
Latin letters, eight punctuation characters, ‘Space’, and

‘Delete’). By assigning 36 characters to nine symbols, each
symbol represents four characters. Characters were cat-
egorized into six groups based on SSVEP frequency and
four subgroups based on muscle activity. Four subgroups
were selected in the state of inactivity of the two wrists,
right wrist flexion, left wrist flexion, and both wrist flexion.
Characters were grouped in subgroups based on the charac-
ter frequency rate [79,80]. No muscle activity was assigned
to more commonly used characters (characters of the first
line including “A” “O” “T” “E” ‘Space’ “delete” “S” “I”
“N”). Other characters were dedicated to groups with one
and two activities based on decreasing order of frequency
rate. For characters with one muscle activity (right or left),
we assigned adjacent characters in alphabetical order to one
symbol. For example, we assigned “B” and “C” to the same
symbol. This was done with the aim of making the system
more user-friendly. Both muscle activities were considered
for the least used characters (characters of the fourth line
including “Z” “Q” “V” “J” “K” “;” “X” “(“ ”)”). Fig. 2 in-
dicates the speller interface and the distribution of the char-
acters in each symbol on the screen. For example, to select
“A” the subject should gaze at the upper right symbol with-
out any muscle activity. To select “B”, “C” and “Z”, the
subject should gaze at that symbol at the same time as per-
forming right wrist flexion, left wrist flexion, or both wrist
flexion, respectively.

2.4 Experimental Procedure
Each subject participated in one offline training exper-

iment (including five sessions) and one online testing exper-
iment (including 10 sessions). In other words, each subject
took part in five training sessions and 10 testing sessions.
In each session, the subject was required to spell ‘BRAIN
COMPUTER INTERFACE’ that contained 24 characters.
One session consisted of several trials. In each trial, nine
symbols were flickered during a 3-s period. During the
flickering period, subjects were required to gaze at the tar-
get symbol and perform wrist flexion at any desired mo-
ment. The subject’s target cue was detected by SSVEP and
the subgroup was determined by EMG. The EMG activity
recognition and SSVEP detection were performed simul-
taneously, immediately after the end of each trial. Fig. 3
shows the general outline of this system. Feedback of the
recognized character was provided in real time. A 0.5-s pe-
riod was considered as the rest period. If the subject deter-
mined the correct target, they were to type the next target,
otherwise they were to select ‘Delete’ to clear the mistake.
Fig. 4 indicates the spelling procedure for the characters
‘BRA’. In order to select ‘B’ and ‘R’, the subject was to
gaze at the upper right symbol and at the same time per-
form right wrist flexion and left wrist flexion, respectively.
To select ‘A’, the subject was to gaze at that symbol without
any muscle activity.
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Fig. 2. The speller interface. (a) Character encoding. No muscle activity was considered for characters of the first line including
“A” “O” “T” “E” ‘Space’ “delete” “S” “I” “N”. We assigned adjacent character “B” and “C” to one symbol. Both muscle activity was
considered for characters of the fourth line including “Z” “Q” “V” “J” “K” “;” “X” “(“ ”)”. (b) Distribution of the characters in each
symbol on the screen. For example, to select “A” the subject should gaze at the upper right symbol without any muscle activity. To select
“B”, “C” and “Z”, the subject should gaze at that symbol and at the same time perform right wrist flexion, left wrist flexion, or both wrist
flexion, respectively.

2.5 Signal Analyzing

2.5.1 Latency Estimation

Generally, in a BCI system, increasing the time dura-
tion increases system accuracy, which improves the ITR.
However, the time parameter has a negative effect on the
ITR, resulting in a trade-off between the ITR and accuracy
[84]. Results of previous studies have indicated that the 2-s
time duration provides a good trade-off between these two

parameters [38,49]. Accordingly, we chose a value of 2 s
for the time window length.

2.5.2 Considering Latency and Determining the Value
In the data analysis, latency was considered in the de-

termination of the time window. This was done with the
aim of increasing the SSVEP classification accuracy, which
could lead to an increase the ITR. To do this, by consider-
ing the latency, the processing was realized on a 2-s time
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Fig. 3. Flowchart outlining the detection algorithm.

Fig. 4. Character selection pattern for spelling “BRA”.

window. Fig. 5 shows the timeline of a single trial in this
experiment. Individual differences in mental reaction time
are due to the apparent latency of the recorded SSVEP [85].
In other words, the SSVEP recovery time is different among
the individuals.

Reported latency is between 600 and 800 ms in most
previous studies. In some cases, visual fatigue due to the
repetitive SSVEP has also increased this value to 1000 ms
[35]. Accordingly, we determined the value of 1 s as the
maximum latency. During subsequent analysis on values
from 0 to 1 s with a step of 0.1 s, the optimal value was
determined.

2.5.3 Processing Methods
Canonical correlation analysis [86] was used for

SSVEP classification. This method applies reference sig-
nals composed of sine and cosine pairs at the same fre-
quency of the stimulation frequency and its optional har-
monics. As the dynamics of the brain act as a low-pass fil-
ter, the high harmonic components are removed [87]. In
[88], no noticeable changes in accuracy were found by in-
creasing the number of harmonics from two to three. In
the present study, we applied reference signals at the same
frequencies as the stimulation frequencies, considering two
harmonics.

Fig. 5. A single trial timeline. Latency varies from 0 to 1 s with
a step of 0.1 s. The highlighted 2-s time window represents the
window corresponding to the determined value of latency.

EMG activity was recognized in the state that the sig-
nal envelope was higher than the threshold [49]. For muscle
envelope determination, the signal of the re-reference elec-
trode was subtracted from the EMG signal. Following, a 50
Hz notch filter and a 10–450 Hz sixth order band-pass But-
terworth filter were applied to remove the noise. Finally,
the signal was rectified and a 3-Hz low-pass finite impulse
response (FIR) filter was applied.

5

https://www.imrpress.com


Table 1. Frequency rate of the character group including 26
Latin letters and ‘Space’.

Character Frequency rate

Space 18.43%
E 10.24%
T 7.28%
A 6.96%
O 6.35%
N 6.00%
I 5.99%
S 5.53%
R 5.47%
H 3.91%
L 3.38%
D 3.13%
C 2.59%
U 2.13%
M 1.93%
F 1.71%
P 1.66%
G 1.59%
Y 1.40%
W 1.34%
B 1.14%
V 0.86%
K 0.60%
X 0.16%
Z 0.08%
J 0.08%
Q 0.06%

Threshold determination was conducted through an
offline experiment. For this goal, EMG data of both mus-
cles were recorded during 10 s in which subjects made a
maximum voluntary contraction (MVC). This was repeated
three times and the EMG envelopes were averaged over the
trials. The threshold was considered as 20% of the mean
value of the averaged value [89].

2.5.4 Evaluation Criteria
The accuracy and reliability of the information trans-

mission are two important factors in a real-time biomedical
system. In [90], the Gabor prototype frames have been op-
timized to provide accurate and reliable information trans-
mission in a real-time biomedical sensor. We evaluated the
overall system performance by the quantitative efficiency
parameters such as accuracy and ITR. The accuracy was
determined as Eqn. 1.

P = Nc/Nt (1)

whereNc is the number of characters that are correctly rec-
ognized, andNt is the total number of characters spelled to
type the complete phrase. Therefore, in spite of the user’s
error correction, the occurrence of error was also considered
[91].

There are several methods to estimate the ITR [92].
In the present study, the Wolpaw’s definition was used as
Eqn. 2.

ITR = 60/ T × [log2 N + P log2 P +

(1− P) log2(1− P/N− 1)]
(2)

where N is the number of characters, P is the mean classi-
fication accuracy, and T is the time to select a character.

System speed (character per minute) is the other im-
portant parameter in speller evaluation, which is calculated
as Eqn. 3 [93].

Speed = number of characters / total time (3)

3. Results
First, the effect of considering latency on SSVEP clas-

sification accuracy was evaluated. For this end, we com-
puted the mean accuracy and ITR for two time windows
with/without latency. The first time window was consid-
ered as a 2-s time window after the determined latency. The
second window was selected immediately from the start of
stimulation, which contained the sum of the latency dura-
tion and 2 s of the subsequent signal. Fig. 6 shows the mean
accuracy and ITR for these two time windows, based on the
latency. These mean values were calculated across 10 sub-
jects for different latencies. The results show that the graph
corresponding to the first time window is always higher
than the second one. This means that considering the la-
tency increased the classification accuracy and the ITR. As
shown clearly in the graph of the accuracy in terms of la-
tency, increasing the latency improves the classification ac-
curacy. However, in the second time window, the window
length has increased by adding the latency duration, which
is expected to increase the accuracy, but this initial time has
decreased the accuracy. Meanwhile, taking into account the
latency (removing the latency from the window length) in
the first time window increased the accuracy. Conversely,
it is obvious that increasing the window length decreases
the ITR, which is clear from the graph of the ITR in terms
of latency. Our results showed that there is a tradeoff be-
tween the accuracy and the ITR at the latency value of 0.2
s which leads to highest accuracy and ITR. Following, the
accuracy and the ITR of the proposed speller were deter-
mined for each subject individually. Fig. 7 illustrates the
outcomes for each subject and the mean results for differ-
ent latency values. The accuracy was calculated across 10
sessions and the ITR value was estimated based on the ac-
curacy value. The value of T was calculated as a sum of
a 2-s time window, 0.5-s rest time and the latency. This
figure depicts that the optimal latency is subject dependent.
The mean graphs show that the accuracy increased with in-
creasing latency, but the ITR increased until 0.2 s and then
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Table 2. Results of each subject for typing the phrase ‘BRAIN COMPUTER INTERFACE’.
Subject ID Classification accuracy (%) ITR (bit/min) Total time (s) Typing speed (char/min)

1 96.4 105.8 68.58 20.99
2 83.6 81.9 80.46 17.89
3 99.6 113.6 65.34 22.03
4 94.5 101.8 70.74 20.35
5 96.4 105.8 68.04 21.16
6 86.6 87 77.22 18.64
7 84.1 82.7 79.38 18.14
8 85.3 84.7 78.84 18.26
9 98 109.5 66.42 21.68
10 87 87.7 75. 06 19.18
Mean ± SD 91.2 ± 6.4 96.1 ± 12.3 73.01 ± 5.80 19.83 ± 1.58
All parameters of this table were calculated with consideration of a latency value of 0.2 s. For each
subject, the results are the averages of 10 sessions. Total Time was the spent time by each subject to spell
the complete phrase. The system speed was obtained by dividing the total number of characters by the
total time. Subject ID, subject identification code; SD, standard deviation; ITR, information transfer rate.

decreased. As a result, the optimal ITR value was specified
for a latency of 0.2 s. Our results are therefore presented
based on this value.

Table 2 shows the online classification accuracy, ITR,
total time, and system speed with consideration of a latency
value equal to 0.2 s. To determine the system speed, the
total time to complete the task was recorded, which also in-
cluded the time period to clear errors. As shown in this Ta-
ble, subject 3 exhibited the best performance, with an ITR
of 113.6 bit/min while maintaining 99.6% accuracy. The
mean accuracy and ITR were 91.2% and 96.1 bit/min, re-
spectively. The average spelling time to spell the phrase
was 68.9 s and so the proposed speller achieved a speed of
20.9 char/min.

Table 3 (Ref. [34,36,37,39–41,45,49,94,95]) com-
pares the results of the present study in terms of mean accu-
racy, ITR, and typing speed, with the findings of other state-
of-the-art studies. Depending on the spelling task, stud-
ies were divided into two categories, cue-based and copy-
spelling. In cue-based spelling, subjects were required to
choose the target character in random order. In the copy-
spelling task, subjects were required to spell a predeter-
mined sentence.

Although some spellers achieved a high classification
accuracy, the speed and ITR were often low in those sys-
tems, indicating that accuracy alone is not a suitable crite-
rion for evaluating the performance of a system. ITR repre-
sents a tradeoff between the character transmission required
time, quantity of character information, and probability to
correctly transmit and receive it. Therefore, this parame-
ter can independently compare the performance of two sys-
tems.

It should also be mentioned that many studies have
calculated the ITR, while others have reported the speed
of the system. For better comparison, we reported results
for both of these evaluation criteria. As shown in Table 3,

Fig. 6. Mean classification accuracy and ITR based on la-
tency, for time windows with/without latency. Results are plot-
ted based on different latencies. The first time window selected as
a 2-s window after the determined latency. The second time win-
dow considered immediately from the start of stimulation, which
was determined as the sum of the latency and 2 s of the subsequent
signal.

our proposed speller showed a considerable enhancement
in overall system efficiency compared with state-of-the-art
studies based on SSVEP or SSVEP-EMG.

To measure the efficiency of each modality, accuracy
results of the SSVEP and EMG were reported individually.
Fig. 8 illustrates the results of each subject considering a
latency of 0.2 s. As shown in this figure, the SSVEP accu-
racy varies for different subjects, ranging from 80 to 100%.
However, the EMG classification accuracy was approxi-
mately 100% for all subjects.
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Table 3. Comparison of our proposed system with findings from state-of-the-art studies based on SSVEP or SSVEP-EMG.
Spelling task Reference Modality Classification accuracy (%) ITR (bit/min) Typing speed (char/min)

Cue-based spelling

[94] SSVEP 96 - 13
[36] SSVEP 98.8 61.6 -
[49] SSVEP-EMG 80.5 83.2 -
[34] SSVEP-EMG 85.8 90.9 -

Copy-spelling

[39] SSVEP 92.3 37.6 -
[95] SSVEP 90.8 21.9 -
[37] SSVEP 84.6 20.5 -
[40] SSVEP 92.8 11.2 2
[41] SSVEP 97.9 23.8 2
[45] SSVEP 93 31.8 -
[34] SSVEP-EMG 82.6 - 7.8

Copy-spelling Proposed system SSVEP-EMG 91.2 96.1 20.9
Studies were divided into two categories based on the spelling task. In cue-based spelling, subjects were asked to select target
characters in random order and a cue indicated the target character that subjects were required to type. In the copy-spelling task,
subjects were required to spell a sentence.

Fig. 7. Mean accuracy and ITR based on the latency across all
subjects. Values were plotted for different latencies.

Excessive workload causes human errors, which leads
to a decrease in system performance. In order to estimate
the workload of BCI systems, the National Aeronautics and
Space Administration-Task Load Index (NASA-TLX) mul-
tidimensional questionnaire has been widely applied. In the
raw form of this questionnaire, six subscales with the same

weights are considered to calculate subjective workload.
Each subscale is scored from 0 to 100 with 5-point steps, by
each subject, and the total workload is determined by aver-
aging scores for all subscales. Each user in our study com-
pleted the raw NASA-TLX questionnaire and the scores are
shown in Table 4. The workload score was 15.8, which in-
dicated that the proposed speller was acceptable to all sub-
jects.

Fig. 8. Classification accuracy of each modality. Results are
presented for a latency of 0.2 s.

To evaluate the effect of increasing the text length as
well as the impact of different characters (especially char-
acters with lower frequency rates), another phrase that uses
all the characters once was evaluated. To this end, subjects
were asked to type the phrase ‘THEQUICK BROWN FOX
JUMPS OVER THE LAZY DOG’. Results of the system
performance are shown in Table 5 and the raw scores of
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Table 4. Raw NASA-TLX scores of each subject for typing the phrase ‘BRAIN COMPUTER INTERFACE’.
Subject Mental demand Physical demand Temporal demand Performance Effort Frustration Workload

1 10 15 25 10 15 20 15.8
2 35 15 30 15 30 25 25
3 15 15 5 5 5 5 8.3
4 45 30 20 5 20 5 20.8
5 70 10 40 20 30 10 30
6 15 20 25 10 10 20 16.7
7 10 10 5 5 10 15 9.2
8 15 15 10 10 5 10 10.8
9 5 10 10 10 5 5 7.5
10 45 5 5 20 5 5 14.2
Mean ± SD 26.5 ± 21.2 14.5 ± 6.8 17.5 ± 12.3 11 ± 5.7 13.5 ± 10 12 ± 7.5 15.8 ± 7.5

NASA-TLX, National Aeronautics and Space Administration-Task Load Index.

Table 5. Results of each subject for typing the phrase ‘THE QUICK BROWN FOX JUMPS OVER THE LAZY DOG’.
Subject ID Classification accuracy (%) ITR (bit/min) Total time (s) Typing speed (char/min)

1 95.4 103.7 123.6 20.9
2 88.4 90.2 134.5 19.2
3 98.5 110.7 119.7 21.6
4 87.2 88.0 128.6 20.1
5 98.0 109.5 121.7 21.2
6 96.1 105.2 118.1 21.8
7 82.0 79.3 131.8 19.6
8 90.3 93.6 129 20
9 81.1 77.8 131.8 19.6
10 91.8 96.4 127.8 20.2
Mean ± SD 90.9 ± 6.3 95.4 ± 11.8 126.7 ± 5.6 20.4 ± 0.9

the NASA-TLX questionnaire are reported in Table 6. The
mean accuracy and ITR were 90.9% and 95.4 bit/min, re-
spectively. The average spelling time to spell the phrase
was 126.7 s; therefore, our proposed speller achieved a
speed of 20.4 char/min. The workload score was 14.8,
which showed that the system was also acceptable for all
subjects while spelling the new phrase.

4. Discussion
An HBCI is used to enhance overall efficiency by

combining two physiological signals. To improve ITR, we
developed an HBCI speller with 36 characters, using only
nine symbols and the combination of SSVEP and EMG.
In our proposed speller, three main factors influenced the
speller efficiency.

The first factor is the simultaneous combination of
SSVEP and EMG applied in the proposed structure. In this
36-character speller, the number of flickering symbols on
the screen was decreased from 36 to nine symbols, using the
simultaneous combination of these two signals. Reducing
the number of flickering symbols decreases the frequency
recognition error by reducing the adverse effects of neigh-
boring flickers which cause user fatigue [96]. By reducing

the number of symbols, the stimulation frequency step is in-
creased, which also decreases the error. Finally, it increases
the recognition accuracy.

The second factor is the use of the character encoding
scheme. The frequency distribution for the character set, in-
cluding ‘Space’ and 26 Latin letters, provided a further un-
derstanding of the distinction among characters. Using the
character distribution, character categorization was there-
fore provided based on the frequency rate. For this purpose,
less muscular activity was assigned tomore commonly used
characters. Therefore, the selection of these characters re-
quired less dual attention. This reduced the recognition er-
ror which enhances the ITR.

The third factor is applying the latency in the SSVEP
signal processing that improved the accuracy. In [49], it
was suggested that decreasing the rest time to less than 1 s
while the accuracy remained stable, the ITR would be im-
proved. In the present study we showed that, as SSVEP re-
quires several cycles to reach steady state [58], it is possible
to reduce the subject’s rest time and devote this time dura-
tion to compensate for the SSVEP latency. In other words,
by reducing the rest time from 1 to 0.5 s and assigning this
time to the next stimulation, and so taking into account the
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Table 6. Raw NASA-TLX scores of each subject for typing the phrase ‘THE QUICK BROWN FOX JUMPS OVER THE
LAZY DOG’.

Subject Mental demand Physical demand Temporal demand Performance Effort Frustration Workload

1 10 10 10 5 15 5 9.2
2 30 15 20 15 30 25 22.5
3 15 20 5 10 5 10 10.8
4 45 30 20 25 20 5 24.2
5 40 10 30 20 30 10 23.3
6 15 20 25 10 10 20 16.7
7 25 15 5 15 10 15 14.2
8 15 15 10 10 5 10 10.8
9 20 15 5 10 10 5 10.8
10 5 5 5 5 5 5 5
Mean ± SD 22 ± 13 15.5 ± 6.9 13.5 ± 9.4 12.5 ± 6.3 14 ± 9.7 11 ± 7 14.8 ± 3.9

latency in the analysis of each trial, accuracy and the ITR
were improved. According to the findings of the present
study, the optimal value of latency varies among individu-
als. The value of 0.2 was determined as the optimal latency,
averaged over 10 subjects.

We have built a comprehensive speller containing all
Latin characters, from which any desired phrase can be
typed using only nine flickers on the screen, which is much
more applicable compared with P300-based systems that
use more flickers to provide a limited number of prede-
termined control commands [97]. Our speller also im-
proved the ITR compared with SSVEP-based spellers with
tree structures that require multiple steps to select each
character, greatly enhancing the efficiency compared with
the P300-EMG speller that uses the EMG only to correct
spelling errors [63]. This system also has better perfor-
mance compared with other SSVEP-EMG HBCI spellers
[34,49].

It should also be mentioned that in [34], the ITR and
speed results were reported for two different experimental
conditions. In that study, the ITR was calculated in the ran-
dom order-spelling task, while the system speed was re-
ported for the copy-spelling task. Generally, the experi-
mental plan of the copy-spelling task and the random order-
spelling task are different. In other words, in the copy-
spelling task, additional time has been added after each
character selection stage to help the subject to better fo-
cus. The total duration of a single trial is therefore increased
in this task. Because of the similarity of the spelling task,
it is more accurate to compare our findings with the re-
sults of the copy-spelling task. We can therefore say that
our proposed speller significantly improves typing speed.
This speed enhancement was because we devoted less time
between two consecutive trials, which significantly influ-
enced the speed. The less time required to select two
consecutive characters was due to the character encoding
scheme. Assigning less muscular activity to the most com-
monly used characters had the advantage that the subject
used less muscle activity and in many cases they were not

required to use any at all. This considerably reduced the re-
quired subjective attention to select the next character and
therefore the subjective workload. Further experimental in-
vestigations on the effect of increasing the text length as
well as the impact of the existence of different characters
on system performance showed that our proposed system
can be used effectively to type all kinds of sentences.

Our results clearly demonstrate that the EMG classi-
fication accuracy was highly desirable, which could be due
to the number of repetitions that the corresponding mus-
cle has been involved with to select a character. The find-
ings of previous studies indicate that the accuracy decreased
with an increase in muscle activity repetitions. Increasing
the number of characters also requires more frequent repe-
titions of muscle activity which is time-consuming and re-
duces the ITR [34,49]. The use of only one wrist flexion de-
creased the recognition error. Furthermore, one-time wrist
flexion occurs in a short time period and both SSVEP and
EMG signals also have the ability to detect during short time
periods. Therefore, in future studies, by improving the ex-
tracted features and applying novel classification methods,
the duration of each trial could be reduced and thereby the
ITR would be improved.

User-friendliness is a crucial factor of the system us-
ability evaluation [98]. In an SSVEP-based system, indi-
viduals are influenced by the adjacent flickers, which might
cause fatigue [96]. In this study, reducing required sym-
bols on the screen decreased the subject’s eye fatigue and
so caused the speller to become more user-friendly. Con-
versely, decreasing the subjective workload by reducing the
required EMG activity also decreased the subject’s muscle
fatigue. Both features enabled the system to bemore conve-
nient, causing it to be more user-friendly. Pattern learning
was the only training required and, given the low number
of symbols, less time was taken.

We could further develop our proposed speller by sim-
ply increasing the number of characters. To this end, we
could increase the number of symbols on the screen. Fur-
thermore, the number of EMG-based clusters could also be
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increased. This could be done by utilizing the various types
of residual muscular capabilities of disabled people. We
could also apply various types of muscular activities with
different intensities, to increase the number of characters.

Although this HBCI speller may be non-functional for
completely paralyzed patients, some patients might still be
able to control one hand or othermuscles such as facial mus-
cles. For patients with the ability to control only one hand,
the EMG activities could be generalized to joint flexion and
extension [99–101]. Our proposed speller is also applicable
for Parkinson’s disease patients, as they might not be able
to control a real keyboard but could perform wrist flexion.

To improve system efficiency in future studies, it
would be effective to first calculate the subject’s optimal
latency during the offline test, and then perform the online
experiment based on the optimal latency of that subject.

5. Conclusions
An online hybrid speller based on the simultaneous

combination of SSVEP and EMG was designed in this
study. This speller provided 36 characters using only nine
symbols. The SSVEP was utilized to determine the sub-
group of the target character and the EMG was applied to
determine the target character in that subgroup. The use of a
character encoding scheme based on frequency rate and ap-
plying latency enhanced accuracy. The mean accuracy and
ITR were 91.2% and 96.1 bit/min, respectively. The speed
of the proposed system was 20.9 char/min, which is signif-
icantly higher than the findings of state-of-the-art studies
based on SSVEP or SSVEP-EMG. Generally, speller per-
formance was improved compared with previously reported
BCI speller systems.
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