
Introduction

Ovarian hyperstimulation syndrome (OHSS) is the most

serious complication of ovulation induction with go-

nadotropin and human chorionic gonadotrophin (hCG).

This iatrogenic condition is potentially lethal and occurs in

0.3 to five percent of stimulated ovarian cycles [1]. Some

forms of OHSS may arise from the following conditions:

[1] pregnant women with polycystic ovary syndrome that

respond excessively to endogen gonadotropin; [2] abnor-

mally high serum hCG levels in molar pregnancies; [3]

women with primary hypothyroidism; [4] gonadotroph ade-

noma inducing co-secretion of follicle stimulating hormone

(FSH) and luteinizing hormone (LH), causing a rise in

estradiol (E2) levels with ovarian enlargement without as-

cites [2, 3]. Clinical manifestations of OHSS are massive

extravascular fluid accumulation and hemoconcentration

similar to that in syndromes due to capillary leakage. The

patients may be complicated by renal failure, hypovolemic

shock, thromboembolic episodes, and adult respiratory dis-

tress syndrome. The pathophysiology of this syndrome has

not been completely evaluated, the increased capillary per-

meability triggered by the release of vasoactive substances

secreted by the ovaries under hCG stimulation plays a key

role in this syndrome [4]. 

The angiogenic molecule, vascular endothelial growth

factor (VEGF) is the most important mediator of hCG-de-

pendent ovarian angiogenesis. It is known that VEGF is ex-

pressed in human ovaries [5] and that VEGF mRNA levels

increase after hCG administration in granulosa cells [6, 7].

A circulatory dysfunction has been described in every

woman treated with gonadotropins for in vitro fertilization.

It is not known, whether the gonadotropins up-regulate

VEGF receptor-2 (VEGFR-2) expression and whether in-

creased vascular permeability is also found with mild stim-

ulation [8]. High concentrations of VEGF have been

demonstrated in ascitic fluid from patients with OHSS [6]. 

Endothelin-1, an endothelial derived peptide, is a potent

vasoconstrictor that increases capillary permeability in sev-

eral tissues [9]. High levels of endothelin-1 were found in

follicular fluid in patients undergoing ovulation induction
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[10]. Endothelin-1 concentration was found to be 100–300

fold higher in the follicular fluid than in the plasma. More-

over, a positive correlation between endothelin-1 and FSH

concentration in the follicular fluid were found, suggesting

that endothelin-1 may play a role in ovarian function as

well as in OHSS [11]. In this study the authors aimed to in-

vestigate the short and long term effects of OHSS on ovar-

ian histology and serum levels of VEGF and endothelin-1

in a rat model.

Materials and Methods

Experimental design 
This study was approved by Firat University Animal Use Com-

mittee and conducted at Firat University Animal Laboratory

(FUTDAM). Twenty immature (22-day-old), weighing 41- 49

grams, female Wistar Albino rats were used for all experiments.

They were housed individually as quinary groups in plastic cages

with chip bedding, and ad libitum access to rat chow (pellet) and

water. They were maintained on a 12:12 light:dark cycle (lights on

at 07:00 AM) at room temperature.

Twenty immature (22-day-old) female rats were randomly di-

vided into two groups. Group 1 (n = 10): 22-day- old rats. Group

2 (n = 10): experimental OHSS induced rats. These rats were ran-

domly divided into two groups on the day of OHSS development

(27th day); Group 3 (n = 5): 27-day-old experimental OHSS in-

duced rats euthanised and then ovarian tissue and serum samples

were collected. Group 4 (n = 5): 27-day-old experimental OHSS

induced rats supervised spontaneously for seven days. Group 1

divided into two groups to constitute age-matched controls; Group

5 (n = 5): 27-day-old normal rats group, Group 6 (n = 5): 35-day-

old normal rats group. The comparisons of Group 3 vs Group 5

and Group 4 vs Group 6 were performed. The rats were divided

into four age-matched groups. Ovarian histopathologic evaluation

and serum level analysis of VEGF and endothelin-1 of all rats

were performed.

OHSS induction and ELISA assays
To prepare the OHSS model, immature female Wistar rats were

stimulated with 10 IU of FSH for four consecutive days followed

by 30 IU of hCG on the 26th day of life. The manifestation of the

OHSS was demonstrated with daily weight gain and hematocrite

elevation as illustrated by Ohba et al. [12]. All rats were eu-

thanised with decapitation. Approximately three cc blood were

collected from all rats and centrifuged at 2,500 rpms for four min-

utes to obtain serum samples. The serum samples were stored at

-20°C until the analysis of VEGF and endothelin-1. The extracted

serum samples were assayed by an enzyme linked immunosor-

bent assay (ELISA) using commercially available kit for VEGF

and endothelin-1, according to the manufacturer’s instructions.

Ovarian morphology
After laparatomy, ovaries were removed and cleaned of adher-

ing tissue in culture medium, weighed, and used for subsequent

assays. Ovarian tissue was fixed with ten percent formaldehyde

and then paraffin-embedded tissue samples were cut into four μm

sections for estimation of mean ovarian follicle count. The sec-

tions were stained with masson trichrome to determine ovarian

follicle reserve under light microscope. The four μm step sections

were mounted at 50 μm intervals onto microscope slides to pre-

vent counting the same structure twice, according to the afore-

mentioned method described [13]. Follicles were classified as

primordial, primary, secondary, and tertiary follicles. An atretic

follicle was defined as the follicle that presented more than ten

pycnotic nuclei per follicle; in the smallest follicles, the criterion

for atresia was a degenerate oocyte, precocious antrum formation,

or both [14]. 

Main outcome measures were as follows: age of rat (days),

weight of rat (gr), hematocrit of rat (%), weight of ovary (mgr),

serum levels of VEGF (pg/ml) and endothelin-1 (ng/ml), total fol-

licle count with determination of primordial, primary, secondary,

and tertiary follicle numbers [15]. Atretic follicle, corpus luteum

(CL), and corpus albicans were also determined. CL was investi-

gated for regression of angiogenesis and ovarian stromal fibrosis

and these findings were scaled as 0 = absence, 1 = moderate pres-

ence,  and 2 = high presence. Ovarian follicle cysts were counted

macroscopically and scaled as 0 = absence and 1 = presence [16].

Statistical analysis
Statistical analysis was performed by Statistical Package for So-

cial Sciences (SPSS) version 12.0. Results were presented as mean

and standard deviation and number and percentage where applica-

ble. Age-matched comparison of Group 3 vs Group 5 and Group 4

vs Group 6 were performed. Differences between groups for ordi-

nal variables were analyzed using Mann-Whitney U test and dif-

ferences in the categorical variables of groups was assessed using

Chi-squared test. P values < 0.05 were considered as statistically

significant.

Results

All of the experiments were completed successfully in all

of the groups. Main outcome measures of the groups were

weight, hematocrit and ovarian weight of rats and are pre-

sented in Table-1; ovarian morphology (Figure 1) and folli-

cle counts are presented in Table 2, and serum levels of

VEGF and endothelin-1 are presented in Table 3. 

The comparison of Group 3 vs Group 5 showed signifi-

cantly low ovarian follicle reserve and primordial follicle

count in Group 3 (p < 0.05) and significantly high atretic

follicle count and serum VEGF and endothelin-1 levels in

Group 3 (p < 0.05). The weights and hematocrits of rats on

days four and six were significantly high in Group3 and total

ovarian weight on day six was significantly high in Group

3, too. Primary and secondary follicle counts of Group 3

were lower than of Group 5, but the difference was not sig-

nificant.

The comparison of Group 4 vs Group 6 showed signifi-

cantly high total ovarian weight, hematocrit, and weights of

rats on days four, six, and 13 in Group 4 (p < 0.05). While

primordial follicle count was significantly low, AFN was sig-

nificantly high in Group 4 (p < 0.05). In Group 4, serum

VEGF and endothelin-1 levels were higher than Group 6 and

ovarian follicle reserve was lower than Group 6, but the dif-

ferences were not significant. 

Discussion

The present study is the first one to evaluate the short-

and long-term effects of OHSS on ovarian reserve in an ex-

perimental model. It was shown that OHSS increased the

serum levels of VEGF and endothelin-1 and had detrimen-
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tal effect on ovarian follicle reserve during short-term.

These effects proceeded during long-term with insignifi-

cance. In this study the authors compared the groups ac-

cording to age matching to eradicate the age bias [17]. 

It is reported that VEGF and IL-8 are the key mediators

in pathogenesis of OHSS [18]. VEGF induces neoangio-

genesis and permeability via VEGF-2 receptors on the sur-

face of endothelial cells [19]. These changes are reversed

98% by anti-VEGF antibody [20]. In the pathogenesis of

OHSS, the main stimulator of vascular hyperpermeability

is the hypoxia-induced VEGF production in developing

multiple corpus luteums [21- 24]. Busso et al. reported that

gonadotrophin induced OHSS could be prevented by

VEGF antagonization [25].

Investigators reported that follicular fluid VEGF levels

of women either undergoing in vitro fertilization (IVF) or

non-stimulated were in correlation with degree of follic-

ular luteinization [26, 27]. Other researchers demonstrated

that during ovulation induction, follicular fluid VEGF

concentrations were higher in advanced reproductive age

women compared with younger women or it could be said

that there was an association, positive correlation, be-

tween follicular fluid VEGF levels and patient’s age [28-

30]. In the present study, the authors observed

Table 1. — The weight, hematocrit % and ovarian weight of all rats in the study
Short-term Long-term

Parameters G3 G5 p G4 G6 p
(n=5, OHSS) (n=5, control) value (n = 5, OHSS) (n = 5, control) value

Weight on day 0 (gr) 44.4 ± 3 45 ± 2.3 NS 45.6 ± 2.8 47 ± 1.6 NS

Weight on day 4 (gr) 63.4 ± 3 54 ± 1.4 < 0.05a 58.6 ± 2.6 53.4 ± 1.1 < 0.05a

Weight on day 6 (gr) 69 ± 4.1 60 ± 2.1 < 0.05a 71.8 ± 2.1 61.4 ± 2.3 < 0.05a

Weight on day 13 (gr) decapitation decapitation - 105.6±3.6 83.6 ± 1.1 < 0.05a

Htc on day 0 (%) 37.6 ± 1 37 ± 1.3 NS 37.2 ±1.4 37.6 ± 1.5 NS

Htc on day 4 (%) 40.6 ± 1 37 ± 0.6 < 0.05b 40.6 ± 1.3 37.4 ± 0.9 < 0.05b

Htc on day 6 (%) 42 ± 1.2 37 ± 0.8 < 0.05b 42.2 ± 0.8 37,5 ± 1.8 < 0.05b

Htc on day 13 (%) decapitation decapitation - 42.2 ± 0.8 38.2 ± 1.3 < 0.05b

Ovarian weight (mgr) 69.4 ± 7 53 ± 7 < 0.05a 123±18.2 60.6 ± 5.8 < 0.05a

Note: The values are presented as mean ± SD and %; a = MWU test; b = Chi-square test; NS = Non-significant; Htc = hematocrit

Table 2. — Ovarian histopathology and follicle counts of all rats in the study
Short-term Long-term

Parameters G3 G5 p G4 G6 p
(n=5, OHSS) (n=5, control) value (n = 5, OHSS) (n = 5, control) value

Primordial follicle count 11 ± 10.2 25±12 <0.05a 8.4 ± 5.0 17.8±13.8 < 0.05a

Primary follicle count 16.4 ± 2.8 19 ± 4 NS 20 ± 7.5 20.6 ± 4.2 NS

Secondary follicle count 10.8 ± 3.1 12 ± 2.8 NS 14.4 ±.3 9.6 ± 5.8 NS

Tertiary follicle count 4.4 ± 1.1 2.8 ± 3.1 NS 2.2 ± 0.8 1.4 ± 1.1 NS

Ovarian follicle reserve 42.6 ± 10 60 ± 1.5 < 0.05a 45± 11.1 49.4 ± 7.6 NS

CL count 0 ± 0 0 ± 0 NS 1.8 ± 1.8 0 ± 0 < 0.05a

Corpus albicans count 0 ± 0 0 ± 0 NS 0±0 0 ± 0 NS

Total corpus count 0 ± 0 0 ± 0 NS 1.8 ± 1.8 0 ± 0 < 0.05a

Follicle cyst count 0 ± 0 0 ± 0 NS 0 ± 0 0 ± 0 NS

Angiogenesis in CL 0 ± 0 0 ± 0 NS 0.4 ± 0.5 0 ± 0 < 0.05a

Fibrosis 0 ± 0 0 ± 0 NS 0.4 ± 0.5 0 ± 0 < 0.05a

Atretic follicle count 3.4 ± 1.9 0.6 ± 0.9 < 0.05a 2.6 ± 2 0.4 ± 0.5 < 0.05a

Note: Values are presented as mean±SD; a = MVU test; NS = Non significant; CL = Corpus luteum.

Table 3. — Serum VEGF and endothelin-1 levels of all rats in the study 
Short-term Long-term

Parameters G3 G5 p G4 G6 p
(n = 5, OHSS) (n = 5, control) value (n = 5, OHSS) (n = 5, control) value

VEGF(pg/ml) 2717± 324 1,596 ± 1113 < 0.05a 2,250 ± 952 1,777 ± 1016 NS

Endotelin-1 (ng/ml) 0.8 ± 01 0.55 ± 0.1 < 0.05a 0.9 ±0.1 0.8 ± 0.1 NS

Note: Values are presented as mean±SD; a = MWU test; NS = Non significant
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significantly increased serum VEGF and endothelin-1 lev-

els especially during short-term of OHSS. This increment

might be due to relative hypoxia of stromal tissue of hy-

perstimulated ovary [24, 31]. The comparison of serum

VEGF and endothelin-1 levels between the non-stimu-

lated rats showed increment with age.

The preovulatory follicle provides a unique physiological

example of rapid growth accompanied by neovasculariza-

tion: two processes that are generally characteristic of

pathologies such as wound repair or malignancy. During

the hours preceding ovulation, follicular growth is accom-

panied by elevated levels of messenger RNA for VEGF.

Following ovulation, rapid infiltration of capillaries

through the follicular wall is essential for the formation of

the CL [24]. Growth and regression of CL are accompanied

by growth and regression of the luteal vascular bed. VEGF

is the main regulator of angiogenesis, inducing endothelial

cell proliferation, migration, vascular permeability, and ves-

sel lumen formation [32]. VEGF-dependent angiogenesis

is crucial for follicular growth, and corpus luteum forma-

tion and function [33]. In the ovary VEGF can be hormon-

ally regulated, but in other systems, the main regulator of

VEGF expression is hypoxia [34-36]. The mediator of this

process is hypoxia-inducible factor-1alpha (HIF1A) [34].

Avascularization and decrement of local oxygen concen-

trations of granulosa cells are related to ovulation [24, 36]. 

VEGF inhibition in the mid- or the late luteal phase in-

duces functional luteolysis due to premature and selective

death of endothelial cells [37]. Most of the studies reported

that disruption of ovarian blood supply resulted with ovar-

ian follicular reserve decrement [38-40]. Atilgan et al. re-

ported that unilateral total salpingectomy induced atretic

follicles, stromal fibrosis, and macroscopic follicular cys-

tic formation on the same side ovary [40]. In another study,

the researchers reported that bilateral tubal ligation per-

formed with uni/bipolar cautery increased the numbers of

CL, but decreased the regression level of angiogenesis in

CL only during short-term of surgery [16]. Both of two ex-

perimental study showed the effect of hypoxia on ovarian

follicular reserve and development. In the present study,

angiogenesis in CL was significantly higher in rats with

OHSS than normal age-matched rats during long-term. Hy-

poxic conditions increased the vascularisation of CL and

decreased ovarian follicular reserve. These results indicate

the relationship between hypoxia-induced angiogenesis and

VEGF. The present study observed significantly decreased

ovarian follicular reserve especially during short-term of

experimental OHSS. 

In the present study, endothelin-1 levels were high in rats

with OHSS. It is reported that in addition to VEGF, hCG

may trigger activation of the renin-angiotensin system and

kinin-kallikrein system together with releasing of endothe-

lin-1, that also increases vascular permeability [41]. 

In conclusion, according to the similarity of OHSS be-

tween human beings and rats, it can be said that VEGF and

endothelin-1 might have a trigger function on the onset of

OHSS. Multiple follicular development in OHSS may

bring out relative hypoxia and induce the expression of an-

giogenic substances. These substances induce the manifes-

tation of OHSS while leading to damage on ovarian

follicular reserve.
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Figure 1. — Masson trichrome staining images of rat ovary under light microscope. 1a: ovarian histology of control rat; 1b: decreased

ovarian follicle reserve and increased stromal fibrosis of hyperstimulated rat ovary. Arrow = different types of follicles; star = stromal

fibrosis areas.
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