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1. ABSTRACT 
 

Meningiomas are the most commonly reported 
brain tumor in the United States. Though these tumors are 
often surgically curable, even World Health Organization 
(WHO) grade 1 meningiomas can recur. The variability 
seen in the clinical behavior of meningiomas suggests that 
these tumors are genetically heterogeneous. The most 
common genetic aberrations found in meningiomas are 
deletions of chromosomes 1p, 14q, and 22q. Fluorescent in 
situ hybridization (FISH) analyses have demonstrated the 
presence of intratumor heterogeneity; however, the loss of 
a single chromosome region was not indicative of 
aggressive behavior. In fact, tumors of higher grade are less 
heterogeneous in that all of the cells tend to demonstrate 
deletion of these chromosome arms. Tumor suppressor 
genes that map to these chromosomes have been identified 
but have not been found to play a significant role in the 
initiation or progression of the disease. The identification 
of a marker of aggressive behavior would allow the 
development of improved clinical protocols based on early 
intervention for those patients likely to experience a 
recurrence. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2. INTRODUCTION 
 

Meningiomas are brain tumors that arise from 
arachnoid cap cells of the dura mater. They are the most 
commonly reported brain tumor in the United States, 
accounting for about 27 percent of all primary brain tumors 
(1). They are typically considered benign tumors that are 
clinically manageable and surgically curable. However, 
clinically aggressive behavior in meningiomas is well 
documented, especially in the case of meningiomas with a 
high histologic grade (2-4). Most meningiomas are WHO 
grade I (benign); however, 5 percent to 11 percent are 
grade II (atypical), and 1 percent to 3 percent are grade III 
(anaplastic) (5,6). 

 
From diagnosis, the mean survival of patients 

with a grade III tumor is about 1.5 years, and their 5-year 
mortality rate is 68 percent (2). Grade II meningiomas are 
associated with a 5-year recurrence rate of 40 percent, even 
when gross total resection is achieved. In patients with a 
grade I meningioma, recurrence rates vary significantly 
according to the extent of surgical resection—the factor 
with the greatest impact on prognosis. 
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Approximately 9.5 percent of Grade I 
meningiomas recur after gross total resection (Simpson 
Grade I), 18 percent recur after Simpson Grade II removal, 
and 20 percent regrow after subtotal resection (Simpson 
Grades III and IV) (7-9). As described in previous studies, 
patients whose tumors were not completely removed had a 
4.2-fold higher excess risk of death during the second to 
fifteenth postoperative years compared with patients whose 
tumors were removed completely (10). However, extensive 
follow-up after subtotal resection finds that meningiomas 
have also exhibited no regrowth (11-13). These reports 
suggest that the molecular and genetic composition of 
subsets of these tumors has a greater influence on tumor 
recurrence than extent of surgical resection. 

 
3. GENETIC CHARACTERISTICS OF 
MENINGIOMAS 
 

Genetic characterization offers a promising 
possibility for stratifying meningiomas. The technique, 
which is easy to implement in a histopathology laboratory, 
can characterize genetic events underlying the formation 
and progression of meningiomas. Furthermore, genetic 
aberrations have often pointed to specific genes that have 
then been studied to evaluate their expression as prognostic 
markers. Considerable literature details the cytogenetic and 
molecular genetic findings associated with meningiomas. 
Unfortunately, the conclusions on the utility of specific 
chromosomal aberrations for diagnosis, prognostication, or 
both are often contradictory. These inconsistent findings 
may reflect that these studies have largely ignored the issue 
of heterogeneity. 

 
Many investigators have performed cytogenetic 

analyses (14-18) and molecular genetic analyses, such as 
fluorescent in situ hybridization (FISH) (19-26), spectral 
karyotyping (17), comparative genomic hybridization 
(CGH) (27), and loss of heterozygosity (LOH) (28). These 
data have led investigators to propose a number of 
multistep models of meningioma progression similar to 
those proposed for malignant tumors (29-33). Despite some 
differences in these models, there is consensus that 
aberrations of chromosome 22 are the most frequently 
observed genetic abnormalities in meningiomas (22,25) and 
are likely the first to occur. 

 
The link between a gene on chromosome 22 and 

meningiomas was first recognized in patients with the 
inherited disorder neurofibromatosis 2 (NF2) (34). The 
frequency of meningiomas in these patients led to the 
discovery of the NF2 tumor-suppressor gene on 
chromosome 22q12.1 (34), which encodes an intracellular 
membrane-associated protein named schwannomin or 
merlin. Even in sporadic meningiomas, which are far more 
common than NF2-associated meningiomas, the gene 
appears to play a role in tumor formation, particularly in 
subtypes with a mesenchymal-like morphology, such as the 
fibroblast, transitional, and psammomatous variants. A 
third to a half of sporadic meningiomas has an inactivating 
mutation in NF2, often with associated loss of the other 
gene allele. This gene can also be regulated by CpG island 
methylation and increased proteolysis (33). Other genes on 

chromosome 22 may also play a role in the formation of 
meningiomas. 

 
LOH has been described for as many as 78 

percent of sporadic meningiomas, not all of which include 
the NF2 gene locus (31,35). This finding has led to 
numerous studies of genes localized to areas of LOH. To 
date, however, results have been inconsistent, and no 
conclusive reports of additional genes on chromosome 22 
are involved in the formation or progression of 
meningiomas. 

 
The next most frequently reported genetic 

abnormalities in meningiomas are deletions of 
chromosomes 1p and 14q, which are thought to be involved 
in tumor progression (19-21,26,30,31,36-39). While some 
investigators cite 14q deletions as being highly correlated 
with a higher grade and recurrence (19,21), others correlate 
loss of sequences on chromosome 1p with tumor recurrence 
(18,38). Specific genes mapped to the regions of deletion 
on chromosomes 1p and 14q have been investigated, but a 
consensus on the role of these genes, if any, is lacking. In 
addition to deletions of chromosomes 1p, 14q, and 22q in 
meningiomas, there have been reports of LOH on 
chromosomes 6, 7, 9, 10, 17, 18, 19, and 20 and 
gains/amplification of sequences on chromosomes 1, 9, 12, 
15, 17, 20, and 22 (24,31). 

 
Many other genes have been evaluated for 

potential roles in the pathogenesis and progression of 
meningiomas, primarily based on their presence in or near 
common chromosomal aberrations. Studies have included 
LOH analysis, epigenetic silencing, changes in gene 
expression, and mutation analysis. Most of these genes 
have not been found to play a significant role in 
meningiomas. Nonetheless, several candidate tumor-
suppressor genes have been identified in meningioma 
pathogenesis and progression, including DAL-1 (40), 
TSLC-1 (41), CDKN2A (p16INK4A ), p14ARF, CDKN2B 
(p15INK4B) (42,43), and TP73 (37). 

 
4. CLINICAL BEHAVIOR AND GRADE OF 
MENINGIOMAS 
 

Additional studies have focused on genes 
implicated in tumorigenesis and progression based on their 
functions. These include telomerase (hTERT) (44-46), 
VEGF and its isoforms (47-49), matrix metalloproteinases 
(50-54), amplification of the putative oncogene PS6K (50), 
PTEN deletion and/or mutation (55,56), activation of 
epidermal growth factor receptor (57,58), platelet-derived 
growth factor (59-61), and insulin-like growth factor II 
autocrine loops (62-64). Moreover, many clinical, 
pathological, and molecular techniques have been used in 
an attempt to identify markers that can predict the 
aggressiveness of these neoplasms. 

 
Immunohistochemical studies have been used to analyze 
specific proteins, such as cell proliferation markers (MIB-
1) (65,66), p53 (66), the progesterone receptor (PgR) (67-
69), VEGF (47,70), and DAL-1 (40). Furthermore, many 
cellular and molecular biological techniques,



Molecular biological determinants of meningioma 

392 

Table 1. Percentages of single and combined chromosomal aberrations in grade I to grade III meningiomas. 
Chromosomal Aberrations (homogenous or heterogeneous)1 Grade I (n = 59)2 Grade II (n = 13)2 Grade III (n = 5)2 

Deletion 1p alone 8.5 0 0 
Deletion 14q alone 6.8 0 0 
Trisomy 22q alone 8.5 0 0 
Deletion 1p + Deletion 14q 6.8 23.1 0 
Deletion 1p + Deletion 22q 5.1 0 0 
Deletion 1p + Deletion 14q + Deletion 22q 13.6 46.2 20 
Deletion 1p + Deletion 14q + Trisomy 22q 1.7 23.1 80 

1 Deletion 22q alone, deletion 1p + trisomy 22q, deletion 14q + deletion 22q, and deletion 14q + Trisomy 22q were found in no 
cases, 2 Chromosomal aberrations were found in 51% of grade I, 92.4% of grade II, and 100% of grade III meningiomas. 

 
 

 
 

Figure 1. Photomicrographs of FISH analyses of 
chromosomes 1, 14, and 22 in the same region of a benign 
meningioma. (A) Chromosome 1: p36 (green), q25 
(orange). No deletion of 1p36 (long arrows). (B) 
Chromosome 14: q13 (green), q32 (orange). No deletion of 
14q in both areas (small arrows). (C) Chromosome 22: q11 
(orange), q12 (green). No deletion of 22q (arrowheads), 
trisomy 22q (long arrows) (24). Reproduced with 
permission from Neuro-Oncology. 

 
 
 

including molecular studies such as assessment of nucleolar 
organizer regions (71), DNA ploidy by flow cytometry 
(66), and analyses of individual gene expression and 
protein activity such as telomerase activity (45,46,72,73), 
have been used in an attempt to differentiate meningiomas. 
Again, preliminary correlations with tumor grade and 
survival can sometimes be identified. However, these 
results have rarely been examined against strictly defined 
aggressive clinical behavior, such as rapid recurrence 
within a specific time period. 

 
The definition of aggressive behavior in a 

typically benign tumor can be debated. Clinically 
aggressive behavior can include penetration of the 
arachnoidal border, destruction of bone, rapid regrowth of 
residual tumor, or recurrence of an apparently completely 
resected tumor (2,11-13,74). These behaviors are usually 
considered aggressive because they affect patient survival. 
However, from a clinical perspective, when the primary 
tumor is resectable the most important aggressive behavior 
may be recurrence. 

 

As for most tumors, clinical and pathological 
findings are the gold standard for diagnosis and 
prognostication of meningiomas. Though invasion may 
have clinical ramifications (2,3), the new WHO 
classification does not use this finding as a criterion for 
grading these tumors (4). Compared to prior schema (75), 
this new classification scheme has greatly enhanced the 
grading of meningiomas and may correlate sufficiently 
with overall biological behavior. Nonetheless, low-grade 
meningiomas can demonstrate a clinically aggressive 
phenotype. Thus, as has been found in other brain tumors, 
the clinical course of meningiomas can vary within a given 
histologic grade (2,3), and the behavior of an individual 
tumor can still be difficult to predict based on 
histopathological criteria alone. Clinical, pathological, and 
molecular descriptions of aggressive tumors are needed to 
allow clinically aggressive subsets of meningiomas to be 
differentiated from clinically benign meningiomas, even 
within a given histologic grade, because of discrepancies 
among the clinical behavior, cellular architecture, and 
biological makeup of these tumors. 

 
FISH is particularly promising for the development 

of diagnostic and prognostic tools to enhance current clinical 
and pathological diagnostic criteria. In clinical laboratories, 
this technique is often used as a diagnostic and prognostic tool 
for a number of diseases. In fact, deletion of 1p and 19q, as 
defined by FISH, is used in the prognostication of patients with 
oligodendrogliomas (76). FISH may be more sensitive than 
some other genetic techniques in predicting clinical behavior 
because it allows direct observation of small chromosomal 
abnormalities. It is also more sensitive than standard 
cytogenetic methods because it can be performed directly on 
tissue and does not require dividing cells. 

 
Furthermore, the ability to analyze tissue allows the 

presence of heterogeneity in tumors to be observed (24). 
Heterogeneity has important clinical implications in that 
removal of the more malignant areas of a heterogeneous tumor 
can significantly affect patient survival (77). In fact, an 
understanding of the heterogeneity of these tumors is critical to 
the interpretation of research data. Inconsistencies across 
molecular and genetic data from various laboratories 
(described above) can likely be explained, at least partially, by 
the heterogeneity of these tumors. 

 
5. DIAGNOSIS, PROGNOSIS, AND REGIONAL 
HETEROGENEITY 
 

We began our study of meningiomas using FISH 
to analyze the frequency and distribution (regional
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Figure 2. Analysis of individual chromosomal aberrations 
in grade I, II, and III meningiomas (24). Reproduced with 
permission from Neuro-Oncology. 

 
heterogeneity) of abnormalities involving 

chromosomes 1, 14, and 22 (24). As described, 
abnormalities of these chromosomes are most commonly 
reported in meningiomas. We then evaluated the correlation 
of these abnormalities to the clinical outcome of patients. 
We analyzed eight defined areas of 77 paraffin-embedded 
meningioma samples (61 grade I, 11 grade II, and 5 grade 
III tumors) using bacterial artificial chromosomes probes 
localized to chromosomes 1p36.32, 1q25.3, 14q13.3, 
14q32.12, 22q11.2, and 22q12.1-3. Deletions were 
considered regionally heterogeneous if they were found in 
fewer than seven regions and homogeneous if they were 
found in seven or eight regions (Figure 1). 

 
Our data (Figure 2, Figure 3, and Table 1) 

demonstrated that while chromosomal abnormalities could 

be seen in many grade I meningiomas, they were not 
typically found homogeneously throughout the tumor. 
Moreover, some grade I tumors showed no abnormalities of 
these chromosomes, suggesting genetic alterations that 
were not visible at the level of the chromosome. In contrast, 
chromosomal abnormalities were always present in grade II 
and III meningiomas, and the presence of these 
abnormalities became more uniform throughout higher-
grade tumors. Furthermore, the correlations between the 
presence of chromosomal aberrations and tumor grade were 
statistically significant. 

 
The data indicate a trend toward earlier 

recurrence or increased rate of recurrence in the group of 
meningiomas with chromosomal aberrations compared to 
the group without aberrations. Of 15 cases of subtotally 
resected grade I meningiomas without chromosomal 
aberrations, only three patients showed regrowth of the 
tumor during a mean clinical follow-up of 6.7 years. 
However, of the nine patients with subtotally resected 
grade I meningiomas with chromosomal aberrations, five 
experienced regrowth in the mean clinical follow-up. 

 
We analyzed the different chromosomal 

aberrations of these five patients. Three patients, with a 
regrowth in years 7 and 8, had only heterogeneous 
chromosomal aberrations of one chromosome. The other 
two patients, who showed regrowth within 1 and 1.5 years, 
had heterogeneous aberrations in chromosomes 1p, 14q, 
and 22q. The mean time to regrowth was shorter in the 
group with aberrations (4.8 years) than in the group with no 
chromosomal aberrations (6 years). Furthermore, while 
specific chromosome deletions did not directly correlate 
with tumor grade or aggression, chromosomal aberrations 
were more common in higher grade tumors, and 
homogeneous changes were seen in high-grade tumors. 

 
Interestingly, the unusual finding of trisomy 22 

(as opposed to deletion of 22) was more prevalent in grade 
III tumors. While most of the tumors have normal copy 
number or loss of chromosome 22, a small subset of tumors 
has trisomy. In our work and that of Maillo and colleagues 
(22-24), trisomy 22 appeared to correlate strongly with 
rapid recurrence, though the small number of samples 
precluded statistical analysis. Additional samples are being 
analyzed to determine if this finding correlates with length 
of survival. 

 
6. PROLIFERATION INDEX AND PROGRESSION 
OF MENINGIOMAS 
 

Though the presence of chromosomal 
abnormalities correlated with early recurrence in our study, 
this feature alone was insufficient to allow an accurate 
prediction of clinical behavior. The proliferation index of 
tumors, as defined by MIB-1 immunohistochemistry, often 
correlates with tumor aggression. A number of studies have 
demonstrated the reliability of this index, especially for 
evaluating the cellular proliferation of meningiomas (78-81). 
Other studies, however, have failed to find a statistically 
significant difference in the extent of MIB-1 labeling between 
nonrecurrent and recurrent meningiomas (82)
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Figure 3. Numbers of patients with single or combined 
chromosomal aberrations in 59 grade I, 13 grade II, and 5 
grade III meningiomas (24). Reproduced with permission 
from Duke University Press. 

 
In an attempt to determine if the combination of 

MIB-1 immunohistochemistry and FISH analyses could 
improve the accuracy of predicting the aggression of 
meningioma, we correlated clinical, pathological, and 
immunohistochemical data with molecular findings in a 
series of 111 WHO grade I and II meningiomas. 
Aberrations of chromosomes 1, 14, and 22 were analyzed 
using our novel approach of detecting homogeneous or 

heterogeneous regional distribution of abnormalities. This 
test was critical because many chromosomal lesions would 
not have been detected if only one region had been 
examined. Our data confirmed the clinical predictive value 
of MIB-1 expression in meningiomas. Correlations for 
histological grade, aggressive tumor signs, and recurrence 
rate were highly significant. 

 
Sometimes, however, MIB-1 counts of grade I 

and II tumors differ only slightly and thus cannot facilitate 
a clinical decision. In such a situation, the verification of 
certain chromosomal aberrations in tumor specimens may 
be of major value. The deletion of the short arm of 
chromosome 1 and the long arm of chromosome 14 
(14,16,19,20,83), or the deletion, trisomy, or tetrasomy of 
chromosome 22 (22,24,26,84) occurred to a considerable 
extent in atypical meningiomas. 

 
The presence of single chromosomal lesions or 

diverse combinations of all examined chromosomal lesions 
(deletion of 1p, 14q, 22q and trisomy of chromosome 22q) 
significantly correlated to MIB-1 expression in tumors (P < 
0.001), to signs of aggressive tumor growth (P < 0.001), 
and to recurrence rate (P < 0.01). In these patients, almost 
50 percent of grade I meningiomas showed no 
chromosomal aberrations when analyzed by FISH. In 
contrast, only 7 percent of grade II tumors had no 
aberrations of the examined chromosomes. 

 
A number of factors associated with using MIB-1 

antibodies have implications for the interpretation of the 
proliferation rate and need to be considered. Due to the 
heterogeneous nature of neoplasms (24), the extent of 
surgical sampling and the selection of a block of the tumor 
become important factors. Our experience in analyzing 
different regions of tumors for chromosomal aberrations 
confirmed the importance of examining different regions 
for MIB-1 and detecting the area with highest proliferation. 

 
The most frequently observed genetic aberrations 

in meningiomas—deletions of chromosome 22q—have 
been correlated to inactivation of the NF2 gene (84). 
However, NF2 mutations have been detected at a similar 
frequency in grade II and III meningiomas. This finding 
suggests that these mutations are involved solely in 
pathogenesis and are not predictive markers for the clinical 
behavior of these tumors (85-88). Thus, while genetic 
alterations in these cancers have helped identify some 
genes involved in meningioma progression, they have not 
provided conclusive information about markers of tumor 
aggression. 

 
7. DIFFERENTIATION OF MENINGIOMA 
SUBTYPES 
 

The advent of newer technologies such as 
microarray-based gene expression profiling and 
bioinformatics have helped define previously 
indistinguishable subsets of common cancers (89-93), 
including malignant brain tumors (94-99). However, 
compared to other brain tumors, little work has been done 
on gene expression profiling of meningiomas. In a small
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Figure 4. Clustering of grade 1 (n = 30) vs. grade 2 (n = 21) primary meningiomas based on standard correlation of genes and 
conditions. Gene expression levels are shown according to the color legend. Each row represents a gene expression level. Each 
column represents a specific tumor sample. Branches are colored according to grade: red = grade 1, yellow = grade 2, and blue = 
grade 3 (n = 3). Each color in the follow-up key corresponds to the recurrence of each tumor at follow-up. Orange = unknown 
recurrence status (n = 30), blue = rapid recurrers (n = 8), and purple = no recurrence within 2 years of follow-up (n = 16). 
(101,102). Reproduced with permission from Neuro-Oncology. 
 
series of meningiomas from a set of 2000 cancer-associated 
genes, Watson and colleagues (100) discovered a subset of 
genes that could be used to distinguish WHO grade I from 
WHO grades II and III tumors. They used the technique of 
reverse-transcription polymerase chain reaction to confirm 
their findings in a larger, independent set of 47 
meningiomas. 

 
Fathallah-Shaykh and colleagues (100) used a 

novel algorithm to analyze the expression of 19,200 
transcripts across 10 meningiomas in an attempt to predict 
gene functions underlying biological phenotypes. However, 
this study compared meningiomas to normal brain tissue 
and did not delineate meningioma subtypes. 

 
Though these studies suggest the utility of 

microarray analyses of meningiomas, relatively few data 
are available on the gene expression profiles of 
meningiomas, especially in the context of distinguishing 
molecular subtypes. We have analyzed differential gene 
expression in 54 meningiomas using Affymetrix U133 Plus 
2.0 GeneChip Human Genome oligonucleotide microarrays 
containing the entire human genome. Extensive clinical 
parameters were used to group tumors for expression 
analysis. Genes likely to provide clinically useful 
diagnostic and prognostic information were mined from 
gene lists based on analysis of differential expression 
between groups in the following clinical parameters: WHO 
grade, primary and recurrent identity, invasion, and 
whether the tumor recurred within 2 years. Class prediction 
and clustering analyses were then performed on lists of 
significant genes to evaluate the ability of these profiles to 
predict clinical parameters associated with the aggressive 
phenotype. 

Clustering based on analysis of grade I primary 
versus grade II primary meningiomas differentiated among 
grades fairly well, though some outliers were still present 
(Figure 3). These data showed that the molecular 
classification of meningiomas based on grade is unable to 
group meningiomas based on rapid-recurrence status. If a 
molecular basis determines grade, this basis cannot predict 
recurrence, just as the histopathological basis of grade is 
unable to predict recurrence consistently. 

 
Not surprisingly, clustering based on analysis of 

rapid recurrers fairly consistently differentiated tumors that 
recurred from those that did not within the 2-year follow-
up, suggesting a molecular basis for rapid recurrence 
(Figure 4). Interestingly, some meningiomas that did not 
recur within 2 years grouped with rapid recurrers to a 
degree. Those tumors also may be prone to recurrence. 
Continued follow-up will provide further data on these 
samples. Interestingly, five of the rapid recurrers were 
grade I and the remaining three were grade II. The only 
grade III tumors in this set did not recur within the 2-year 
follow-up. 

 
These findings further strengthen our hypothesis 

that WHO grade alone cannot account for molecular 
subsets of meningiomas that will and will not recur rapidly, 
and that a molecular subset of these tumors exists. Overall, 
WHO grade clusters somewhat erratically (Figure 3), though a 
set of WHO grade I meningiomas that did not recur within the 
2 years cleanly grouped together. The list of 167 genes that 
appears to identify meningiomas prone to rapid recurrence is 
being studied to develop an immunohistochemical screen that 
can improve the prediction of patient outcomes and suggest 
appropriate therapy. 
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Figure 5. Clustering of recurrence (n = 8) vs. no recurrence 
at follow-up (n = 16) based on standard correlation of 
genes and conditions. Gene expression levels are shown 
according to the color legend in Figure 3. Each row 
represents a gene expression level. Each column represents 
a specific tumor sample. Branches are colored according to 
recurrence at follow-up. Red = no recurrence and yellow = 
recurrence. Each color in the follow-up key corresponds to 
this scheme, and each color in the WHO grade key 
corresponds as follows: light blue = grade 1, dark blue = 
grade 2, and pink = grade 3. In this example, WHO grade 
does not significantly correlate with recurrence at follow-
up (P = 0.9404) (102). 
 
8. CONCLUSIONS 
 

Considerable progress has been made in defining 
the biological and molecular aberrations present in all three 
grades of meningiomas. Nonetheless, the search for 
markers of clinical aggression leading to accurate diagnosis 
and prognostication of meningiomas continues to be 
limited by several factors in pathology and molecular 
laboratories. The primary limitation in pathology is that 
diagnosis is based on morphological changes downstream 
of causative molecular events. At root, patterns of invasion, 
potential for recurrence, or both may be phenotypic results 
of distinct molecular subsets of these tumors. In the 
laboratory, studies such as those described above may be 
limited by the poor availability of high-grade tumor 
samples, the presence of tumor heterogeneity, or both. 
Furthermore, studies rarely consider the genetic instability 
inherent in tumors that leads to progressive genetic and 
molecular changes, which are not always directly linked to 
phenotypic change. Instead, they may be products or 
artifacts of that instability. 

 
The phenotypic components of an aggressive 

meningioma are defined inconsistently across these studies. 
Sometimes they are defined according to overall survival, 
sometimes according to recurrence-free survival, and 
sometimes by WHO grade alone. Though WHO grade is 
the standard for meningioma diagnosis, the scale fails to 
account for molecular subsets of these tumors (subsets 
that guide phenotypic behavior, such as recurrence). 
Consequently, tumor grade is not always able to predict 
recurrence. When aggression is based solely on WHO 
grade, oblique correlations are sought between biological 
and pathological data rather than direct correlations 
between biological data and phenotypic data (clinical 
outcome). Despite these caveats, the results of newer 
technologies combined with the data available from 
studies, such as the ones described above and others like 
them, can lead to improvements in meningioma 
prognostication. 
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