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Abstract

Objectives: Foetal surgery is a relatively new branch of medicine; the health providers involved are currently wondering what kind
of anaesthesia should be provided to the foetuses. In the last few years, new advances have been reported on foetal sensoriality and
capability for feeling pain; meanwhile alerts have been issued on the risks of prolonged anaesthesia in the early infancy. Aim of this
paper is reviewing the main data on foetal pain, to be aware of which is the time in pregnancy when it is likely to be felt. The secondary
aim is to point out which are the anaesthetics and analgesics appropriate for prenatal surgery. Mechanism: A review of the literature
published in the last 20 years in the field of fetal sensoriality and fetal sergery has been carried out; the most pertinent papers have
been retrieved, and their conclusions are here summarized and analysed. Findings in brief: Pain can be felt by the human fetus in the
second half of pregnancy: data of physiological and behavioural studies show it with increasing evidence, as long as the gestational age
increases. With regard to the best anaesthesia in this case, it seems that the mere anaesthetics given to the mother, though apparently
sufficient during laparoscopic surgery, are not sufficient to anesthetize the foetus during open surgery; here some references are given
for the best and safest foetal direct analgesic treatment. Conclusions: Surgeons should approach carefully fetal surgery, according with
the latest findings in this field.
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1. Introduction
Foetal pain is a problem usually dealt with for its eth-

ical implications; but it is also a problem for the surgeons,
who are increasingly asked to perform challenging inter-
ventions on the foetus before birth. As this type of surgery
has become today quite widespread, it is mandatory having
certainty about the type of anaesthetic to be administered
to the mother or foetus: this now has become a necessary
topic in the modern approach to pain [1,2]. Aim of this re-
view is to report the state of the art about foetal pain, the
opportunity about using anaesthetics in these interventions,
and the type of analgesia to be used during prenatal foetal
interventions.

2. Pain pathways development
For a potentially painful stimulus to generate pain,

four conditions are needed. (A) Presence of pain receptors;
(B) mediators of the painful stimulus; (C) connection be-
tween the receptor and the brain centres that “feel” the pain;
(D) effective pain centres (Fig. 1).

2.1 Presence of pain receptors
Pain receptors appear in the dermis at about 8 weeks of

gestational age (WGA) and in themucosae at 10WGA; they
are mature at 20–23 weeks, when they become functional
for their connectionwith the brain [3]. These receptors have
nonetheless the same density [4,5] or even a greater density
[6] than in adults.

2.2 Mediators of the painful stimulus
Substance P has been found in the spine cord as early

as 8–10 WGA [7,8] and encephalin at 12–14 weeks GA [7,
9]. The cells that produce endorphins have been detected in
the pituitary gland at 12WGA and their functional maturity
is evident at 20 WGA, when they respond to corticotropin-
releasing factor stimulation [10].

2.3 Connections between receptors and the brain
The development of pain pathways begins early in the

foetus. It is composed of four stages. The first appears in
the embryo (6th WGA), where the dorsal horn cells of the
spinal cord form synapses with the primordial sensory neu-
rons, that (stage 2) attain the cutis of the limbs, of the rest of
the body and of the mucosae at, respectively, 11 [11,12], 15
and 20WGA [13,14]. Stage 3 is the migration and differen-
tiation from the spinal cord of the neurons that will form the
spino-thalamic tract; this takes place in the rat at 12 days of
embryonic life [15,16], comparable with a human embryo
of 30 days [17].

2.4 Development of the pain assessment centers: the
thalamus

The thalamus begins its maturation around 12 weeks
[18] and is complete at around 21 weeks [19,20]. The
amygdala appears at 12 weeks of gestation and is developed
at term [21,22].
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Fig. 1. Pain transmission and effects in midgestation. The cascade of pain starting at midgestation. From the cause to the signs.

2.5 The connections with the cortex

Thalamo-cortical fibres appear at 15–23 WGA [22–
24] and attain the subplate at 24 WGA, to progress later
to the definitive cortex at 24–32 WGA [25]. This enables
the cortex to respond to peripherical stimulations [26]. For
other authors, the first subplate projections from the tha-
lamus arrive between weeks 12 and 18 [27,28], the thala-
mic afferents begin to reach the somatosensory subplate at
20 WGA. The connections from the thalamus arrive to the
subplate as early as 12–18 WGA [27,28], then they head
the somatosensory and the visual subplate at 20 and 20–22
WGA respectively [29,30], to progress later to the defini-
tive cortex [31].

2.6 Development of pain assessment centers: subplate

Mode Network are present since the 35th WGA [32,
33]; this Network has an important role in the development
of consciousness. Nonetheless, even before that, another
important brain structure is involved with pain processing:
the subplate. It appears early (11th WGA) in human foe-
tuses, becomes prominent at 22–34 WGA, then gradually
disappears almost totally at 6 months of postnatal life [27],
though some subplate cells are still present in adults [34].
The subplate is a transitory primordial cortexwhere neurons
remain a while until their definitive migration to the mature
cortex. It is a carrefour for thalamo-cortical fibers, where
the information from the thalamus can be processed [35–
37]; it also has a spontaneous electrical activity [38] and
has an important role in early human behaviours [39,40].

2.7 Development of the cerebral cortex

Neurons from the subplate are driven to the cortex si-
multaneously with the arrive of direct fibres from the tha-
lamus to the cortex, starting at around 24 WGA [41]. Then
this process increases in speed until the subplate definitively
disappears and the cortex is fully developed.

3. Arguments in favor and against foetal pain
3.1 Need for a mature brain cortex

According to some researchers, pain can only be per-
ceived if the patient has a mature and safe brain cor-
tex; nonetheless, others do not agree [42–51], arguing that
the mere presence of the periphery-thalamus connection is
enough to let pain be perceived. These latter researchers
base their argument on the cases of babies with anen-
cephaly. These babies in fact show an unexpected discrim-
inative awareness [50,51]: they disclose an apparent capac-
ity of discriminating people, situations, environments, and
are capable of visual orientation and musical preferences.
As a matter of fact, several stimuli can be processed with-
out the help of the brain cortex [43,44,49] and provide use-
ful visual information, or trigger complex experiences such
as fear [45,52]. This can be true also for pain processing,
according to some authors [53,54]: anencephalic foetuses
have a withdrawal reaction to pain [55] and similar reac-
tions are described in babies with extensive brain damage
[56].

3.2 Responses of the body to the stimulus and behavioural
states

Babies born at 26–31 weeks exhibit coordinated fa-
cial expressions in response to heel prick, although these
are immature compared to older babies [57]. A behaviour
similar to infantile crying has been reported in foetuses us-
ing 4D-US scan technique [58] and blink-startle reflex in
response to a sudden stimulus has been described in 30-
week old foetuses [59]. Some wonder whether these reac-
tions may constitute pain or just a response to the stimulus
with no negative implications like stress or suffering. In
a review of the literature, Mellor [60] argues that foetuses
spend a lot of time in sleep, and this would preserve them
from pain. But two pieces of evidence contrast with this
conclusion: foetal sleep is not continuous and the foetus
can be awakened [51,61,62]. Term foetuses spend 9% of
the day awake [45]. F3 (calm wakefulness) and F4 (active
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wakefulness) states are present in 21% of the day in full
term foetuses [63]; several reports show that foetal sheep
spend a significant amount of time in wake, during late
gestation [64–72]. Even circadian rhythms are present in
foetus after their midgestation, in particular with regard to
heartbeat and locomotor activity [73]; also the EEG shows
a wake pattern after the 30th GAW [74]. External stimula-
tions [75] can wake up even sleeping foetuses [76,77]. It
is common knowledge that childbirth, and the manoeuvres
that caregivers perform on them at birth, cause awakening
in all viable foetuses.

3.3 Intrauterine sedation

According to some authors [60,78], progesterone,
prostaglandins and adenosine present in the amniotic fluid
cause foetal sedation and therefore analgesia. Nonetheless,
this raises some perplexities. The first is the confusion be-
tween the terms “sedation” and analgesia”: the mere fact
that a patient is sedated does not imply that they are not
feeling pain. Sedation is a state of diminished awareness,
not of analgesia. But there is something more: these neuro-
modulators, should be at foetal concentrations greater than
in mothers’ blood to have an actually anaesthetic effect: if
mothers’ blood values are not enough to be analgesic, a
higher level is mandatorily necessary to provoke analge-
sia in the foetus. But human foetal blood adenosine lev-
els in the third trimester of gestation are only moderately
higher than those in mothers’ blood (0.58 microM/L [79] vs
0.41microM/L [80] respectively), though in sheepmaternal
levels “2–4 folds greater” than in foetal blood are reported
[81]. Furthermore, Yoneyama et al. [82] showed that blood
adenosine levels are higher in pre-eclamptic mothers than in
foetuses, though this does not cause analgesia in the moth-
ers. Progesterone is higher in the foetal blood than in ma-
ternal blood across pregnancy, but this difference almost
disappears at the end of pregnancy: in fact, while foetal
progesterone remains constant, maternal progesterone in-
creases with gestational age [83]. We should point out that,
though higher than usual, these values are utterly far from
being analgesic in mothers, and consequently in foetuses.
Prostaglandin D2 has sleep-promoting properties, but the
only studies that assess this property are performed by in-
tracerebral infusion [84].

3.4 Endocrine responses to stimuli

Several studies assess the changes in stress hormone
production due to pain or stress in foetal animals. The cat-
echolamine system has been studied to investigate if pain
provokes an increase of adrenaline/noradrenaline in a sim-
ilar way as in adults. In effect, stress can provoke an in-
crease of these hormones in animal foetuses during the de-
velopment period correspondent to the second half of hu-
man gestation [85,86]; studies performed onmonkeys show
that this production is accompanied by long-lasting adverse
changes in motor, social and cognitive behaviour [87–90].

Other studies were performed in human foetuses. Stress
hormones soar during a blood transfusion performed in hu-
man foetuses through their hepatic vein; this increase is not
present if the transfusion is performed through the umbil-
ical vein that has no nociceptors [91] and it is also absent
if the foetus was previously given opioids [92]. Some au-
thors argue that this does not necessarily mean a response
to pain, but just a response to a physical stimulus with no
emotional implication. This would mean that anesthetised
adults have a similar increase in stress hormones if they re-
ceive a painful stimulus during the influence of anaesthe-
sia. On the contrary, adult anesthetized patients show no in-
creases in stress hormones during surgery [93,94]. Marana
et al. [95] performed a review of the literature showing an
increase of stress hormones in patients undergoing surgery,
but most of the articles cited assessed their measures in
the hours or days after surgery (i.e., including post-surgery
stress), but not during surgery [96–98]. Only one article
[99], showed an increase in adrenaline and noradrenaline
during anaesthesia in adults, but only in the group of pa-
tients who underwent a special technique (carbon dioxide
insufflation) for laparoscopic resection of ovarian tumours;
another paper questioned the effectiveness of low doses
of anaesthetics to blunt adrenaline increase in adults, but
agrees that high doses are effective in doing it [100]. Painful
stimulation causes an increase in catecholamines in anes-
thetized brain-dead patients, although a missed increase in
the control group decreases the strength of this study [101];
moreover, brain death itself can have been the cause of this
increase [102].

3.5 Development of foetal consciousness

In the third trimester of gestation, foetuses show signs
of some kind of consciousness. To assess this, researchers
introduced an auditory paradigm for the investigation of
memory traces over different time scales, the so called
“local-global” paradigm [103]. The local-global paradigm
consists of a sequence of tones which can either contain
only identical tones or end with a different tone. In prac-
tice, authors studied if foetuses responded with a startle to
a new sound inserted in a series of equal sounds (first order
regularity violation) or if they responded with a startle when
they perceived a new sound sequence after a series of equal
sound sequences (second order regularity violation). The
detection of an error can be assessed by the event-related
P300 component in the electroencephalogram, an endoge-
nous potential due to a person’s reaction to the stimulus.
In particular, P300 is considered to be developed in mental
processes involving the evaluation and categorization of a
stimulus. The authors concluded that the foetal assessment
of second-order regularity violation is a sign for conscious
mental processing [104]. Another sign of likely foetal con-
sciousness is the presence of a rudimental brain Default
Mode Network in the last trimester of pregnancy, deputed
to consciousness and to the development of empathy and
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theory of the mind [27,105]. The Default Mode Network
involves several brain areas, as the hippocampus, the pari-
etal lobe, and the angular circumvolution [28]. These data
show that the foetus has some kind of consciousness, and
this makes its perception of pain to some extent similar to
that of an adult.

4. Analgesia for foetal surgery
Two premises should be made to deal with the use of

anaesthetics for prenatal surgery.

4.1 The neurotoxicity for the foetus
Attention should be paid to the administration of ma-

ternal anaesthetics during the pregnancy [106], due to the
risks highlighted in 2016 by the Food and Drug Admin-
istration, which suggested not to exceed the 3-hour expo-
sure to anaesthetics for children under the age of 3 years
[107]. This group potentially includes the foetal population
exposed to anaesthetics during maternal anaesthesia. It is
supposed that GABA agonist (propofol, thiopental, isoflu-
rane) and NMDA antagonist drugs (ketamine, nitrous ox-
ide, tramadol) may exert their toxic effect on the develop-
ing brain by an action on GABA and glutamate receptors
[108,109]. The effects of isoflurane on the developing brain
were evaluated using foetal sheep models [108]; pregnant
eweswere exposed to single or repeated doses of isoflurane:
no significant neuroapoptosis was observed in the single ex-
posure groups, but repeated isoflurane exposure resulted in
increased neuroapoptosis of the frontal cortex [108]. Pro-
longed exposure to isoflurane produced neuroapoptosis in
fetal brain [110] as well as in the neonatal brain [111]. The
negative effect on foetal heart has been reduced by adminis-
tration of supplemental intravenous anesthesia (SIVA) with
propofol and remifentanil infusions prior to uterine inci-
sion [112] or of just remifentanil [113] to the mother: both
lower the required amount of desflurane for anaesthesia.
Sevoflurane can damage the fetal frontal cortex in mice
[114]. Some anaesthetic drugs have a protective effect on
the brain and can be useful in preventing the negative effects
of anaesthesia in foetuses. Dexmedetomidine has no inter-
action with GABA or NMDA receptors, and reduces the
doses of volatile anaesthetics while providing anxiolysis,
hypnosis and analgesia. Bypassing both GABAergic and
glutaminergic systems makes dexmedetomidine, an alfa2-
agonist, a possible neuroprotector of the foetal brain from
isoflurane. This effect has been showed in ovine and foetal
rat models [115]. Xenon, a noble gas, is another potentially
neuroprotector [116]. Even propofol can give some neuro-
protection when used in addition to isoflurane alone [112];
nonetheless, propofol detrimental effects on the developing
brain have been extensively described [117].

4.2 Extraction index
The extraction index represents the amount of medica-

tion that is removed from the foetal circulation by the pla-

Table 1. Extraction index of the main maternal anaesthetics
used during foetal surgery.

Drug Extraction index (foetal/maternal ratio)

Propofol 0.7–1.3
Ketamine 1.26
Thiopenthal 0.4–1.1
Morphine 0.61–1
Fentanyl 0.5–0.9
Oxycodone 1
Remifentanil 0.29–0.88
Legend: see the text for details. From Ref#123, adapted.

centa and does not arrive to the fetus. In the case of mater-
nal anaesthetics, it varies and can be high; in this case, even
though the anaesthetic given to the mother attains good val-
ues in her blood, it is not sufficiently high in foetal blood
[118,119].

The values available for the foetal/maternal total con-
centration ratios were approximately 0.3 for bupivacaine
and etidocaine, 0.5 for lidocaine, 0.7 for mepivacaine, and
1 for prilocaine [120]. The low ratios of bupivacaine and
etidocaine result from extensive binding (90%) of these
drugs to maternal alpha1-acid glycoprotein which exceeds
corresponding foetal protein binding (50%). The passage
of drugs through the placenta depends on various factors,
which will affect the concentration of the drug in the foetal
blood [120]. These factors are fat solubility, molecular
weight and ionic charge of the drug. The highly ionized
molecules, the liposoluble ones and those with molecular
weight lower than 500 Daltons easily cross the placenta
[121]. The passage of the drug also depends on the acidity
of the foetal blood, which will be more acidic the more it
will favor the passage of non-ionized molecules [121]. For
example, lidocaine is a weak base that increases in foetal
blood in case of foetal acidosis. Placental transfer of muscle
relaxants is very low, with a foetal concentration ~10–20%
of the maternal plasma concentration [122]. The extrac-
tion indices of halothane, isoflurane and nitrous oxide are
0.71/0.87, 0.71 and 0.7/0.8, respectively [122] and sevoflu-
rane 0.38 [123]; that of propofol ranges 0.5/0.8 [124]; ma-
ternal blood concentrations of propofol are 14 times higher
than those of foetal blood after 5 min after infusion and
twice as high after 180 min [124]. Morphine and fentanyl
extraction rate range 0.6–1 and from 0.5–0.9 respectively
[123,125,126]. Table 1 summarizes the main evidences.

We should also discuss if the foetus requires a direct
or an indirect analgesic treatment.

Several authors endorse a sole analgesia given to the
mother to anaesthetise both mother and foetus [127], in par-
ticular in the case of laparoscopic surgery [128]. Others
suggest an additional foetal direct analgesia should be ad-
ministered during surgery [129] using opioids. Fentanyl
provided intramuscularly to the fetus (10 µg/kg) decreases
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the stress responses to painful procedures; in particular,
a decrease beta-endorphin response to pain and an absent
Doppler US response to pain have been described [130] as
well, as it is noted in the case of premature babies [131].
Opioids can be provided to the foetus either via intramus-
cular injection or via umbilical cord [132,133]. Some in-
vestigators recommend administering 20 µg/kg intramus-
cular fentanyl to the foetus prior to the procedure [134,135],
while others recommend giving the mother a continuous in-
fusion rate of 0.1 µg/kg/min remifentanil to achieve foetal
immobilization and maternal sedation, although they do not
exclude the direct administration of analgesics to the foetus.
Intra-amniotic administration of opioids to the foetus has
been proposed: researchers have shown that higher plasma
concentrations are obtained in foetal lamb than in sheep,
suggesting that this pathway could be usable for humans
[136].

Last, foetal activity during surgery is worth monitor-
ing, with regard to general suffering and to pain.

The need of foetal monitoring is a tenet in this field.
We should be aware if the foetus is undergoing any hypox-
emic or painful distress during this kind of surgery. To this
aim, we need a continuous monitoring of the foetal heart
rate and foetal heart variability, being the latter a sign of
sympathetic unbalance [137]. Nonetheless, a change of
foetal heart rate variability is not always an indicator of
foetal distress but may simply be a sign of expected anaes-
thetic effects on the foetal autonomic nervous system [138].
Cardiotocography, fetal echocardiography or ultrasound as-
sessment of umbilical or middle cerebral artery blood flow
can be monitored for fetal well-being, but interpretation can
be difficult [139]. Fetal blood pressure monitoring is not
yet feasible [139] Slowing of the fetal heart can be a sign
of fetal hypoxaemia and acidosis, but can also be related
to a decrease in temperature, maternal respiratory acidosis,
or to the administration of drugs [140]. Some authors have
tried to create a fetal pain assessment tool, to be used during
prenatal surgery [141]. The current fetal monitoring during
prenatal surgery is based on echocardiographic monitoring
of fetal heart rate and contractility. If any concerns are in-
dicated by the fetal echocardiographic evaluation, more ad-
vanced ultrasoundmonitoring of umbilical andmiddle cere-
bral artery are obtained.

5. Conclusions
The arguments in favour of foetal pain and the admin-

istration of foetal analgesics during open surgery overweigh
those that are against. This should be taken into consid-
eration by those who perform this special type of surgery.
Signs of pain in human foetuses are evident from the 20th
to 22nd week of gestation and the foetus should receive
the same analgesic care during the surgery that a premature
baby at an identical postconceptional age receives. Today
the debate focuses on the type of anaesthetic to be provided
to the foetus and whether administering anaesthetics to the

mother is sufficient to guarantee foetal anaesthesia. In this
review we have brought valid elements for those who have
to perform this type of surgery.
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