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Nanoparticles and pregnancy: from benchside to the community
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According to the International Union of Pure and Ap-
plied Chemistry (IUPAC), ultrafine particles or nanopar-
ticles (NPs) are particles of matter of any shape with di-
mensions between 1 nm (1 x 10~ m) and 100 ym (1 x
10~7 m) [1]; being smaller than visible light wavelengths
(400700 nm), NPs cannot be observed with common op-
tical microscope, demanding the use of an environmental
scanning electron microscope (ESEM), possibly coupled
to an energy dispersive X-ray (EDX) spectroscope for el-
emental microanalysis [2]. By virtue of this, NPs disper-
sions in transparent media are in turn transparent; moreover,
they easily pass through common filters, and the separa-
tion from liquids needs nanofiltration techniques [3]. NPs
can be of both natural and artificial origin: natural ones
derive from many cosmological, geological and meteoro-
logical processes, while artificial ones are man made by
means of combustion processes [3]. An ultra-specialized
branch of nanotechnology is precisely focused on the re-
alization of NPs with specific properties, while nanotoxi-
cology studies the toxicity of these NPs on the living be-
ings [4]. Of the possible hazards, inhalation and ingestion
appear to present the most concern, because of the high
NPs surface-to-volume ratio, which makes them highly cat-
alytic or reactive [3]. In addition, they can receive a coat-
ing from phospholipid bilayers, pass through cell mem-
branes, and to aggregate together [5]; obviously, a fetus
body is more sensitive to environmental disruptors than an
adult [6-8]. As 0f 2013 the USA Environmental Protection
Agency was testing the safety of the following NPs: car-
bon nanotubes (CNTs), iron oxide NPs (FeO NPs), silver
NPs (Ag NPs), copper NPs (Cu NPs), cerium dioxide NPs
(CeO2NPs), and titanium dioxide NPs (TiOy NPs) [9]. A
study on mice by Qi and colleagues has highlighted that
CNTs overcome the fetal-placental barrier, mainly accu-
mulating in the liver, lungs and heart of the fetus [10]. A
further murine model by Fujitani et al. [11] has showed
that CNTs possess teratogenicity at least under experimen-
tal conditions. Nanoscale iron is increasingly used into
nutrient supplement since better-absorbed; however, high
doses of (+) FeO NPs administered in a late stage of organo-

genesis are resulted more fetotoxic in mice than equivalent
doses of (—) FeO NPs [12]. Ag NPs are currently being
exploited into food packaging and for their antibacterial,
antifungal and antiviral properties (Fig. 1). Once ingested
or inhaled during pregnancy, they reach the placenta, in-
creasing the expression of pregnancy-relevant inflamma-
tory cytokines, and inducing immunological dysfunction in
pregnant mice [13]. Prenatal exposure to Ag NPs can com-
promise postnatal development of neonatal rats, especially
the pulmonary, reproductive, immune and neuronal func-
tions [14-23]; moreover, they show toxicity on endome-
trial receptivity in female mice [24]. ESEM investigations
have showed that placental transfer of Ag NPs causes in-
dentation of nuclei, clumped chromatin, pyknotic nuclei
and focal necrosis; therefore, further studies of genotoxi-
city have been recommended [25]. Vidmar and colleagues
have proved Ag NPs translocation in an ex vivo human pla-
centa perfusion model [26], while Gatti et al. [27] have
found Ag NPs in the human fetal brain of an unexplained
stillbirth suggesting a possible pathogenetic role. Cu NPs
are used as preservatives in pressure treated lumber and in
some paints or coatings. Oral exposure of pregnant mice to
Cu NPs causes liver disorders in fetuses [28,29]; moreover,
they show evident germinal toxicity via extracellular signal-
regulated kinases (ERK) pathway in female mice [30]. Pre-
natal exposure to Cu NPs triggers severe lung inflammation
in dams and immunomodulatory aftermaths in offspring
[31]. CeO2 NPs are used in fuel additives, electronics and
biomedical supplies; a lot of CeOy NPs applications imply
their dispersion in the environment, with a consequent in-
crease of polluting hazard. Both human cytotrophoblasts
and syncytiotrophoblasts can internalize CeO2 NPs, which
influence trophoblastic metabolic activity in a dose and time
dependency, induce caspase activation, a lactate dehydro-
genase release, and disturb secretion of pregnancy-relevant
hormones [32]. In a murine model, maternal exposure to
CeOy NPs during early pregnancy gives rise to placen-
tal dysfunctions, among which low-quality decidualization
and abnormal recruitment of uterine natural killer cells [33].
TiO, NPs are currently exploited in sunscreens, cosmet-
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Fig. 1. Example of ESEM image with spherical Ag NPs from

a human cellular substrate as confirmed by the Ag peak in the
corresponding EDX spectrum [X axis: KeV; Y axis: counts x
10°].

ics, paints and coatings; they also find application into re-
moving contaminants from drinking water. Recent research
from the northern China, performed under TiO2 NPs min-
ing exposure, has put in correlation the maternal blood Ti
concentration with low birth weight (LBW) risk. A total
of 45 females who gave birth to LBW babies (cases) and
352 females with no LBW newborns (controls) have been
compared; interestingly, median total blood Ti concentra-
tion in the cases group was significantly higher than in the
controls group (134 vs 129 ng/mL, p-value =0.039) [34]. A
human maternofetal transfer of TiOo NPs during pregnancy
have been previously demonstrated, as well as an increase
in placental vascular resistance and an impairment in um-
bilical vascular reactivity due to TiO2 NPs [35,36]. Mater-

nal exposure to TiO5 NPs during the periconception period
has been also correlated with a higher risk of neural tube
defects in human offspring [37]. In mice, TiO2 NPs expo-
sure in pregnancy significantly affects the placental devel-
opment, most likely by dysregulating proliferation, vascu-
larization and apoptosis [38—40]. In addition, TiO2 NPs ex-
posure alters mice ovary resulting in hypofertility [41,42].
In conclusion, all these preliminary data suggest to protect
pregnant women from high exposures of NPs, and stimu-
late new research inside this pioneering field in the interest
of the whole community.
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