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Abstract

Objective: To understand the basic mechanism and dynamic regulation that underlies the epithelial-to-mesenchymal transition (EMT)
in ovarian cancer (OC) cells. Mechanism: A literature review using evidences from several data bases (i.e., PubMed, EMBASE, Web
of Science, Medline, Cochrane, Science Direct, and Google Scholar) were conducted to describe the basic mechanism and dynamic
regulation of EMT in OC cells. Finding in Brief: EMT is a complex epigenetic reprogramming orchestrated by specific transcription
factors (TFs) and multiple upstream activators and regulators, such as transforming growth factor-β (TGF-β), Wnt, Hedgehog, and Hippo
signaling pathways. The net result of this cellular reprogramming is the acquisition of mesenchymal phenotypes with increased invasive
and metastatic potential, stemness properties and chemoresistance. Recent studies have demonstrated that EMT activation is the result
of dynamic and reciprocal interplay between OC cells and their tumor microenvironment (TME). Cellular or non-cellular component
of TME, external factors related to TME such as hypoxia, oxidative stress, mechanical forces, as well as exposure to chemotherapy, all
play significant role to EMT induction. Current understanding behind the mechanism of EMT induction in cancer cells have proposed
the idea that EMT is not merely a binary process involving a complete conversion from epithelial to mesenchymal state, but rather a
dynamic process that encompasses a range of hybrid states, a phenotype that has been referred to as “partial EMT”. Cells with partial
EMT have been known to be more apoptosis-resistant and have more tumor-initiating potential as compared to those with complete
EMT. Conclusions: Understanding the complex regulatory network that underlies EMT in OC cells is crucial in order to gain insight in
developing novel and effective treatment strategies for OC.
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1. Introduction
In 2020, ovarian cancer (OC) became the third most

common gynecologic malignancy with a total of 313,959
new cases, and 207,252 new deaths recorded globally [1,2].
Majority of OC are diagnosed in advance stage due to the in-
effective screening, and its silent progression at early stage
[3]. OC imposes a significant economic burden with annual
average costs being significantly higher in advance stages
than early stage OC [4]. Epithelial OC is the commonest
histologic type, while only 10% belong to the non-epithelial
type. The epithelial subtype has five major histologic types,
i.e., serous, mucinous, endometroid, clear cell, and unspec-
ified [5]. Surgical cytoreduction to attain no gross residual
disease (R0) followed by adjuvant chemotherapy is the cur-
rent standard treatment. Recently, maintenance therapies
such as poly ADP-ribose polymerase (PARP) inhibitors, be-
vacizumab, and drugs targeting homologous recombination
deficiency (HRD) are incorporated to prolong the survival
[6]. However, despite advancement in the treatment of OC,
recurrence rate remains high (>45%), and survival for those
with advance disease remains dismal. The predictors for
recurrence include the extent of carcinomatosis within the

peritoneal cavity, the amount of residual disease after cy-
toreductive surgery, and cellular grade [7].

Epithelial-to-mesenchymal transition (EMT) program
has gained popularity among researchers as the responsi-
ble cellular mechanism that confers OC cells with increased
metastatic potential and drug resistance, thus predisposing
to recurrence [8–11]. EMT is a complex epigenetic re-
programming that results in reversible phenotype transition
where cancer cells lose their epithelial phenotype and ac-
quire mesenchymal phenotype [12]. The crucial orchestra-
tor in EMT promotion is a well-known group of transcrip-
tion factors (TFs), which includes SNAI1 (Snail1), SNAI2
(Snail2/Slug), Twist1/2, and zinc-finger E-box binding
homeobox 1/2 (ZEB1/2) [13]. These TFs induce epi-
genetic silencing of epithelial markers (e.g., E-cadherin,
Mucin 1 (MUC1), cytokeratin 18) while upregulating the
expression of mesenchymal markers (e.g., N-cadherin, vi-
mentin, fibronectin, matrix metalloproteinases (MMPs))
[14]. The upstream regulators of these EMT-transctipion
factors (EMT-TFs) are multiple pathways which are mainly
involved in embryonic development, such as transform-
ing growth factor-β (TGF-β), Wnt, Hippo and Hedgehog.
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Fig. 1. Schematic illustration of complex regulatory interplays that underlie EMT. Tumor microenvironment (TME) and exposure
to chemotherapy are believed to be the activators of EMT. The external factors then drive the expression of specific TFs, and activate sig-
naling transduction pathways (TGF-β, Wnt, Hedgehog, Hippo). Expression of several non-coding RNA also interacts with EMT-TFs and
signaling pathways. The net result of this complex regulatory network is the activation of mesenchymal phenotype with increased inva-
siveness, metastatic potential, stemness, and chemoresistance. EMT, epithelial-to-mesenchymal transition; TGF-β, transforming growth
factor-β; EMT-TFs, EMT-transctipion factors; ADSC, adipose-derived stem cells; CAF, cancer associated fibroblasts; EPC, endothelial
progenitor cells; ROS, reactive oxygen species; TAM-M2, tumor associated macrophage-M2; MMPs, matrix metalloproteinases; MUC1,
Mucin1.

These pathways can be activated by numerous signals orig-
inating from the OC cells itself or their microenvironment.

This literature review will summarize the recent ad-
vances in the mechanisms underlying the complex regu-
latory network of EMT in OCs, with the focus on its key
orchestrators such as EMT-TFs, signaling pathways, up-
stream activator, as well as the dynamics of its regulation.

2. The Key Players of EMT Regulation in OC
EMT is a complex, reversible cellular process orches-

trated by multiple activators and signal transduction path-
ways (Figs. 1,2). The downstream effector in this process
is a series of activated TFs (EMT-TFs) that acts as either ac-
tivator or repressor of the targets gene, with the end result
of phenotypic transition from epithelial cells to more inva-
sive mesenchymal cells. Thus, epigenetic reprogramming
is at the heart of EMT regulation [15]. By undergoing EMT,
OC cells gain characteristics crucial for distant metastasis,
resistance to apoptosis, and thus, recurrence after therapy
[16].

2.1 Transcription Factors (TFs)
2.1.1 Snail/Slug

Snail and Slug, encoded by the snail family tran-
scriptional repressor 1 (SNAI1) and 2 (SNAI2) gene, re-

spectively, are transcriptional repressors that play impor-
tant roles in regulating EMT. Snail and Slug activation re-
sults from several signaling pathways, such as receptor ty-
rosine kinases (RTKs), TGF-β, Notch, Wnt, tumor necro-
sis factor alpha (TNF-α), and bone morphogenetic pro-
teins (BMPs) [17–24]. Snail transcriptionally represses
the expression of CDH1 gene, which encode E-cadherin.
Snail also downregulates other epithelial markers, but up-
regulates the mesenchymal markers and transcriptional re-
pressor ZEB1 [25,26]. Meanwhile, Slug represses the
expression of cell junction components: adherens junc-
tion (E-cadherin, β-catenin), tight junction (Occludin, Zona
occludens-1 (ZO-1)) and desmosomes (Dsg2) [27]. In OC
cell lines, Snail and Slug expressions were mutually ex-
clusive, where Snail downregulates Slug expression [28].
Snail strongly represses epithelial splicing regulatory pro-
tein 1 (ESRP1) transcription in OC cells, which resultes in
an isoform switching from epithelial spliced variant CD44v
to mesenchymal spliced variant CD44s [29,30]. Slug is in-
volved in the ferroptosis regulation in OC cell line through
binding to the promoter of Solute carrier family 7 member
11 (SLC7A11) [31]. Slug is also capable of transforming
normal fibroblasts to a cancer associated fibroblast (CAF)-
like state [32]. One study demonstrated that among several
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Fig. 2. Signaling pathways that regulate the induction of EMT. Several signaling pathways play crucial role in EMT induction. All of
these important pathways culminate in the activation of genes encoding the key TFs zinc-finger E-box binding homeobox (ZEB), Snail
and Twist. Several miRNAs downregulate the expression of these TFs. SMAD 2/3/4, SMAD family member 2/3/4; GSK, glycogen
synthase kinase; APC, adenomatous polyposis coli; AKT, AKT serine threonine kinase; JAK, janus kinase; STAT, signal transducer and
activator of transcription; TCF, T cell factor; LEF, lymphoid enhancer factor; mTOR, mammalian target of rapamycin; NFκB, Nuclear
factor kappa B; RTK, receptor tyrosine kinase; AXIN, Axin; PI3K, phosphatidylinositol 3-kinase.

EMT-TFs (Twist, Slug, ZEB1/2), Slug showed the high-
est expression. Slug is believed to be the master regulator
of EMT [33]. Downregulation of Snail and Slug expres-
sion greatly suppressed cell invasiveness and promoted cell
apoptosis [31,34–37]. Snail inhibition also appears to re-
duce the expression of C-X-C motif chemokine ligand 1
(CXCL1) and CXCL2, chemokines that attract myeloid-
derived suppressor cells (MDSCs) [38]. Higher Snail and
Slug expression are associated with poorer survival of OC
patients [39–41].

2.1.2 Zinc-Finger E-Box Binding Homeobox (ZEB)

ZEB is the zinc finger E-box binding homeobox fam-
ily of TFs with its two members, ZEB1 and ZEB2. ZEB
contain zinc-finger domain that allows binding at the en-
hancer boxes within the promoter region of target genes
[42]. ZEB can interact with several TFs and cofactors, such
as Smads (Suppressor of mothers against decapentaplegic),
protein 300 (p300)/P300/CBP-associated factor (pCAF),
Brahma-related gene-1 (BRG1), Nucleosome remodeling
and deacetylation (NuRD) complex, and C-terminal bind-
ing protein (CtBP) [43–45]. The interaction determines
ZEB role either as transcriptional activator or repressor
of the target genes. ZEBs are crucial regulators of TGF-
β/BMP signaling pathways [46–48]. ZEB1 synergizes with
Smad-mediated transcriptional activation, while ZEB2 re-
presses it [44]. Downregulation of ZEB2 expression in
OC decreased the population of cancer stem cells (CSCs)

and reduced the expression of Oct4 and Homeobox protein
Nanog (Nanog) [49]. Furthermore, ZEB2 knockdown re-
sult in downregulation of N-cadherin and vimentin. ZEB2,
but not ZEB1, may regulate the expression of membra-
nous E-cadherin during EMT [50]. ZEB1 is associated with
worse overall survival (OS) in patients with solid tumors
[51].

2.1.3 Twist

Twist is a member of the basic helix-loop-helix
(bHLH) family, and acts as either transcription activator or
inhibitor [52]. The two Twist genes, i.e., Twist1 (Twist) and
Twist2 (Dermo-1), have 90% similarity [53]. Upregulated
Twist expression predicted shorter OS in OC patients [54–
56]. Twist1 induce upregulation of Akt upon cisplatin treat-
ment in OC cell lines, which drives resistance [57]. Twist2
also induces chemoresistance in OC cells through induc-
tion of Akt serine threonine kinase (Akt)/Glycogen syn-
thase kinase-β (GSK-β) signaling pathways [58]. Twist2
cytoplasmic expression contributes to the maintenance of
epithelial characteristics, while nuclear Twist2 induces ex-
pression of Vimentin which promotes metastasis. Upreg-
ulated expression of Twist2 reduces the expression of E-
cadherin while increasing the expression of vimentin [59].
Twist2 also upregulates N-cadherin and β-catenin in hu-
man OC cells. Upregulation of β-catenin expression by
Twist promotes the activation of Wnt/β-catenin pathway
[60]. Under hypoxic conditions, Twist2 is also capable
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of activating phosphatidylinositol 3-kinase-Akt (PI3K-Akt)
pathway, which in turn promotes the survival of cancer cells
[61].

2.1.4 Novel TFs
Heat shock transcription factor 1 (HSF1) is a pro-

teotoxic stress-responsive transcription factor that also con-
tribute in EMT. Knockdown of HSF1 expression in OC
cell lines impaired TGF-β-induced EMT [62]. Downreg-
ulation of HSF1 also results in reduced proliferative ac-
tivity, and intensified apoptosis [63]. Copy number alter-
ation of HSF1 gene in OC patients is associated with worse
outcome [64]. HSF-1 also plays an important role in Akt-
induced Slug upregulation [65]. SRY-related HMG-box
genes (SOX), a family of pluripotent TFs may also play a
role in EMT. Their role in inducing EMT have been demon-
strated in several solid cancers [66–69]. Knockdown of
SOX2 induced downregulation of vimentin and upregula-
tion of E-cadherin in OC cell lines [70]. Nanog, another
important TFs commonly involved in embryonic develop-
ment, also contributes to EMT. Nanog regulates EMT via 5′
AMP-activated protein kinase (AMPK)/mammalian target
of rapamycin (mTOR) signaling pathway [71]. Silencing of
Nanog expression in OC cell lines restores expression of E-
cadherin [72]. Inhibition of Nanog attenuates the prolifera-
tion, migration, and invasion of OC cell lines. Meanwhile,
increased expression of Nanog enhances OC cell migration
and invasion [73]. Downregulation of Nanog also results in
reduced expression of vimentin, β-catenin, and Snail [74].

2.2 Signaling Pathways
2.2.1 Transforming Growth Factor Beta (TGF-β)

TGF-β is a highly pleiotropic cytokine that is capa-
ble of inducing EMT. In ovarian surface epithelium (OSE),
TGF-β1 promotes tissue repair after ovulation by induc-
tion of EMT [75,76]. TGF-β is overexpressed in the OC
microenvironment. TGF-β1 upregulate the expression of
Snail, Slug, Twist, ZEB1, and mesenchymal markers while
downregulating E-cadherin [77–80]. TGF-β inhibition re-
sults in reduced expression of Smad2, Smad3, Snail, and
vimentin, and increased expression levels of Smad4 and
E-cadherin, thus blocking the activation of EMT [81,82].
TGF-β1 also induces overexpression of SOX2, OCT4a,
Nanog, CD44, and CD117 in OC cells [83]. TGF-β also
induces EMT in peritoneal mesothelial cells, which is as-
sociated with cancer-associated mesothelial cells [84]. In
promoting EMT, TGF-β expression is mainly mediated by
the activity of Smad protein [81]. TGF-β also capable in in-
ducing the expression of long non-coding RNA (lncRNA)
activated by TGF-β (lncRNAATB), which acts as inhibitor
to miR-204-3p [85].

2.2.2 Wingless/Integrated (Wnt)
Wingless/Integrated (Wnt) signaling pathway is one

of the main orchestrator of EMT in OC. In promoting

EMT, Wnt signaling mainly depends on the activity of β-
catenin, which is a transcriptional activator to several EMT-
TFs (Snail, ZEB, Twist) [34,86–89]. Suppression of the
Wnt/β-catenin result in suppression of EMT in OC cells
[86,90–92]. The Wnt/β-catenin pathway also appears to
be activated by Twist, which releases β-catenin from β-
catenin/E-cadherin complex and thus, leads to nuclear β-
catenin accumulation [60]. C-X-C motif chemokine lig-
and 14 (CXCL14) can induce EMT in OC cells via ac-
tivation of the Wnt/β-catenin pathway [93]. The bioac-
tive lipid lysophosphatidic acid (LPA) promotes the nuclear
translocation of β-catenin and upregulates the expression of
Wnt/β-catenin target genes [94]. The non-canonical Wnt
also contributes to EMT via signal transducer and activator
of transcription 3 (Stat3) expression [95–97]. Upregulation
ofWnt5a, the non-canonical Wnt ligand, increases the tran-
scriptional activation of Snail and induces EMT via protein
kinase Cα (PKCα) [98,99]. Wnt5a, the activator of non-
canonical Wnt pathway, is also capable of inducing EMT
in OSE cells [100]. Downregulation of Wnt5a significantly
reduces the expression Smad2/3 and Yes-associated protein
1 (YAP1) expression [101].

2.2.3 Hedgehog

Hedgehog (Hh) signaling cascade culminate in a bal-
ance between activator or repressor forms of transcription
factor Glioma-associated oncogene TFs (Gli) with PTCH1,
PTCH2, and GLI1 being the main target genes. Hedgehog
(Hh) ligand, Patched (Ptch), and Smoothened (Smo) are
proteins involved in the activation of Hh signaling cascade
[102]. Hh signaling plays an important role in the regulation
of invasiveness, chemoresistance, as well asmaintenance of
CSCs characteristics [103–108]. A crosstalk between Sonic
Hh-Gli1 signals and PI3K-Akt pathway regulates EMT in-
duction in OC cells [109]. Inhibition of Hh signaling results
in inhibition of EMT [110,111]. Gli1 also regulates the ex-
pression of Snail1, Slug, and Twist. Gli1 and Gli2 repress
the expression of E-Cadherin [112].

2.2.4 Hippo

The Hippo pathway is a tumor suppressive pathway
involved in regulating tissue growth, and their compo-
nent comprises a pair of related serine/threonine kinases,
macrophage stimulating 1 and 2 (MST1 and MST2), large
tumor suppressor kinase 1 and 2 (LATS1 and LATS2),
and lastly Salvador family WW domain containing pro-
tein 1 (SAV1), and Mps one binder 1 (MOB1A and
MOB1B) [113]. This pathway downregulates the activ-
ity of YAP/TAZ. Following Hippo inactivation, YAP and
transcriptional enhanced associate domain (TEAD) form
complex within the nucleus to direct transcription of tar-
get genes. EMT-TFs are capable of complex formation
with YAP/TEAD, which in turn upregulate the expression
of YAP target genes in inducing EMT in OC cells [114–
116]. High YAP and TEAD expression is associated with
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OC progression. Hippo pathway is also involved in regu-
lating chemoresistance in OC cells [117–121]. Hippo sig-
naling interacts with other EMT-inducing pathways, such
as TGF-β and Wnt [101].

2.3 Non-Coding RNA
2.3.1 Micro-RNA

MicroRNA (miRNA) is a single-stranded non-coding
RNA that acts as antisense RNA to downregulate expres-
sion of the target genes at the post-transcriptional level.
Several miRNAs are involved in the regulation of EMT in
OC cells. miR-200 family of miRNAs is a well-known
EMT suppressor. Low level of miR-200 expression is
demonstrated in normal OSE, but the increased expression
is present in OC [122]. Overexpression of miR-205 and/or
miR-200 family result in downregulation of ZEB1 tran-
scription factor and Wnt5a [123]. miR-200c upregulation
induced downregulation of ZEB1 and vimentin, and upreg-
ulation of E-cadherin [124]. In OC cells line, miR-200c
overexpression decrease Snail, increase E-cadherin, and
significantly reduce the invasiveness and tumorigenic po-
tency of OC cell lines [125]. miR-203 expression can atten-
uate TGF-β pathway in OC cells [126]. Let-7 miRNA fam-
ily is another EMT suppressor. The overexpression of Let-
7g in OC cell lines reduce vimentin, Snail, and Slug expres-
sion [127]. miR-16 promotes the inactivation of theWnt/β-
catenin signaling pathway, thus inhibiting EMT. miR-16
upregulates the expression of Cadherin-1 and downregu-
lates the expression of Snail, Slug, Twist 1, vimentin, and
Cadherin-2 in OC cell lines [128]. miR-30d represses EMT
by targeting Snail [129]. Expression of miR-30d reversed
the TGF-β1-induced EMT phenotypes in OC cell lines.
Expression of miR-186 in OC cells downregulates the ex-
pression of Twist1 and subsequent reversal of EMT [130].
miR‑141 overexpression upregulates E‑cadherin, and de-
creases cell invasiveness in OC cell line [131]. However,
several miRNAs also act as an EMT inducer. miR-1301
upregulates Snail, Slug, and N-cadherin expression, while
downregulating E-cadherin [132]. The miR-150-5p also
plays important roles in EMT regulation [133]. miR-27a
promotes EMT via activation of Wnt/β-catenin signaling
pathway [134].

2.3.2 Long Non-Coding RNA
Long non-coding RNA (lncRNA) is non-protein cod-

ing RNA with length longer than 200 nucleotides that regu-
lates target gene expression at both transcriptional and post-
transcriptional level [135]. lncRNA are capable of direct
binding to DNA or RNA to affect the transcription process.
lncRNA H19 expression in the OC cells promotes migra-
tion and EMT-related activity [136]. Silencing of lncRNA
in colon cancer associated transcript 2 (CCAT2) results in
EMT inhibition. Knockdown of lncRNA CCAT2 also in-
hibits the expression of β-catenin and the activity of Wnt
signaling pathway [137]. TGF-β treatment in OC cell lines

results in the upregulation of lncRNA H19 and downregu-
lation of miR-370-3p. H19 overexpression or miR-370-3p
knockdown are capable of promoting TGF-β-induced EMT
[138]. lncRNA-ATB downregulation results in EMT sup-
pression [139]. By regulating the expression of LATS2,
lncRNA ASAP1 Intronic Transcript 1 (ASAP1-IT1) in-
duces downregulation of YAP1 expression and thus, pre-
venting EMT in OC cells [140].

3. Activation of EMT Program in OC
EMT activation is the result of dynamic and reciprocal

interplay between OC cells and their tumor microenviron-
ment (TME). Cellular or non-cellular component of TME
can act either as activator or inhibitor to certain signaling
transduction pathways associated with EMT. On the other
hand, OC cells can induce differentiation of cellular compo-
nent of TME into certain phenotypes that favor metastatic
potential of drug resistance of OC cells. These complex
regulations are also affected by external factors related to
TME, such as hypoxia, oxidative stress, as well as mechan-
ical forces.

3.1 The Role of Tumor Microenvironment
3.1.1 Cellular Components

TME is the niche or environment in which the cancer
cells closely interact with the host stroma, including cellu-
lar and non-cellular component of TME. The cellular com-
ponents include immune cells, endothelial cells and fibrob-
last, while the non-cellular components include extracellu-
lar matrix and cellular metabolites. The cellular compo-
nents play a more dominant role in promoting EMT. Can-
cer associated fibroblasts (CAF) are one of the key cellu-
lar components of TME that play important role in EMT
induction. CAF are more proliferative and have higher
metabolic states as compared to normal fibroblasts [141].
CAF-derived exosomes are rich in TGF-β as compared to
normal fibroblasts, and are capable of inducing EMT in OC
cell lines [142]. CAF highly secretes interleukin 6 (IL‑6)
and promotes TGF-β-mediated EMT via the Janus kinase
2 (JAK2)/Signal transducer and activator of transcription
3 (STAT3) pathway [143]. CAFs also secretes periostin,
which functions as a ligand for integrin αvβ3. Periostin is
also capable of inducing EMT, mediated by TGF-β in OC
cells [144]. The increased expression of fibroblast growth
factor-1 (FGF-1) in CAFs induces the phosphorylation of
fibroblast growth factor receptor-4 (FGFR-4) in OC cell
line, which then induces the activation of mitogen-activated
protein kinase (MAPK)/Extracellular signal-regulated ki-
nase (ERK) pathway and EMT-associated gene Snail1
and matrix metalloproteinase 3 (MMP3) expression [145].
Stanniocalcin-1 expressed by CAF, is capable of upregulat-
ing the expression of fibronectin, vimentin, and Slug [146].

Tumor associated macrophage (TAM) plays a critical
role in the interaction between TME and OC cells. TAMs
are capable of differentiating into two disctinct phenotypes:
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M1, which has pro-inflammatory with anti-tumor activity,
and M2, which has anti-inflammatory with pro-tumor ac-
tivity. The path of TAMs is determined by the local TME
[147]. In amousemodel of OC, TAM require ZEB1 expres-
sion to activate the tumor-promoting functions [148]. OC
cells secretes macrophage colony-stimulating factor (M-
CSF) to drive the differentiation of M2-TAM [149]. M2-
TAMs are capable of inducing EMT of OC cells by re-
leasing chemokine (C-C motif) ligand 18 (CCL18). On
the other hand, CCL18 induces M-CSF transcription in OC
cells through the activity ZEB1 transcription factor. Thus, a
CCL18-ZEB1-M-CSF interacting loop exists between OC
cells and TAMs that regulate the tumor progression and
metastasis through EMT [149]. OC-derived exosomes con-
taining miR-222-3p and miR‑940 are also capable in induc-
ing TAM polarization into the M2 phenotype [150,151].

Adipose-derived stem cells (ADSCs) are mesenchy-
mal stem cells obtained from adipose tissues. ADSCs have
been shown to affect the proteomic profile of OC cells via
paracrine mechanism in favour of OC progression [152].
Secretion of TGF-β from ADSC result in activation of the
TGF-β pathway inOC cells and subsequent EMT activation
[153]. The relationship between ADSC and OC cells seems
to be reciprocal. OC cells are capable of inducing the ex-
pression of CAFmarkers in ADSC, including alpha-smooth
muscle actin (α-SMA) and fibroblast activation protein, via
the TGF-β1 signaling pathway [154,155]. The addition of
ADSCs into the medium of OC culture significant increase
of the paired box 8 (PAX8) level in OC cells [156]. Overex-
pression of PAX8 lead to upregulation of Snail, Twist and
Zeb2 [157].

Endothelial progenitor cells (EPCs), the bonemarrow-
derived stem cells, play a significant role in tumor angio-
genesis and growth. EPCs are recruited into the neovascu-
lar bed of the tumor in response to certain signals or cy-
tokines secreted by tumor cells [158–160]. EPCs are able
to invade into the OC cell clusters, whereas normal human
microvascular endothelial cells are not capable of invading
OC cell clusters [161]. Circulating levels of EPCs are sig-
nificantly increased in OC patients and correlate with tu-
mor stage and residual tumor size [162]. OC cells cultured
in EPC-conditioned media (EPC-CM) demonstrate an in-
crease in TGF-β. EPC-CM also induce loss of cell junc-
tions, reduced expression of E-cadherin, increased expres-
sion of N-cadherin, and development of a fibroblastic phe-
notype in OC cells, which are the consistent feature of EMT
[163].

3.1.2 Non-Cellular Components

The non-cellular components of TME also participate
in promoting EMT. Collagen I enhance OC cells motil-
ity and invasiveness through the increased expression of
MMPs and α5β1 integrin. Collagen I matrix upregulate the
expression of N-cadherin, vimentin, fibronectin, and tran-
scriptional factors Snail and Slug [164]. Collagen I also

upregulates the activity of TGF-β1/Smad4 and Wnt5b/β-
catenin signaling cascade [165]. IL-6 treatment downregu-
lates the expression of epithelial markers, and upregulates
the expression of mesenchymal markers in OC cell line.
Overexpression of IL-6 in OC cells significantly increases
the expression of MMP-2 and MMP-9 and thus, enhancing
their migration ability [166].

Hypoxia is one of the most important non-cellular
factors in inducing EMT. Hypoxia influences cellular pro-
cesses such as angiogenesis, acquisition of stem cell-like
features, chemoresistance, as well as EMT [167–170]. Hy-
poxia is the characteristic of the peritoneal environment.
Hypoxia induces the stabilization of hypoxia-inducible
factor-1α (HIF-1α), which then translocate into the nu-
cleus, to bind to HIF-1β and forming HIF-1 heterodimer.
HIF-1 heterodimer acts as transcription factor targeting
genes with the hypoxic responsive elements (HRE). Un-
der hypoxic conditions, OC cells presents morphological
changes consistent with EMT [171]. HIF-1 expression in
OC stem cells results in the induction of Twist1 and E12
expression [172]. Downregulation of HIF-1α expression
leads to upregulation of E-cadherin and downregulation of
the vimentin [173]. Hypoxia downregulates the expression
of miR-210, the EMT repressor [174]. Hypoxia also upreg-
ulates the expression of C-X3-C motif chemokine receptor
(CX3CR), increasing the chemotactic response to C-X3-C
motif chemokine ligand 1 (CX3CL1), and thus leading to
tumor progression and metastasis [175]. Hypoxia also up-
regulates the expression of signal transducer and activator
of transcription 4 (STAT4), which contributes to the regula-
tion of EMT [176]. Hypoxic stress downregulated the ex-
pression of Sirtuin (silent mating type information regula-
tion 2 homolog) 1 (SIRT1), a negative regulator of HIF-1α
[177].

Reactive oxygen species (ROS), such as hydroxyl free
radicals, superoxide, and hydrogen peroxide can accumu-
late within the TME due to active metabolic patterns of
OC cells and tumor stromal cells. ROS accumulation can
lead to lipid peroxidation, antioxidants deprivation, and ul-
timately programmed cell death which depend on iron, also
known as ferroptosis. However, OC cells develop sev-
eral mechanisms that confer resistance to ferroptosis [178].
ROS are involved in the regulation of EMT. ROS accumu-
lation induced the increased expression of HIF-1α and sub-
sequent transcriptional induction of lysyl oxidase (LOX),
which then decreases the expression of E-cadherin [179].
ROS scavenging negatively affect migration and invasion
of OC cells through reversing EMT [180].

OC cells endure several mechanical forces from their
TME. The presence of ascites and interstitial fluid confer
the shearing force to the OC cells, while tumor expansion
against the extracellular matrix and TME exert tension on
the tumor periphery. Furthermore, tumor expansion and the
hydrostatic pressure of ascites also exert internal compres-
sion forces to the OC cells [181]. Those forces give impact
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into biochemical regulation and signaling pathways of OC
cells, including the regulation of EMT. Oscillatory tension
significantly decreases the expression of E-cadherin while
increasing the expression level of Snail [182]. Tissue stiff-
ness, recapitulated by substrate stiffness in vitro, promotes
OC cells proliferation and nuclear translocation of the onco-
gene YAP. Substrate softening has been demonstrated to
promote changes consistent with EMT [183,184].

3.2 The Role of Chemotherapy
Results from in vitro studies have demonstrated that

chemoresistant OC cells express markers of EMT [8,185–
190]. On the other hand, exposure to chemotherapy has
been demonstrated to induce EMT inOC cells. Cisplatin in-
duced EMT-associated morphological changes in OC cells
[191–193]. Receptor cells co-cultured with carboplatin- or
etoposide-treated feeder cells in Transwell co-culture sys-
tem exhibited increased expression of EMT markers vi-
mentin and Snail. The altered microenvironment of ei-
ther carboplatin- or etoposide-16-treated feeder OC cells
also significantly increased the migration of the OC cells
[194]. OC cells treated with carboplatin exhibited pheno-
typic changes consistent with EMT [195]. Clinical studies
in OC patients revealed that treatment with platinum-based
chemotherapy increased the proportion of EMT-like circu-
lating tumor cells (CTC), accompanied by the “de novo”
emergence of PI3Kα+/Twist+ EMT-like CTCs [196]. Con-
tinuous exposure to increasing doses of paclitaxel lead to
the establishment of OC cell lines that are resistant to pacli-
taxel and exhibit phenotypic changes consistent with EMT
[197]. However, the EMT-inducing effect of chemother-
apy, whether it is direct or indirect, remains unclear. The
proposed mechanisms are that chemotherapy may directly
trigger intracellular signaling, such as orchestrated cellular
defense response against platinum toxicity. On the other
hand, while killing the tumor cells, chemotherapy indi-
rectly influences the EMT of the remaining cancer cells.
Chemoterapy is also believed to induce oxidative stress that
is capable of inducing EMT.

4. The Dynamics of EMT Regulation
The traditional concept viewed EMT as a binary pro-

cess inwhich the phenotype of cancer cells can change com-
pletely into either epithelial or mesenchymal cells. How-
ever, a newer concept of “partial EMT” has been proposed,
in which cancer cells can undergo phenotypic changes with
both epithelial and mesenchymal phenotype [198,199]. Tu-
mours in a partial EMT state exhibit low expression of
EMT-TFs, and co-express both epithelial and mesenchy-
mal genes. A recent study in pancreatic ductal adenocar-
cinoma cells reported that partial EMT results from differ-
ent mechanisms underlying complete EMT. Cancer cells
lose their epithelial phenotype through an alternative post-
translational process of protein relocalizations, which lead
to “partial EMT”. In that study, E-cadherin protein was

found to be confined to intracellular foci in delaminated
cells exhibiting a mesenchymal morphology. Furthermore,
cancer cells that exhibit partial EMT, migrate and form
circulating tumor cell clusters, rather than disseminate as
single cell as in “complete EMT” [200]. However, it re-
mains unclear whether partial EMT represents an interme-
diate stage where cancer cells are in a paused transitional
state within the mesenchymal differentiation continuum, or
it is a final fate of the cancer cells. Interestingly, one study
support the later hypothesis, in which they found no evi-
dence that complete and partial EMT co-exist within the
same tumor [50]. This finding implicate that the tendency
of cancer cells to use either a complete or partial EMT pro-
gram is a specific and stable feature of an individual tumor.
Cells with partial EMT have been known to be more resis-
tant to apoptosis and have greater tumor-initiating potential,
as compared to those with complete EMT. EMT intercon-
versions are also dynamically regulated during the develop-
ment and progression of ovarian tumors [50,201].

Transcription Factor Balance in Partial EMT

A review by Jolly et al. [198] stated that the core
regulatory network for EMT or MET (Mesenchymal-to-
Epithelial Transition) acts as a “three-way”, which give rise
to three distinct phenotypes, i.e., epithelial (E), mesenchy-
mal (M), and hybrid, or partial EMT (pEMT). The core
regulatory network depends on two mutually inhibitory
loops, i.e., miR-34/SNAIL and miR-200/ZEB. E pheno-
type is defined as high miR-200/miR-34, low ZEB/SNAIL;
M phenotype is defined as low miR-200/miR-34, high
ZEB/SNAIL; and partial EMT is defined as low miR-
34/ZEB, high SNAIL/miR-200. Another theory proposed
that miR-200/ZEB, with input from SNAIL, behaves as a
three-way switch allowing for the existence of three pheno-
types, i.e., E (high miR-200, low ZEB), M (low miR-200,
high ZEB), and E/M or partial EMT (medium miR-200,
medium ZEB). Therefore, ZEB activation is a necessary
requirement for the acquisition of a complete EMT. How-
ever, results from experimental studies observing partial
EMT appear to be more consistent with medium miR-200,
medium ZEB theory. One study demonstrated that differ-
ence in expression and subcellular localization of transcrip-
tion factor 21 (Tcf21) and Slug (Tcf21/Slug balance) is as-
sociated with phenotypic plasticity [202]. Downregulation
of Slug by Tcf21 is known to maintain the epithelial prop-
erties of high grade serous carcinoma (HGSC). The study
identified the association of Tcf21/Slug balance with addi-
tional intermediate phenotypic states (i.e., iE or iM), sup-
porting the proposed hypothesis of a multistep EMT pro-
gram [202]. Tcf21 high-Slug low expression was identi-
fied in E phenotype, Tcf21 low-Slug high expression was
identified in M phenotype, and Tcf21 moderate-Slug mod-
erate expression (E-M or pEMT) was identified as stable
phenotypes. Intermediate E or M represents a metastable
state associated with phenotypic switches. Intermediate E
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Fig. 3. Schematic illustration of dynamic regulation underlying phenotypic plasticity in EMT. A newer concept of EMT introduces
the concept of partial EMT in which cancer cells exhibit both mesenchymal and epithelial characteristics. This phenotypic plasticity are
determined by the balance of expression from certain TFs and their inhibitors (miRNA), such as the balance between miR-34/SNAIL
and miR-200/ZEB. The expression and subcellular location of Tcf21 and Slug also influence the phenotype of cancer cells. Cancer cells
undergoing partial or hybrid EMT tend to be more invasive, more resistant to apoptosis, and have greater tumor initiating potential.

(iE) expressed epithelial markers, Snail, Twist1, but lacked
Tcf21, while the tumor group with low EMT-TF expression
was identified as intermediate M (iM). The dynamic regu-
lation of EMT, which encompasses a range of phenotypic
plasticity, is summarized in Fig. 3.

5. Conclusions
Epithelial-to-mesenchymal transition or EMT is a

form of epigenetic cellular reprogramming governed by
complex regulatory networks that confers OC cells with
increased invasiveness and drug resistance. EMT is or-
chestrated by multiple TFs, upstream activators, and reg-
ulators that result in the acquisition of mesenchymal phe-
notypes with increased metastatic potential, stemness prop-
erties, and chemoresistance. EMT activation is the result
of dynamic and reciprocal interplay between OC cells and
their tumor microenvironment. EMT is a dynamic process
of phenotypic plasticity, which encompasses a range of hy-
brid states. Understanding this complex regulatory network
is crucial in order to gain insight in developing novel and
effective treatment strategies for OC.
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