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Abstract

Background: Previous studies have identified hundreds of constantly changing metabolic genes in cervical cancer, however, their prog-
nostic effect remains to be explored. Methods: In this paper, Cox univariate regression and Lasso regression models were used to
identify metabolic genes associated with squamous cervical cancer prognosis, and developed a prognostic risk score. Next, on the basis
of the median risk score, cervical squamous cancer patients were divided into two groups: high- and low-risk patients. Kaplan-Meier
analysis and receiver operating characteristic (ROC) curves were used to evaluate the predictive efficacy of the metabolic gene prognostic
risk model. In addition, we analysed the correlation between drug sensitivity, immune cell infiltration, and Gene set variation analysis
(GSVA) and the metabolic gene prognostic risk model. Results: The results showed that the prognosis of patients in the high-risk group
was worse. The metabolic gene prognostic model was correlated with immune cell infiltration. It is also correlated with sensitivity to
common chemotherapeutic drugs. In addition, gene set enrichment analysis results revealed several significantly enriched pathways,
which may help to explain the underlying mechanisms of cervical carcinogenesis. Conclusions: The proposed prediction model can be
potentially used for prognosis prediction of cervical cancer.
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1. Introduction

Cervical cancer is one of the most common malig-
nant tumors in women. It is reported that there are ap-
proximately 530,000 new cases and 270,000 deaths per year
worldwide [1–3]. Approximately 70% of cervical cancers
are SCCs (squamous cell carcinomas), the most common
type [4]. To treat the early-stage cervical cancer, the stan-
dard approach is through surgery, while concurrent chemo-
radiation are the main treatments for advanced cervical can-
cer. Even though the people with early stage or localized le-
sions can undergo surgery to improve their chances of long-
term survival. However, treatment is limited due to drug re-
sistance and recurrence [5], and the five-year survival rate
for advanced cervical cancer (stages II–IV) is only 15%–
69% [6], which seriously endangers the physical and men-
tal health of women. Numerous studies have demonstrated
the tight connection between metabolic disorders and an in-
creased risk of cancer, and malignant tumors are capable
of metabolic reprogramming [7]. With the deepening un-
derstanding of tumor biology and tumor metabolism, it is
found that the metabolic abnormalities in tumor tissues are
far more complex than previously recognized. In addition
to abnormal energy metabolism, tumor tissues also exhibit
defective carbon and amino acid metabolism [8,9]. Com-
pared with normal tissues, different tumor cells and tumor
tissues have metabolic heterogeneity. Local tumors also
show a dependence on metabolic reprogramming during

tumor metastasis [7]. The functions of metabolic-related
mechanisms in cervical cancer patients, however, remain
unclear. To build a more accurate prediction model, we
used Cox univariate regression model and Lasso regres-
sion algorithm. Furthermore, the model’s clinical predic-
tive value was also studied using more bioinformatics anal-
ysis methods. In cervical squamous cell carcinoma (CESC)
patients, the metabolic gene-associated model accurately
predicts survival outcomes, which can lead to individual-
ized treatment.

2. Materials and Methods
2.1 Data Preparation

From the TCGA database (https://portal.gdc.cancer.
gov/), we downloaded the raw mRNA expression data of
CESC, including the normal group (n = 3) and the CESC
group (n = 306). To analyze differentially expressed genes,
FPKM data of mRNA level 3 were integrated and nor-
malized using the Limma package. The differential gene
screening conditions were |LogFC| > 1 and p value <

0.05. Next, the Series Matrix File data of GSE44001
was downloaded from GEO public database, the annota-
tion platform is GPL14951. The Series Matrix File data
of GSE52903 were annotated with GPL6244. GeneCards
(https://www.genecards.org/) database was used to extract
18,762 metabolism-related genes, and genes with Rele-
vance scores >3 were analyzed as metabolic gene sets.
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2.2 GO and KEGG Functional Annotations
ClusterProfiler (R3.6, R Core Team, Vienna, Austria)

was used to annotate the functions of differential genes
and explore their functional relevance. Relevant functional
categories were identified using GO (Gene Ontology) and
KEGG (Kyoto Encyclopedia of Genes and Genomes). We
considered a statistical difference if p value and q value all
less than 0.05.

2.3 Model Construction and Prognosis
The prognostic correlation models were constructed

using Lasso regression once differential metabolism genes
were selected. For each patient, a risk score formula was
constructed by incorporating the expression values of each
specific gene and weighting them with their regression co-
efficients in Lasso regression analysis. The risk score for-
mula is shown below.

Risk score =
∑
i

regression coefficient of metabolic

gene i× expression of metabolic gene i.

Where Metabolic gene i is the identifier of the i-th se-
lected core metabolic gene. According to this formula, me-
dian risk score was used to distinguish low-risk and high-
risk patients. AKaplan-Meier survival curve was computed
and then compared using log-rank statistics. Using Lasso
regression and hierarchical multiple regression, we exam-
ined the role of risk score in predicting patient prognosis.
We evaluated the model prediction performance using ROC
curves.

2.4 Drug Sensitivity Analysis
We predicted each tumor sample’s chemotherapy sus-

ceptibility using the “pRRophetic” function in R software
(R3.6, R Core Team, Vienna, Austria) based on the GDSC
Cancer Drug Susceptibility Genomics Database. Based on
the GDSC dataset, 10 cross-validations were conducted to
determine the accuracy of the IC50 estimates for each spe-
cific chemotherapy drug treatment. We set all the parameter
to default settings, including the “combat”, which removes
batch effects, and the average of duplicate gene expression.

2.5 Analyses of Immune Cell Infiltration
RNA-seq data from different subgroups of CESC pa-

tients was analyzed using the CIBERSORT algorithm to
determine the relative proportions of immune infiltrating
cells. Pearson correlation analysis is performed for gene
expression and immune cell content, and statistical signifi-
cance is defined as p < 0.05.

2.6 Gene Set Difference Analysis
By thoroughly scoring the gene sets of interest, Gene

set variation analysis (GSVA) turns changes at the gene
level into changes at the pathway level and establishes the

biological function of the samples. In this study, molecu-
lar signatures database (v7.0) gene sets were downloaded,
and GSVA scores were used to assess possible biological
functional changes between samples.

2.7 Statistical Analysis
R software (R3.6, R Core Team, Vienna, Austria) and

SPSS 19.0 (SPSS Inc., Chicago, IL, USA) were used for
all statistical analyses. Kaplan-Meier survival curves were
generated and compared using log-rank. Multivariate anal-
ysis is performed using Cox proportional risk models. All
statistical tests were two-sided, and we consider is as statis-
tically significant if p < 0.05.

3. Results
3.1 Expression of Metabolism-Related Genes in the CESC
Cohort

We extracted a collection of 2235 metabolism-related
regulatory factors from the downloaded mRNA expression
data (FPKM). The differential expression between cervical
cancer patients and control patients are investigated using
the Wilcox test. According to the results, 378 metabolism-
related genes, including 177 up-regulated and 201 down-
regulated genes, were differentially expressed (logFC >1,
logFC<–1, and p< 0.05). The changes in differential gene
expression values (log2(expression value+1)) are shown by
heat map in Fig. 1A, while the differential ploidy and p
value of these differential genes are presented using a vol-
cano plot in Fig. 1B.

3.2 Functional Enrichment of DEGs and Co-Expression
Network Construction

As a result of GO and KEGG pathway enrichment
analysis, a large number of pathways were significantly
enriched for differentially expressed genes, such as coen-
zyme metabolic process, cytoplasmic vesicle lumen, coen-
zyme binding, etc. (Fig. 2A). In the KEGG enrichment pro-
cess, there are central carbon metabolism in cancer, biosyn-
thesis of amino acids and other metabolism-related path-
ways as illustrated in Fig. 2B. At the same time, through
the Metascape database, we further analyzed candidate
gene pathways. According to the results, these candidates
were mainly enriched in hormone, organic hydroxy com-
pound metabolic, and small molecule biosynthetic path-
ways (Fig. 2C). Fig. 2D shows the co-expression network
analysis result of genes in the differential gene set.

3.3 Prognosis Gene Retrieval and Prediction Model
Construction

In order to identify the key metabolic genes, we col-
lected clinical information from CESC patients. Accord-
ing to Fig. 3A–C, we used Lasso regression and Cox
univariate regression algorithms to identify cervical can-
cer signature genes. By using Cox univariate regression,
59 prognosis-related genes were identified: ISCU, TCN2,
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Fig. 1. The identification of metabolism-related genes with differential expression. (A) Heat map of the differentially expressed
genes (DEGs). (B) Volcano plot of the DEGs.

FOXP3, PGK1, UCP2, SPINT2, FASN, MOCS1, TFRC,
ADH1B, TNF, MIR200A, GAPDH, MMP1, PFKFB4,
GCH1, CDIPT, ACOT4, LDHA, LEPR, BCL2, SPP1, TN-
FRSF1B, TGFA, CPE, CA9, NPL, SPTBN1, GALNT3,
DHCR7, FGFR2, PFKM, NME4, SDS, SQLE, SLC25A42,
JUN, NT5E, TRPV4, HSPG2, PLA2G7, SLC25A10, CKB,
APOC1, GART, SLC2A3, SCD, VDAC1, ENO1, APOD,
SELP, HMGCS1, NR1D2, TREM2, PLIN2, FGFR3,
PIP4K2B, COX5A and HK2. After randomly dividing
TCGA patients into training and validation sets in an equal
ratio, Lasso regression analysis was used to determine the
best risk score. The metabolic gene prognostic risk score
model was constructed as the formula below: Risk Score
= FGFR2 × (–0.4067) + FOXP3 × (–0.2731) + NPL × (–
0.2704) + CKB × (–0.1992) + APOD × (–0.1027) + TCN2
× (–0.0673) + TNFRSF1B × (–0.0378) + FGFR3 × (–
0.0154) + HSPG2 × 0.0067 + TFRC × 0.0089 + NT5E ×
0.0220 + CA9× 0.0313 + CPE× 0.0438 + FASN × 0.0442
+ NME4 × 0.0828 + PIP4K2B × 0.0977 + SPP1 × 0.0989
+MMP1 × 0.1013 + JUN × 0.1311 + SPINT2 × 0.1474 +
GAPDH × 0.1894 + MIR200A × 0.1902 + TNF × 0.1972
+ SQLE × 0.2018 + ADH1B × 0.3305. Based on the me-
dian risk score, patients were divided into high and low risk
groups. In both the training and test sets, the OS of the high-
risk group was significantly lower (p < 0.001) than that of
the low-risk group, as shown in Fig. 3D,E. Furthermore, the
ROC curve results showed a C-index of 0.85 and 0.79 in the
training set and test set, both indicating good validation ef-
ficacy, as shown in Fig. 4A,B. Baseline characteristics of
the patients is presented in Supplementary Table 1.

3.4 Multi-Omics Study to Explore the Model’s Clinical
Predictive Value

The relationship between the tumor immune infiltra-
tion and the risk score was further investigated. The results
showed that risk score was significantly and positively cor-
related with Macrophages M0 (p < 0.01), Dendritic cells
activated (p < 0.05), Mast cells activated (p < 0.01) con-
tent, and significantly negatively correlated with Mast cells
resting (p < 0.01), T cells CD8 (p < 0.01), B cells naive (p
< 0.01), as shown in Fig. 5A. The interaction between im-
mune cells is shown in Fig. 5D. A combination of surgery
and chemotherapy is effective in treating cervical cancer
at an early stage. We use the R package’s “pRRophetic”
function to determine chemotherapy sensitivity of tumor
samples from the GDSC database. A significant relation-
ship was found between the risk score and the sensitiv-
ity to Bortezomib, Docetaxel, Erlotinib, Metformin, Mito-
mycin.C, and Paclitaxel (Fig. 5B). Additionally, we exam-
ined themutation profiles of high-risk and low-risk patients.
High-risk individuals had a significantly higher proportion
of mutations of KMT2C and TTN than low-risk individu-
als, shown in Fig. 5C. At the same time, we also found that
there were significant differences in microsatellite instabil-
ity (MSI) and tumor mutation burden (TMB) between the
two groups, and the expression of TMB and MSI was in-
creased in the high-risk group (Fig. 5E,F).
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Fig. 2. Functional analysis of metabolism-related genes. (A) DEGs enriched by GO. (B) KEGG enrichment analysis of DEGs. (C)
Related pathways of DEGs. (D) Protein network analysis of DEGs.

3.5 Signaling Mechanisms for Prognostic Model

We then studied two groups’ specific signal-
ing pathways. Results of the GSVA revealed that
ADIPOGENESIS, TNFA_SIGNALING_VIA_NFKB,
ANDROGEN_RESPONSE, MYOGENESIS, and
KRAS_SIGNALING_DN were the most enriched
pathways for the two groups of patients, as shown in Fig. 6.
It has been shown that altering these signaling pathways
can affect the prognosis of cervical cancer patients.

3.6 Prognostic Model Robustness.

Data on processed CESC patients with survival
information was downloaded from GEO (GSE44001,
GSE52903). And Kaplan-Meier survival analysis was used
to assess survival differences. Compared to the low-risk
group, OS was significantly lower in the high-risk group
(Fig. 7A,B). ROC curve analysis was performed on external
data sets to verify the model’s accuracy. The results showed

that the model has a strong predictive effect on the progno-
sis of patients (GSE44001-C-index = 0.68, and GSE52903-
C-index = 0.73), as shown in Fig. 7C,D.

3.7 Clinical Utility of the Model

The samples were divided into high and low risk
groups based on the risk core. Univariate and bivariate
analyses of CESC patients showed that the risk score was
an independent prognostic factor, as shown in Fig. 8A, B.
Nomograms were created to present the results of the re-
gression analysis, the different staging patterns of cervi-
cal cancer were significantly correlated with the distribu-
tion of risk score values obtained by our model, shown in
Fig. 9A. At the same time, the three-year and five-year OS
of CESC patients were also predicted and analyzed, and
the results showed that there was little difference between
the predicted OS and the observed OS, suggesting that the
nomogram model had a good prediction effect (Fig. 9B).
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Fig. 3. Prognostic risk model construction. (A,B) Lasso regression. (C) The regression coefficient of differentially expressed genes.
(D,E) Training and test set survival analysis.

Fig. 4. Validation of the risk model. (A) ROC curves of the training cohort (1-year AUC = 0.88, 3-year AUC = 0.88, 5-year AUC =
0.89). (B) ROC curves of the testing cohort (1-year AUC = 0.83, 3-year AUC = 0.86, 5-year AUC = 0.74).

4. Discussion
Approximately 604,127 new cervical cancer cases are

diagnosed in 2020 worldwide [10]. The current Federation
International of Gynecology and Obstetrics (FIGO) staging
can determine the prognosis initially, and FIGO stage II pa-
tients have an overall survival rate of 65%–69%, stage III
patients are 40%–43%, and stage IV patients are 15%–20%
[11]. The key to treating cervical cancer is early detection,
early diagnosis, and early treatment. However, relying on
FIGO staging alone to assess and judge the prognosis is not
enough. From the perspective of tumor driver genes, ab-

normal expression of some genes is often associated with
poorer prognostic outcome. By establishing risk models,
we screened metabolism-related prognostic genes that may
be involved in the onset, progression and malignant trans-
formation of cervical cancer, which affect the survival of
cervical cancer patients. This provides more information
to decipher the role that metabolic reprogramming plays in
tumor progression.

The role of abnormal energy metabolism in cancer
genesis and progression has been reported by previous stud-
ies [12]. As metabolic networks in tumor cells are repro-
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Fig. 5. Multiple omics maps of the risk model. (A,D) Immune infiltration and risk score. (B) Relationship between risk score and
drug sensitivity. (C) Relationship between model and SNP mutation. (E,F) TMB and MSI were significantly different between the two
groups.

Fig. 6. Signaling mechanisms for prognostic model.
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Fig. 7. Robustness of the prognostic model. (A,B) Overall survival (OS) in the external data sets (GSE44001, GSE52903). (C,D) ROC
curve analysis in the external data sets.

Fig. 8. The model has an independent prognostic value. (A) Univariate analysis. (B) Multivariate Cox analyses.

Fig. 9. Nomogram. (A) Indicators of clinical risk are correlated with the risk score. (B) The model accurately predicted 3- and 5-year
OS of CESC.
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grammed, this leads to reorganization and redirection of
nutrient fluxes. We developed and validated a prognostic
model based on 25 metabolic genes in this paper. First,
these genes may reflect cervical carcinogenesis and con-
tribute to the early diagnosis of cervical cancer. For exam-
ple, fibroblast growth factor receptor 2 (FGFR2) has been
widely studied in a variety of human cancers and may be
a potential tumor marker for early screening of cervical
cancer [13,14]. Of course, there are some genes that need
to be further explored in the pathogenesis of cervical can-
cer. Secondly, these genes are expected to be new targets
for antitumor therapy targeting cellular metabolic enzymes.
For example, PIP4K2A (phosphatidylinositol-5-phosphate
4-kinase type 2 alpha), the protein encoded by this gene
is a family of enzymes that catalyze the phosphorylation
of phosphatidylinositol-5-phosphate at the fourth hydroxyl
group of themyo-inositol ring to form phosphatidylinositol-
5, 4-bisphosphate. The results of the study [15] showed
that through p85/p110 component degradation in PTEN-
deficient glioblastoma, PIP4K2A can negatively regulate
phosphoinositide 3-kinase (PI3K) signaling. In addition,
Jones et al. [16] demonstrated that PIP4K2A overexpres-
sion reduced clonogenic growth. Interestingly, we found
that PIP4K2A downregulation in cervical cancer was asso-
ciated with better OS, which is consistent with other cancer
reports and needs further investigation.

The multi-omics study shows that the chemotherapeu-
tic drug sensitivity of tumors has different expressions in
different samples. The drug sensitivity analysis we used
provides a new scheme to distinguish different chemother-
apeutic drug combinations in the high-risk and low-risk
groups. Since the tumor microenvironment (TME) is gen-
erally associated with drug resistance in patients, we fur-
ther analyzed the relationship between risk score and im-
mune infiltration to provide new ideas for differentiating
drug resistance mechanisms in patients in both high-risk
and low-risk groups. The characteristics of low oxygen
and nutrient deficiency in TME lead to the establishment
of metabolic competition between tumor cells and immune
cells, and the accumulation of toxic metabolites will have a
negative impact on immune response [17]. Mitochondrial
dysfunction in CD8+ T cells from cancer patients has been
demonstrated [18]. In terms of metabolites, higher extra-
cellular lactate levels in the tumor microenvironment were
found to inhibit the proliferation and function of CD8+
T cells. Lipid metabolism may contribute to CD8+ T
cell depletion, while cholesterol plays a beneficial role in
CD8+ T cell immunity, suggesting that lipid accumula-
tion and catabolism may be applicable to opposing CD8+
T cell antitumor responses [19,20]. We found that risk
score and CD8+ T Cell content had a negative correla-
tion, which corresponds to previous research. During tu-
mor development, malignant tumor cells constantly adjust
their metabolic patterns in order to obtain sufficient nu-
trients to supply self-renewal and proliferation in the hy-

poxic and nutrient-deprived tumor microenvironment. This
leads to an increase of lactate, reactive oxygen species,
carbon monoxide, arachidonic acid and prostaglandins in
the TME [21]. Currently, it is believed that tumors af-
fect metabolic reprogramming and subsequently exhibit ab-
normal biological properties through some specific path-
ways, including the JAK-STAT [22], p53 [23], TNF [24],
Ras [25], and PI3K-AKT-mTOR signaling pathway [26].
In a prospective study of cervical cancer patients with
PIK3CAmutations, treatment with 300mg daily of alpelisib
resulted in 100% disease control [27]. Several other in-
hibitor therapies targeting tumor metabolism are in pre-
clinical or clinical trials (Clinicaltrials.gov, NCT02771626,
NCT03245489). Our study showed that the pathways
enriched to the high expression group such as ADIPO-
GENESIS, TNFA_SIGNALING_VIA_NFK, MYOGEN-
ESIS, KRAS_SIGNALING_DN and other signaling path-
ways are metabolically related. This phenomenon suggests
two facts: on the one hand, it reveals that cervical cancer
affects metabolic reprogramming through these potential
mechanisms, which in turn affects tumor progression; on
the other hand, the results proved that the prognostic model
was robustly connected to metabolic systems. The combi-
nation of metabolic intervention and immunotherapy will
bring hope for the precise treatment of CESC patients.

We first used Cox regression to screen genes before
constructing the risk prediction model by Lasso regression.
In addition to using the test dataset to validate the predic-
tive efficacy, we also used the GEO dataset to validate the
model robustness, both of which achieve accurate predic-
tion performance. Moreover, our study can provide insights
for identifying potential diagnostic and prognostic biomark-
ers for other biologically heterogeneous cancers.

5. Conclusions
In summary, we identify a novel metabolic genetic

prognostic model for cervical cancer prognosis prediction
based on the TCGA dataset. According to our systematic
and comprehensive studies, prognostic models could pro-
vide more accurate evaluations of cervical cancer patients’
prognoses.
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