Vitamin D and breast cancer: new approaches for hormonal therapy of breast cancer

M. Friedrich

Epidemiologic studies have indicated that vitamin D might play a protective role against breast cancer. Incidence of breast cancer and mortality rate vary considerably worldwide and reveal a geographic pattern. The lowest rates of breast cancer generally occur in countries close to the equator. With increasing latitude reported breast cancer incidence and mortality rates also increase. A negative correlation between available sunlight and breast cancer death rates has been shown. Because sunlight exposure is a measure of vitamin D produced in the skin, it has been hypothesized that vitamin D formed in the skin may reduce the risk of breast cancer [1-3].

Breast cancer is the most frequent cause of cancer death in women in the western world. Many studies have tried to identify the causal factors responsible for the uncontrolled growth of the tumor cells. A variety of biochemical and genetic changes have been identified in breast carcinomas and have been found to be related to breast cancer growth. However, especially because of the heterogeneity of the disease on the clinical, biologic, and genetic levels, the exact mechanism of breast cancer development and progression is still unclear. During the last 15 years, it has become evident that 1,25-dihydroxyvitamin D₃ [1,25(OH)₂D₃], the biologically most active form of vitamin D₃, exerts effects on a variety of tissues which are apparently unrelated to calcium homeostasis. 1,25(OH)₂D₃ has been shown to induce cellular differentiation and inhibit proliferation of hematopoietic cells and cancer cells. In addition, studies with animal cancer models have shown that 1,25(OH)₂D₃ application can prolong the survival of leukemic mice and suppress the growth of tumors of different origins including breast [4, 5]. These newly discovered properties suggest a possible role of the hormone in the treatment of cancer. However, a major drawback for a clinical application is that high doses are needed. These doses produce serum levels of 1,25(OH)₂D₃ for above the physiologic level, which may lead to hypercalcemia. Many investigators have tried to change the 1,25(OH), D3 molecule in order to retain its antiproliferative and differentiation-inducing activity combined with a reduced effect on calcium and bone metabolism. This strategy has resulted in new synthetic vitamin D₃ analogs with clinical potential [6-8].

The expression of the vitamin D receptor (VDR) in breast cancer was first demonstrated in the human breast cancer cell line MCF-7 [9]. Further studies have extended this finding even to surgically obtained normal breast and breast tumor tissue [10]. The VDR is expressed in about 80% of human breast tumor specimens. The VDR status is not correlated to the expression of other steroid hormone receptors (estrogen receptor, progesterone receptor) [11-30] or to the clinical indices (age, menopausal status, T-stage, histology, lymph node involvement) including overall survival [12-31]. Nevertheless, two studies reported that the VDR status correlated positively with the disease-free interval [14-31]. The steroid hormone responsiveness is directly proportional to the number of corresponding receptors. Regulation of the number of VDR may affect the cellular responsiveness to 1,25(OH)₂D₃. In several different systems including MCF-7 and T47-D breast cancer cells, upregulation of the VDR by 1,25(OH)₂D₃itself (homologous upregulation) and by hormones (estradiol) and growth factors [epidermal growth factor (EGF), insulin, insulin-like growth factor-1 (IGF-I)] has been demonstrated (heterologous upregulation) [2, 32-37]. Because VDR mediates the biological effects of calcitriol and analogs on differentiation and proliferation in target cells, VDR upregulation may indicate an increased sensitivity of breast cancer to endogenously or therapeutically applied calcitriol. Thus, a relationship between VDR level and growth inhibition has been suggested for breast cancer cells [38, 39]. Nevertheless, the presence of a functional VDR is not always combined with a growth-inhibitory response of 1,25(OH)₂D₃. A lack of growth inhibition by 1,25(OH)₂D₃ independent of the status of functional VDR has been demonstrated in breast cancer cells [40, 41]. The underlying mechanism of this VDRindependent resistance to growth inhibition is unknown.

The first studies on the effect of 1,25(OH)₂D₃ on breast cancer cells showed a biphasic growth response

78 M. Friedrich

of the estrogen receptor-positive T47-D human breast tumor cell line. At low concentrations (10-11 M), a stimulation of cell growth was observed, whereas at higher concentrations (10-8 M), an inhibition was observed [10, 42, 43]. This growth-inhibitory effect of 1,25(OH)₂D₃ was confirmed in other breast tumor cell lines and shown to be independent of the estrogen receptor status [44, 45]. In the growth inhibited breast cancer cells 1,25(OH)₂D₃ and 1,25(OH)₂D₃ analogs caused an increase of the number of cells in the GO/GI and occasionally in the G2 phase together with a decrease of the number of cells in the S phase [40, 44, 46-49] indicating a cell cycle block in the GO/GI phase. Apoptosis (programmed cell death), is an asynchronous cellular process with cytoplasmic and nuclear condensation, disruption of the cytoskeleton, and condensation of intermediate filaments around the nucleus and is related to the cell cycle [50]. Induction of apoptosis can be a possible way in which 1,25(OH)₂D₃ inhibits tumor cell growth. Recently it has been shown that 1,25(OH)₂D₃ induces apoptosis in various tumour cells [40, 49, 51, 52]. A central role for apoptosis in the action of 1,25(OH)₂D₃ is uncertain because growth inhibition of several breast cancer cells appeared to be independent of apoptosis [40]. Thus, the growth stimulation of MCF-7 cells, that were growth inhibited by 1,25(OH)₂D₃, after removal of 1,25(OH)₂D₃ indicates independence of growth inhibition from apoptosis [53]. Possibly in these latter cases induction of differentiation is more prominent. Treatment of breast cancer cells with 1,25(OH)₂D₃ resulted in morphologic changes, which may resemble a more differentiated status of the cells [43, 54, 55]. Induction of differentiation was recently shown in several breast cancer cells [40]. The results of these studies suggest that induction of differentiation and growth inhibition are two independent processes. The various synthetic vitamin D₃ analogs have been shown to be more potent than 1,25(OH)₂D₃ in the growth inhibition of several cancer cell types, whereas their in vivo calcemic activity was similar or even reduced compared with 1,25(OH)₂D₃.

Mammary tumors can be induced in rats by oral administration of the carcinogens N-nitroso-N-methylurea (NMU) or 7,12-dimethylbenz[a]anthracene (DMBA). Application of 1,25(OH)₂D₃ resulted in an inhibition of the growth of NMU- [31, 56] and DMBA-induced rat mammary tumors [57, 58], whereas Noguchi *et al.* [59] did not find an effect of 1,25(OH)₂D₃ on the incidence and growth of DMBA-induced rat mammary tumors. To achieve tumor suppression, high doses of 1,25(OH)₂D₃ (about 0.5 μg/kg BW) were needed with the subsequent development of hypercalcemia and weight loss. Thus, synthetic vitamin D₃ analogs with low in vivo calcemic activity have been developed. Only a few analogs have been evaluated in vivo for their potential use in the treatment of breast cancer. To date, two clinical studies on the effect of vitamin D₃ analogs on cancer growth in humans have been reported. Topical application of calcipotriol (MC903) in a small group of patients with locally advanced or cutaneous metastatic breast cancer showed a reduction in the size of treated lesions in 4 of 14 patients [60], whereas another study could not confirm this observation [61]. In a phase I trial the analog EB1089 is being examined in advanced breast cancer, but no detailed analyses have been published.

The antiestrogen tamoxifen is the most widely used endocrine agent in the treatment of breast cancer [62]. A major problem of tamoxifen therapy is that in case of response, the tumor almost inevitably progresses to a tamoxifen-resistant state during prolonged therapy. Furthermore, long-term tamoxifen therapy has been linked to an increased risk of endometrial cancer. Therefore, despite the efficacy of tamoxifen for breast cancer, alternative additional endocrine therapies are needed. Thus, several studies have focussed on possible future combination therapies with 1,25(OH)₂D₃ and 1,25(OH)₂D₃ analogs in estrogen receptor-positive and -negative breast cancer. A synergistic antiproliferative effect of submaximum dosages of the vitamin D analog, 22-oxacalcitriol, and tamoxifen in breast cancer cells has been described in vitro and in vivo [63]. Thus, the combined treatment with 1,25(OH)₂D₃ and tamoxifen resulted in stronger growth inhibition of MCF-7 cells than treatment with either compound alone [53]. With a number of vitamin D₃ analogs a similar effect was observed [37]. In combination with tamoxifen the cells were more sensitive to the antiproliferative action of 1,25(OH)₂D₃ and the analogs [37]. The ability of tamoxifen to reduce the total tumor burden of rats treated with the carcinogen NMU is significantly enhanced by a combination of the vitamin D₃ analog, Ro24-5531, with low doses of tamoxifen [64]. Thus, implications for the use of vitamin D analogs not only in treatment but also in the prevention of breast cancer have been indicated. Vitamin A-derivatives like fenretinide are currently being tested in clinical trials as preventive agents against recurrence of breast cancer, and animal studies point to a potential use of these compounds as therapeutic agents for breast cancer [65]. A combination therapy of retinoic acid and 1,25(OH)₂D₃ showed a synergistic growth inhibition of breast cancer cells [66]. Furthermore, combinations with vitamin D_3 compounds and cytotoxic drugs (TNF, GMCSF, Adriamycin, 5-FU, Carboplatin, Cisplatin) have been studied [45, 57, 67-69]. The data on combinations of $1,25(OH)_2D_3$ and $1,25(OH)_2D_3$ analogs with various other anticancer compounds are promising and justify further analyses. For example, the development of effective combination therapies may result in better response rates and lower dosages combined with a reduced risk of negative side-effects.

Invasion and metastasis of tumor cells are the primary causes for the fatal outcome of cancer diseases. A recent report by Mork Hansen et al. [70] indicated that 1,25(OH)₂D₃ may be effective in reducing the invasiveness of breast cancer cells. They have shown that 1,25(OH)₂D₃ inhibited the invasion and migration of a metastatic human breast cancer cell line (MDA-MB-231). A fact to be considered in relation to metastasis is that bone is the most frequent site of metastasis of advanced breast cancer [71]. There are some indications from clinical studies that bone metastases develop preferentially in areas with high bone tumover [72, 73]. By contrast, agents that inhibit bone resorption have been reported to reduce the incidence of skeletal metastasis [74]. As $1,25(OH)_2D_3$ is an important stimulator of bone resorption and consequently of bone tumover, treatment with 1,25(OH)₂D₃ or vitamin D₃ analogs for breast cancer might increase the risk of skeletal metastases. However, Krempien [75] reported that following intraarterial injection with Walker 256 tumor cells, rats treated with 1,25(OH)₂D₃ developed significantly more bone metastases than untreated controls. In relation to this aspect, it was shown that tamoxifen, which exerts positive estrogenic effects on bone [76], considerably suppressed the bone resorption induced by 1,25(OH)₂D₃ ED1089, and KH1060 [77]. These data suggest that in vitamin D-tamoxifen combination therapy for breast cancer tamoxifen may offer protection against the bone resorption induced by vitamin D₃ compounds and thereby decreases the risk of bone metastases.

Vitamin D_3 analogs have potent antiproliferative effects on breast cancer cells in vitro and suppress breast cancer growth in vivo without marked calcemic effects. However, apart from the strong calcemic activity of $1,25(OH)_2D_3$ other negative side-effects may arise, in particular immunosuppressive effects and an increased risk of bone metastases. The development of new vitamin D_3 analogs continues. In the future vitamin D_3 analogs with even stronger antiproliferative action and better selectivity may become available. A major advantage of endocrine therapy with vitamin D may be that vitamin D suppresses breast tumor growth independent of the presence of the estrogen receptor. Most established endocrine therapies are based on antiestrogenic action, and for estrogen receptor-negative tumors therapeutic choices are limited. Vitamin D treatment could theoretically be beneficial for a large group of patients, since the VDR is expressed in about 80% of human breast cancers. Another promising aspect of vitamin D treatment might be its combination with other established endocrine (tamoxifen) or cytotoxic agents. Finally, epidemiologic studies and laboratory results have suggested a role for vitamin D in the prevention of breast cancer. In the next few years, clinical studies are needed to confirm that vitamin D_3 analogs, either alone or in combination with other antitumor agents, can provide an effective treatment for breast cancer.

References

- [1] Garland F. C., Garland C. F., Gorham E. D., Young J. F.: "Geographic variation in breast cancer mortality in the United States: A hypothesis involving exposure to solar radiation". *Prev. Med.*, 1990, 19, 614.
- [2] Gorham E. D., Garland F. C., Garland C. F.: "Sunlight and breast cancer incidence in the USSR". *Int. J. Epidemiol.*, 1990, *19*, 820.
- [3] Ainsleigh H. G.: "Beneficial effects of sun exposure on cancer mortality". Prev. Med., 1993, 22, 132.
- [4] Reichel H., Koeffler H. P., Norman A. W.: "The role of the vitamin D endocrine system in health and disease". N. Engl. J. Med., 1989, 320, 980.
- [5] Walters M. R.: "Newly identified actions of the vitamin D endocrine system". Endocr. Rev., 1992, 13, 719.
- [6] Bikle D. D.: "Clinical counterpoint: Vitamin D new actions, new analogs, new therapeutic potential". *Endocr. Rev.*, 1992, 13, 765.
- [7] Pols H. A. P., Birkenhäger J. C., van Leeuwen J. P. T. M.: "Vitamin D analogues: from molecule to clinical application". *Clin. Endocrinol.*, 1994, 40, 285.
- [8] Bouillon R., Okamura W. H., Norman A. W.: "Structure-function relationships in the vitamin D endocrine system". *Endocr. Rev.*, 1995, *16*, 200.
- [9] Eisman J. A., Martin T. J., MacIntyre I., Moseley J. M.: "1,25-Dihydroxyvitamin D receptor in breast cancer cells". *Lancet*, 1979, 2, 1335.

80 M. Friedrich

[10] Eisman J. A.: "1,25-Dihydroxyvitamin D₃ receptor and role of 1,25-(OH)₂D₃ in human cancer cells". In: "Vitamin D Metabolism: Basic and Clinical Aspects". Kumar R., ed. The Hague, Martinus Nijhoff, 1984, 365.

- [11] Eisman J. A., Suva L. J., Sher E., Pearce P. J., Funder J. W., Martin T. J.: "Frequency of 1,25-dihydroxyvitamin D₃ receptor in human breast cancer". *Cancer Res.*, 1981, 41, 5121.
- [12] Freake H. C., Abeyasekera G., Iwasaki J., Marcocci C., MacIntyre I., McClelland R. A., Skilton R. A. et al.: "Measurement of 1,25-dihydroxyvitamin D₃ receptors in breast cancer their relationship to biochemical and clinical indices". Cancer Res., 1984, 44, 1677.
- [13] Berger U., Wilson P., McClelland R. A., Colston K., Haussler M. R., Pike J. W., Coombes R. C.: "Immunocytochemical detection of 1,25-dihydroxyvitamin D₂-receptor in breast cancer". *Cancer Res.*, 1987, 47, 6793.
- [14] Berger U., McClelland R. A., Wilson P., Greene G. L., Haussler M. R., Pike J. W., Colston K. *et al.*: "Immunocytochemical determination of estrogen receptor, progesterone receptor, and 1,25-dihydroxyvitamin D₃ receptor in breast cancer and relationship to prognosis". *Cancer Res.*, 1991, 51, 239.
- [15] Reichrath J., Rafi L., Müller S. M., Mink D., Reitnauer K., Tilgen W., Schmidt W., Friedrich M.: "Immunohistochemical analysis of 1,25-dihydroxyvitamin D₃-receptor (VDR) in cervix carcinoma". *Histochem. J.*, 1998, *30*, 561.
- [16] Friedrich M., Rafi L., Tilgen W., Schmidt W., Reichrath J.: "Expression of 1,25-dihydroxyvitamin D₃-receptor (VDR) in breast carcinoma". *J. Histochem. Cytochem.*, 1998, 46, 1335.
- [17] Rafi L., Reichrath J., Müller S. M., Tilgen W., Schmidt W., Friedrich M.: "Expression of 1,25-dihydroxyvitamin D₃ receptors (VDR) in cervix carcinoma. Vitamin D: Chemistry, Biology and Clinical Application of the Steroid Hormone". Proceedings of the Tenth Workshop on Vitamin D, Strasbourg, France, May 24-29, 1997. Eds. Anthony W. Norman, Roger Bouillon, Monique Thomasset. S 477-478.
- [18] Friedrich M., Rafi L., Müller S. M., Tilgen W., Schmidt W., Reichrath J.: "Immunohistochemical analysis of 1,25-dihydroxy-vitamin D₃ receptor (VDR) and retinoid-X receptor-α (RXR-α) in breast cancer. Vitamin D: Chemistry, Biology and Clinical Application of the Steroid Hormone". Proceedings of the Tenth Workshop on Vitamin D, Strasbourg, France, May 24-29, 1997. Eds. Anthony W. Norman, Roger Bouillon, Monique Thomasset. S. 477-478.
- [19] Friedrich M., Villena-Heinsen C., Tilgen W., Schmidt W., Reichrath J.: "Relationship of vitamin D-receptors (VDR) and histopathological data in ovarian carcinomas". In: "New Technologies of Gynecologic and Obstetric Investigation" (Eds. A. R. Genazzini, P. G. Artini): Proceedings volume of the 4th Congress of the European Society for Gynecologic and Obstetric Investigation, 14th-20th March, 1999, Madonna di Campiglio (Italy). Clic Edizioni Internazionali, Rome (Italy), 342.
- [20] Friedrich M., Villena-Heinsen C., Tilgen W., Schmidt W., Reichrath J.: "Expression of 1,25-dihydroxyvitamin-D₃-receptors (VDR) in endometrial cancer". In: "New Technologies for Gynecologic and Obstetric Investigation (Eds. A. R. Genazzani, P. G. Artini). Proceedings volume of the 4th Congres of the European Society for Gynecologic and Obstetric Investigation, 14th-20th March, 1999, Madonna di Campiglio (Italy). Cic Edizioni Internazionali, Rome (Italy), 339.
- [21] Friedrich M., Villena-Heinsen C., Meyberg R., Makkinejad N., Tilgen W., Schmidt W., Reichrath J.: "Analysis of the 1,25-dihydroxyvitamin D₃ receptor (VDR) on protein and mRNA-level in cervix carcinomas". In: "11th International Meeting of Gynaecological Oncology" (Eds: Peter Bosze, Tiziano Maggino, Carlos F. De Oliveira, Antonio Onnis), 8-12 May, 1999, Budapest (Hungary). Monduzzi Editore International Proceedings Division, Bologna (Italy), 9.
- [22] Friedrich M., Villena-Heinsen C., Meyberg R., Müller K., Makkinejad N., Tilgen W., Reichrath J.: "Autocrine regulation of the synthsis of 1,25-dihydroxyvitamin D₃ by 1a-hydroxylase for 25OHD₃ in breast cancer and expression of 1,25-dihydroxyvitamin D₃-receptors (VDR)". In: "11th International Meeting of Gynaecological Oncology". (Eds: Peter Bosze, Tiziano Maggino, Carlos F. De Oliveira, Antonio Onnis), 8-12 May, 1999, Budapest (Hungary). Monduzzi Editore International Proceedings Divison, Bologna (Italy), 51.
- [23] Friedrich M., Villena-Heinsen C., Meyberg R., Müller K., Tilgen W., Schmidt W., Reichrath J.: "Expression of 1,25-dihydroxyvitamin D₃-receptors (VDR) in ovarian carcinomas and prognostic factors". In: "11th International Meeting of Gynaecological Oncology" (Eds: Peter Bosze, Tiziano Maggino, Carlos F. De Oliveira, Antonio Onnis), 8-12 May, 1999, Budapest (Hungary). Monduzzi Editore International Proceedings Division, Bologna (Italy), 147.
- [24] Friedrich M., Rafi L., Müller S., Tilgen W., Schmidt W., Reichrath J.: "Immunohistochemical analysis of 1,25-dihydroxyvitamin D₃-receptor (VDR) and retinoid-X receptor (RXR) expression in breast cancer". Tenth Workshop on Vitamin D, Strasbourg France, May 24-29, 1997. Abstract Book.
- [25] Reichrath J., Rafi L., Müller S., Tilgen W., Schmidt W., Friedrich M.: "Expression of 1,25-dihydroxyvitamin D₃-receptor (VDR) in cervical carcinoma". Tenth Workshop on Vitamin D, Strasbourg France, May 24-29, 1997. Abstract Book.
- [26] Friedrich M., Rafi L., Müller S., Mink D., Tilgen W., Schmidt W., Reichrath J.: "Correlation between expression of 1,25-dihydroxyvitamin D₃-receptor (VDR) in cervical carcinoma and markers for proliferation and differentiation". 12th Congress of the European Association of Gynecologists and Obstetricians (EAGO), Dublin (Ireland), June 25-28, 1997, Book of Abstracts, S. 189.
- [27] Friedrich M., Rafi L., Müller S., Tilgen W., Schmidt W., Reichrath J.: "Expression of 1,25-dihydrowyvitamin D₃-receptor (VDR) in cervical carcinoma". XV FIGO World Congress of Gynecology and Obstetrics, Copenhagen, August 3-8, 1997. *Acta Obstet. Gynecol. Scand.*, 1997, 76 Suppl. 167, 73, 64.
- [28] Friedrich M., Mink D., Villena-Heinsen C., Reichrath J., Schmidt W.: "Presentation of an immunoreactivity-score for 1,25-dihydroxyvitamin D₃-receptors (VDR-IRS) in cervix carcinomas". 13th Congress of the European Association of Gynecologists and Obstetricians (EAGO), Jerusalem (Israel), May 10-14, 1998. Book of Abstracts, S.11.
- [29] Friedrich M., Mink D., Villena-Heinsen C., Holländer M., Reichrath J., Schmidt W.: "Immunoreactivity score for 1,25-dihydrowyvitamin D₃-receptors (VDR-IRS) in breast carcinomas". XXXI Congress, Aarhus, May 23-26, 1998, Denmark. NFOG '98. Acta Obstetrica et Gynecologica Scandinavica, 1998.

- [30] Friedrich M., Mink D., Villena-Heinsen C., Reichrath J., Schmidt W.: "Presentation of an immunoreactivity score for 1,25-dihydroxyvitamin D₃-receptors (VDR-IRS) in cervix carcinomas". 6th International Conference of Anticancer Research, Kallithea, Halkidi, Griechenland, 21-25 October, 1998. Anticancer Research, 1998, 18 (6C), 4865.
- [31] Colston K. W., Berger U., Coombes R. C.: "Possible role for vitamin D in controlling breast cancer cell proliferation". *Lancet*, 1989, *1*, 188.
- [32] van Leeuwen J. P. T. M., Birkenhäger J. C., Buurman C. J., Schilte J. P., Pols H. A. P.: "Functional involvement of calcium in the homologous up-regulation of the 1,25-dihydroxyvitamin D₃ receptor in osteoblast-like cells". *FEBS Lett.*, 1990, 270, 165.
- [33] van Leeuwen J. P. T. M., Pols H. A. P., Schilte J. P., Visser T. J., Birkenhäger J. C.: "Modulation by epidermal growth factor of the basal 1,25-(OH)₂D₃ receptor level and the heterologous up-regulation of the 1,25-(OH)₂D₃ receptor in clonal osteoblast-like cells". *Calcif. Tissue Int.*, 1991, 49, 35.
- [34] Costa E. M., Hirst M. A., Feldman D.: "Regulation of 1,25-dihydroxyvitamin D₃ receptors by vitamin D analogues in cultured mammalian cells". *Endocrinology*, 1985, *117*, 203.
- [35] Krishnan A. V., Feldman D.: "Stimulation of 1,25-dihydroxyvitamin D₃ receptor gene expression in cultured cells by serum and growth factors". *J. Bone Miner. Res.*, 1991, 6, 1099.
- [36] Escaleira M. T. F., Sonohara S., Brentani M. M.: "Sex steroids induced up-regulation of 1,25-(OH)₂vitamin D₃ receptors in T 47D breast cancer cells". *J. Steroid. Biochem. Mol. Biol.*, 1993, 45, 257.
- [37] Vink-van Wijngaarden T., Pols H. A. P., Buurman C. J., van den Bemd G. J. C. M., Dorssers L. C. J., Birkenhäger J. C., van Leeuwen J. P. T. M.: "Inhibition of breast cancer cell growth by combined treatment with vitamin D₃ analogs and tamoxifen". *Cancer Res.*, 1994, 54, 5711.
- [38] Buras R. R., Schumaker L. M., Davoodi F., Brenner R. V., Shabahand M., Nauta R. J., Evans S. R. T.: "Vitamin D receptors in breast cancer cells". *Breast Cancer Res. Treatment*, 1994, 31, 191.
- [39] Fan F. S., Yu W. C.: "1,25-dihydroxyvitamin D₃ suppresses cell growth, DNA synthesis, and phosphorylation of retinoblastoma protein in a breast cancer cell line". *Cancer Invest.*, 1995, *13*, 280.
- [40] Elstner E., Linker-Israeli M., Said J., Umiel T., de Vos S., Shintaku P., Heber D., Binderup L., Uskokovic M., Koeffer H. P.: "20-epi-Vitamin D₃ analogues: a novel class of potent inhibitors of proliferation and inducers of differentiation of human breast cancer cells". *Cancer Res.*, 1995, 55, 2822.
- [41] Narvaez C. J., Vanweelden K., Byme I., Welsh J.: "Characterization of a vitamin D-resistant MCF-7 cell line". *Endocrinology*, 1996, 137, 400.
- [42] Freake H. C., Marcocci C., Iwasaki J., MacIntyre I.: "1,25-dihydroxyvitamin D₃ specifically binds to a human breast cancer cell line (T47D) and stimulates growth". *Biochem. Biophys Res. Commun.*, 1981, 101, 1131.
- [43] Frampton R. J., Omond S. A., Eisman J. A.: "Inhibition of human cancer cell growth by 1,25-dihydroxyvitamin D₃ metabolites". *Cancer Res.*, 1983, 43, 4443.
- [44] Chouvet C., Vicard E., Devonec M., Saez S.: "1,25-dihydroxyvitamin D₃ inhibitory effect on the growth of two human breast cancer cell lines (MCF-7, BT-20)". *J. Steroid. Biochem.*, 1986, 24, 373.
- [45] Abe J., Nakano T., Nishii Y., Matsumoto T., Ogata E., lkeda K.: "A novel vitamin D₃ analog, 22-oxa-1,25-dihydroxyvitamin D₃, inhibits the growth of human breast cancer in vitro and in vivo without causing hypercalcemia". *Endocrinology*, 1991, *129*, 832.
- [46] Eisman J. A., Koga M., Sutherland R. L., Barkla D. H., Tutton P. J. M.: "1,25-dihydroxyvitamin D₃ and the regulation of human cancer cell replication". *Proc. Soc. Exp. Med.*, 1989, 191, 221.
- [47] Eisman J. A., Sutherland R. L., McMenemy M. L., Fragonas J. C., Musgrove E. A., Pang G. Y. N.: "Effects of 1,25-dihy-droxyvitamin D₃ on cell cycle kinetics of T474D human breast cancer cells". *J. Cell. Physiol.*, 1989, 138, 611.
- [48] Pols H. A. P., Birkenhäger J. C., Foekens J. A., van Leeuwen J. P. T. M.: "Vitamin D: a modulator of cell proliferation and differentiation". *J. Steroid. Biochem. Mol. Biol.*, 1990, 6, 873.
- [49] Simboli-Campbell M., Welsh J.: "1,25-dihydroxyvitamin D₃: coordinate regulator of active cell death and proliferation in MCF-7 breast cancer cells". In: "Apoptosis in Hormone Dependent Cancers". Tenniswood M., Michna H., eds. Berlin: Springer-Verlag, 1995, 181.
- [50] Kerr J. F. R., Wyllie A. G., Currie A. R.: "Apoptosis: a basic biological phenomenon with wide ranging implications in tissue kinetics". *Br. J. Cancer*, 1972, 26, 239.
- [51] Jaines S. Y., Mackay A. G., Colston K. W.: "Vitamin D derivatives in combination with 9-cis-retinoic acid promote active cell death in breast cancer cells". *J. Mol. Endocrinol.*, 1995, *14*, 391.
- [52] Vande Walle B., Homez L., Wattez N., Revillion F., Lefebvre J.: "Vitamin-D₃ derivatives and breast-tumor cell growth: effect on intracellular calcium and apoptosis". *Int. J. Cancer*, 1995, *61*, 806.
- [53] Vink-van Wijngaarden T., Pols H. A. P., Buurman C. J., Birkenhäger J. C., van Leeuwen J. P. T. M.: "Combined effects of 1,25-dihydroxyvitamin D₃ and tamoxifen on the growth of MCF-7 and ZR-75-1 human static carcinoma cell breast cancer cells". Breast Cancer Res. Treat., 1993, 29, 161.
- [54] Gross M., Bollman Kost S., Ennis B., Stumpf W., Kumar R.: "Effect of 1,25-dihydroxyvitamin D₃ on mouse mammary tumor (GR) cells: evidence for receptors, cellular uptake, inhibition of growth and alteration in morphology at physiologic concentrations of hormone". *J. Bone Miner. Res.*, 1986, *1*, 457.
- [55] Frappart L., Falette N., Lefebvre M. F., Bremond A., Vauzelle J. L., Saez S.: "In vitro study of effects of 1,25-dihydroxyvitamin D₃ on the morphology of human breast cancer cell line BT20". *Differentiation*, 1989, 40, 63.
- [56] Colston K. W., Chander S. K., Mackay A. G., Coombes R. C.: "Effects of synthetic vitamin D analogues breast cancer cell proliferation in vivo and in vitro". *Biochem. Phannacol.*, 1992, 44, 693.

82 M. Friedrich

- [57] Iino Y., Yoshida M., Sugamata N., Maemura M., Ohwada S., Yokoe T., Ishikita T. *et al.*: "1α, 25-dihydroxyvitamin D₃, hypercalcemia, and growth suppression of 7,12-dimethylbenz[a]anthracene-induced rat mammary tumors". *Breast Cancer Res. Treat.*, 1992, 22, 133.
- [58] Saez S., Falette N., Guillot C., Meggouh F., Lefebvre M. F., Crepin M.: "1,25(OH)₂D₃ modulation of mammary tumor cell growth in vitro and in vivo". *Breast. Cancer Res. Treat.*, 1993, 27, 69.
- [59] Noguchi S., Tahara H., Miyauchi K., Koyama H.: "Influence of 1α, 25-dihydroxyvitamin D₃ on the development and steroid hormone receptor contents of DMBA-induced rat mammary tumors". *Oncology*, 1989, 46, 273.
- [60] Bower M., Colston K. W., Stein R. C., Hedley A., Gazet J. C., Ford H. T., Coombes R. C.: "Topical calcipotriol treatment in advanced breast cancer". *Lancet*, 1991, 337, 701.
- [61] O'Brien M. E. R., Talbot D., Maclennan K., Smith I. E.: "Inefficacy of calcipotriol in skin metastases from breast cancer". Lancet, 1993, 342, 994.
- [62] Muss H. B.: "Endocrine therapy for advanced breast cancer: a review". Breast Cancer Res. Treat., 1992, 21, 15.
- [63] Abe-Hasimoto J., Kikuchi T., Matsumoto T. et al.: "Antitumor effect of oxa-calcitriol, a noncalcemic analogue of calcitriol, in athymic mice implanted with human breast carcinoma and its synergism with tamoxifen". Cancer Res., 1993, 53, 2534.
- [64] Anzano M. A., Smith J. M., Uskokovic M. R. *et al.*: "1a, 25-dihydroxy-16-ene-23-yne-26,27-hexafluorocholecalciferol (Ro24-5531), a new diltanoid (vitamin D analogue) for prevention of breast cancer in the rat". *Cancer Res.*, 1994, 54, 1653.
- [65] Costa A.: "Breast cancer chemoprevention". Eur. J. Cancer, 1993, 29A, 589.
- [66] Koga M., Sutherland R. L.: "Retinoic acts synergistically with 1,25-dihydroxyvitamin D₃ or antioestrogen to inhibit T-47D human breast cancer cell proliferation". *J. Steroid Biochem. Mol. Biol.*, 1991, 39, 455,
- [67] Rocker D., Ravid A., Liberman U. A., Garach-Jehoshua O., Koren R.: "1,25-dihydroxyvitamin potentiates the cytotoxic effect of TNF on human breast cancer cells". *Mol. Cell. Endocrinol.*, 1994, 106, 157.
- [68] Hassan H. T., Eliopoulos A., Maurer H. R., Spandidos D. A.: "Recombinant human GM-CSF enhances the anti-proliferative activity of vitamin D in MCF-7 human breast cancer clonogenic cells". *Eur. J. Cancer*, 1992, 28A, 1588.
- [69] Cho Y. L., Christensen C., Saunders D. E., Lawrence W. D., Deppe G., Maviya V. K., Malone J. M.: "Combined effects of 1,25-dihydroxyvitamin D₃ and platinum drugs on the growth of MCF-7 cells". *Cancer Res.*, 1991, 51, 2848.
- [70] Mork Hansen C. M., Frandsen T. L., Brünner N., Binderup L.: "1x,25-dihydroxyvitamin D₃ inhibits the invasive potential of human breast cancer cells in vitro". *Clin. Exp. Metast.*, 1994, 12, 195.
- [71] Hortobagyi G. N.: "Bone metastases in breast cancer patients". Semin. Oncol., 1991, 18, 11.
- [72] Agha F. P., Norman A., Hirschl S., Klein R.: "Paget's disease coexistence with metastatic carcinoma". NY State J. Med., 1976, 76, 734.
- [73] Fitton A., McTavish D.: "Pamidronate: a review of its pharmacologic properties and therapeutic efficacy in resorptive bone disease". *Drugs*, 1991, *41*, 289.
- [74] Krempien B., Manegold C.: "Prophylactic treatment of skeletal metastases, tumor-induced osteolysis, and hypercalcemia in rats with the biphosphonate CI2MBP". *Cancer*, 1993, 72, 91.
- [75] Krempien B.: "The Walker carcinoma-sarcoma 256 as an experimental model of bone metastases: influence of local and metabolic factors on incidence and pattern of metastases". *Calcif. Tissue Int.*, 1984, 36, S26.
- [76] Wright C. D. P., Garrahan N. J., Stanton M., Gazet J. C., Mansell R. E., Compston J. E.: "Effect of long-term tamoxifen therapy on cancellous bone remodelling and structure in women with breast cancer". *J. Bone Miner Res.*, 1994, *9*, 153.
- [77] Vink-van Wijngaarden T., Birkenhäger J. C., Kleinekoort W. M. C., van den Bemd G. J. C. M., Pols H.A P., van Leeuwen J. P. T. M.: "Antiestrogens inhibit in vitro bone resorption stimulated by 1,25-dihydroxyvitamin D₃ and the vitamin D₃ analogs EB1089 and KH1060". *Endocrinology*, 1995, *136*, 812.

Address reprint requests to: MICHAEL FRIEDRICH, M. D. Universitäts-Frauenklinik D-66421 Homburg/Saar (Germany)