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1. ABSTRACT

Amyotrophic lateral sclerosis (ALS) is an 
adult-onset, incurable neurodegenerative disease 
characterized by the selective death of upper and lowers 
motor neurons in the spinal cord, brainstem and motor 
cortex, which ultimately leads to paralysis and death 
within 2–3 years of onset. ALS is poorly understood, 
although multiple studies have been proposed to 
explain the pathophysiological mechanisms of the 
disorder. The development of microarray technology, for 
simultaneous analysis of the transcriptional expression 
of thousands of genes, has provided new possibilities 
to get better insights into the pathogenesis of ALS, and 
most important, potential new candidate targets for 
novel treatments. The present review illustrates current 
evidences from transcriptomic studies in animal models 
and human samples, related to ALS pathogenesis in 
parallel to molecular targets associated with the disease 
progression. Additionally, alteration of RNA metabolism 
was identified as a major dysregulated pathway in ALS 
and via this study, new insights into the contribution 
of altered transcriptional profiles of microRNAs and 
ALS-associated ribosomal binding proteins have been 
investigated, in an effort to understand the functional 
consequences of widespread RNA dysregulation in the 
disease’s pathological mechanism.

2. INTRODUCTION

Amyotrophic lateral sclerosis (ALS), also known 
as Lou Gehrig’s disease, is one of the most common 
devastating and fatal neurodegenerative disorders, 
characterized by the progressive and relatively loss 
of motoneurons, paralysis, atrophy of muscle tissues 
and death. There is no treatment that could relieve the 

disease burden because of incomplete understanding 
of ALS etiology (1). Currently, there is only one FDA-
approved compound; riluzole does not resolve the 
disease, but slows progression and extends survival 
with modest effects (2, 3). The genetic causes of 
ALS is still under investigation; approximately 10% of 
ALS cases are inherited (familiar ALS), associated to 
dominant mutations in or deletion of the cytosolic Cu/
Zn superoxide dismutase 1 gene (4), but 90% of them 
are sporadic or originated from unknown genetic factors 
(5,6). Other genes implicated in ALS are TAR DNA-
binding protein (7–9), fused in sarcoma protein (10, 11), 
ALS2/alsin (12), ALS4/senataxin (13), or ALS8/vesicle-
associated membrane protein-associated protein B 
(14), neurofilament heavy peptide (15), angiogenin (16), 
ubiquilin 2 (17), optineurin (18) and C9ORF72 (19, 20). 
Several molecular mechanisms have been proposed to 
elucidate the pathophysiological pathways contributing 
to motor neuron degeneration in ALS, including 
oxidative stress, glutamate excitotoxicity, mitochondrial 
dysfunction, dysregulation of RNA processing, 
protein aggregation, disordered axonal transport 
and inflammation, abnormal neurofilament function 
(21–27). Gene expression microarray technology is 
characterized as a powerful high throughput tool capable 
of monitoring the expression of thousands of genes in 
an organism simultaneously (Figure 1). In biomedical 
research, DNA microarrays initially were designed to 
measure the transcriptional levels of RNA transcripts 
derived from thousands of genes in different cell types 
and tissues (28, 29). More recent implications of DNA 
microarrays are useful in SNPs detection, RNA splicing 
and biomarkers determination (30, 31). A significant 
number of microarray studies has been tried to identify 
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transcriptome alterations in ALS disease, investigating 
the role of new novel genes in this specific pathological 
process neurodegenerative disorder. This article 
reviews recent findings from gene expression profiling 
studies in amyotrophic lateral sclerosis examining 
molecular signatures related to ALS pathogenesis and 
potential therapeutic targets identification.

3. MICROARRAY TECHNOLOGY IN ALS:  
A POTENTIAL TOOL TO INDENTIFY  
DIFFERENCIALLY EXPRESSED GENES

3.1. ALS microarrays studies related to pathways 
in disease pathogenesis and progression

Gene expression profiling studies using 
microarrays represent an excellent tool to analyze the 

complex of disease’s pathobiology as a significant method 
employed for genome-wide transcriptome profiling. In 
ALS case, a numerous studies have been implemented 
both in cell cultures, patients biopsies, animal models 
and postmortem central nervous tissues attempting to 
shed light to the cascade of molecular events underlying 
the syndrome and identifying novel relevant gene targets 
for therapeutic interference (32–40).

ALS is a complex and multifactorial 
disease characterized by the involvement of several 
pathological processes (Figure 2). Among the 
most well-characteristic pathogenic mechanism 
of ALS are included axonal transport dysfunction, 
apoptotic mechanisms, neuroinflammation, protein 
aggregation and mitochondrial function (41–45). 
Mitochondria are the major source of intracellular 

Figure 1. Schematic representation of a general workflow of a microarray study.
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reactive oxygen species, such as superoxide anion, 
hydroxyl radical, hydrogen peroxide and peroxynitrite. 
Upon mitochondrial stress in the majority of ALS 
models, SOD1 may undergo oxidative activation, 
competing with cytochrome C for superoxide released 
in the mitochondrial intermembrane space, leading to 
increased ROS production among with increased lipid 
peroxidation and DNA/RNA oxidative modifications 
(46–48). The mechanism mutant SOD1 causing 
direct and glia-mediated neurotoxicity is not fully 
understood, with NADPH oxidase activation and 
superoxide production are belonged to the most studies 
contributors to motoneuron death (49–51). Previous 
studies have demonstrated the link between oxidative 
stress and cell death in ALS, such as the factional role of 
transcriptional factor 53 in motor neuron death in mice 
(52) or alterations in genes involved in regeneration 
and tissue degradation (53). Using Mouse Genome 
430 2.0. Array from Affymetrix, different mechanisms 
of neuronal death under oxidative stress or excitotoxic 
stress were analyzed in two independent cultures of 
primary cortical neurons of SOD1G93A animals or 
nontransgenic in response to the cellular stress induced 
by the NMDA or hydrogen peroxide (54). In SOD1G93A 
cortical neurons, proteasome-targeting factors such as 
ubiquitin associated protein 2-like, ubiquitin-conjugating 
enzyme E2W or ubiquitin-conjugating enzyme E2I 
subjected to NMDA and autophagosomal protein or 
proteasome subunit (PSMA6) subjected to NMDA and 
cytokine transcripts were found upregulated related 
to nontransgenic one. Utilizing SOD1G93A neurons 
subjected to hydrogen peroxide, microarray analysis 
identified altered transcriptional profiling in genes 
related to controlling actin-associated cytoskeletal 
remodeling and exogenesis, wnt signaling pathway 
regulators, trophic factors or ion transport (ARAP2, 
KIF17, Dickkopf homolog 2, IGFBP4, FGF17, PTGER3, 
KCNA5, and TRPV1). In another study by Zhang group, 
Affymetrix GeneChip Drosophila Genome 2.0. arrays 
were applied to investigate the cell-specific expression 
of mutant SOD1 in neuronal cells of flies utilizing young 

and old flies (5 days and 25 days respectively) with 
SOD1G85R (G85R) expression in motoneurons and glia 
(55). Depending on the age of flies and cell specific 
expression of G85R; motoneuron, glia or both, an 
altered expression of G85R was observed, affecting 
pathways related to oxidative stress, lipid metabolism, 
signaling genes and development of nervous system. 
Focusing on oxidative stress, numerous genes related 
to pentose-phosphate pathway, glutathione transferase 
activity and NADP metabolism were found down-
regulated, especially in models expressing G85R 
in motoneurons. Older flies expressing G85R were 
characterized by increased stimulation to hydrogen 
peroxidation in motoneuron and glia demonstrating 
oxidative stress as a potent contributor to the pathology 
of ALS (55).

In the outstanding work by the Shaw group, 
Health et al. attempted to summarize in depth the 
applications of the transcriptomic technology in order to 
examine changes associated among ALS tissues. Gene 
expression was examined at the level of the tissue and 
individual cell types in both sporadic and familial forms 
of the disorder elucidating the mechanisms associated 
to motor neurons death (56). In a second work by the 
same group, in order to identify pathways in disease 
pathogenesis and potential therapeutic targets, 
microarray human gene expression profiling studies in 
mixed-cell samples, laser capture microdissection cell 
samples and peripheral tissue have been summarized, 
unraveling characteristic key-molecules related to 
neuroinflammation, RNA splicing and cytoskeleton 
involvement (57). The importance of microarray-
based transcriptomics analysis was also evaluated to 
identify strategies related to pharmacological targeting 
interpreting altered pathways and networks (58), while 
the major findings of numerous studies that have been 
analyzed using global gene expression in tissues and 
cells from biopsy or post-mortem specimens of ALS 
patients or specific animal models (59). These studies 
corroborated the implication of previously described 

Figure 2. A) Contribution on known genes to ALS pathogenesis. B) Potential mechanisms associated with the pathophysiology of ALS.
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disease pathways, and investigated the role of new 
genes in the pathological process.

The significant role of cytoskeleton-related 
genes in motor neurons and Schwann cells in the 
presymptomatic stages of ALS disease was identified 
for the first time using Agilent Whole Mouse Genome 
Oligo 4×44 K (60). Differentially expressed genes 
were identified in the spinal cord from 40 and 80 
days old SOD1G93A mice respectively comparing with 
altered genes in the sciatic nerve from 60 days old 
mice. GO enrichment analysis was performed and the 
cellular component GO terms related to microtubule 
cytoskeleton, actin cytoskeleton and microfilament 
cytoskeleton were over-represented. Gene expression 
profile related to ALS indicated Kif3a downregulated 
and Kif1b upregulated in the spinal cord of 40 days 
old mice, Actg1, Adora, Akt1, App, Dctn1, Kif1a, Sirt2, 
and Stmn1 deregulated in the spinal cord of 80 days 
whereas in the peripheral nerve of 60 days Aif1, Aif1, 
Ccnb1, and Mapt have been found downregulated 
and Actn3, Als2, Kif5a, Kif5c, Nos2, Nos3, and Tmod3 
upregulated. Gene expression profiling demonstrated 
differentially regulation of Kif1b in the sciatic nerve 
Schwann cells (downregulation) and spinal cord motor 
neurons (upregulation) of 40 days old presymptomatic 
SOD1G93A mice, significant occurrence in ALS 
pathogenesis. In another study a microarray analysis 
was performed to identify, for the first time early, 
molecular alterations in the presyptomatic stage (40 
and 80 days) in the lumbar spinal cord of transgenic 
SOD1G93A mice, using Whole Mouse Genome Oligo 
4x44 K from Agilent Technologies (61). KEGG analysis 
related to ALS mechanism indicated seven common 
pathways among 40 and 80 days, including regulation 
of glutamatergic synapse (Gnai1, Slc17a6), oxidative 
phosphorylation (Ndufb11, Ndufb8), endocytosis 
(Wwp1, Cxcr4, Acap2), ubiquitin mediated proteolysis 
(Wwp1, Nedd4, Ubr5), chemokine signaling pathway 
(Cxcr4, Pik3r1, Wasl) and tight junction (Gnai1, Kras), 
demonstrating that early neuromuscular abnormalities 
precede motor neuron death in ALS. The Ube2i 
expression in astrocytes from 40 and 80 days old 
SOD1G93A mice, indicates the participation of astrocytes 
in the early stage of ALS molecular mechanism and 
motor neuron cell death regulation (61).

The important role of the astroglial glutamate 
transporter EAAT2 in motor neuron degeneration 
was demonstrated, indicating the disability in EAAT2 
activity as part of the molecular mechanism in inherited 
and sALS (62). Utilizing Affymetrix GeneChip Mouse 
Genome 430A 2.0. Arrays, Eaat2, Fus/Tls, netrin-1, 
and nestin were observed statistically significant 
altered in astrocytes of SOD1G93A mutant mice 
(sumoylated proteolytic fragment). Netrin-1 which 
was founded the top upregulated among the secreted 
differentially expressed genes, is associated with axon 
migration involvement (62). The GPNMB was identified 

as an ALS-related factor using Agilent Mouse GE 
4x44K v1 Arrays in the spinal cord of SOD1G93A mice 
(63). GPNMB expression was increased in the motor 
neurons and astrocytes in the spinal cords of SOD1G93A 
mice even if different phenotypes were observed. 
This newfound evidence which was confirmed further 
with qRT-PCR, immunohistochemical analyses and 
siRNA against GPNMB, indicates that GPNMB inhibits 
motor neuron death and contributes in motor neurons 
survival, revealing this transmembrane glycoprotein as 
a potential therapeutic target for ALS. Expression of 
Wnt signaling components in the spinal cords of ALS 
transgenic SOD1G93A mice at different stages has been 
identified using transcriptional microarray analysis 
identified (Yu et al 2013). Wnt signaling takes part in 
brain development and spinal cord, playing a significant 
role in neurogenesis and neurodegeneration. A 
plethora of canonical and non-canonical Wnt signaling 
molecules such as Wnt1, Wnt7b, Wnt8b were found 
depending on the different disease’s stages, evidences 
which were confirmed also at protein level. According 
to the analyses, the levels of Ccnd1, Ccnd2, Ccnd3, 
Ep300, Fosl1, NIk, and Pitx2 as parts of the Wnt target 
genes were found increased, indicating the significant 
role of Wnt signaling in ALS pathogenesis (64).

Nardo et al., using GeneChip Mouse 
Genome 430 2.0. (Affymetrix), examined an extended 
comparison of the gene expression profiles of laser 
captured motor neurons from two separate SOD1G93A 
mouse strains with different phenotypes like C57-
SOD1G93A mice and 129v-SOD1G93A one , indicating 
transcriptional alterations in mitochondrial regulation, 
axonal transport pathways and protein degradation 
(65). The tendency of motor neurons to activate 
immunological defense mechanisms in response 
to SOD1 cell stress induced by the presence of 
mutant SOD1 was revealed, such as motoneurons 
of C57-SOD1G93A mice, which display up-regulation 
of MHC class I genes, demonstrating the importance 
of the study in novel therapeutic intervention (65). 
Postmortem human material additionally to SOD1G93A 
ALS and P20L Tau frontotemporal dementia 
mouse models were exploited to indicate common 
molecular mechanisms associated to motor neuron 
degeneration, using Agilent whole mouse genome 
microarrays (66). The association of altered genes to 
crucial motor neuron biological processes has been 
revealed especially on muscle contraction, immune 
system, stress response, signaling and protein/protein 
modification regulation. Common genes among 
animal models and human tissues were identified 
(Cnga3, Crb1 and Otub2) associated with motor 
neuron degeneration, explaining similarities between 
mice’s phenotype (66). Whole genome expression 
profile studies of lumbar spinal cord with peripheral 
blood and tibialis anterior muscle in SOD1G93A mice 
at presymptomatic and early symptomatic have been 
compared performing analysis on Illumina MouseRef8 
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v1.1. microarray BeadChips (67). Taldo1, Uqcr10 and 
Atp6v1d genes pathway have been observed in all 
three tissues with highly expression in mice spinal cord 
and strong regulation in oxidative phosphorylation and 
pentose phosphate. The last evidence which is also 
implicating into mitochondria function and oxidative 
stress regulation indicates a strong overlap between 
blood and spinal cord gene expression profile in 
SOD1G93A mouse model, factor able to demonstrate 
peripheral blood as a potential material for new ALS 
diagnostic biomarkers development (67).

The alterations in gene expression among 
oculomotor and spinal cord motor neurons in post-
mortem neurologically human midbrain and spinal 
cord biopsies were ascertaining using GeneChip 
Human Genome U133 Plus 2.0. Array from Affymetrix 
(23). A significant number of deregulated genes 
related to mitochondrial oxidative phosphorylation, 
immune system functions, transcriptional regulation, 
and ubiquitin-mediated protein degradation have been 
revealed with emphasis on GABAergic and glutamate 
receptor subunits mediated transmission, indication 
which rationalizes the strong connection between ALS 
progression and oculomotor neurons (23). Bernandini 
et al., using Gene Chip Human Genome Focus 
Array (Affymetrix), tried to maintain a system based 
on muscle expression profiles in ALS disease (68). 
Genes linking with human skeletal muscle structure 
and metabolic pathways have been observed 
significantly down-regulated like myosin, myogenin, 
collagen, Eno3, Fbp2) or up-regulated (forkhead box 
O, myogenic factor 4, cAMP-dependent protein kinase 
regulatory subunit RI1 alpha) respectively, additionally 
to mitochondrial genes like Actn3 and Chrna1 which 
consist members of oxidative phosphorylation 
pathway (68). Gene groups associated with 
cytoskeletal and mitochondrian dysfunction in the 
motor cortex of patients with sALS have been 
identified (69). In a further study, microarray data from 
five dependent muscular tissue diseases, namely 
ALS, acute quadriplegic myopathy, mitochondrial 
encephalomyopathy, polymyositis, lactic acidosis and 
stroke-like episodes and dermatomyositis, have been 
evaluated trying to provide unique molecular markers 
for each human muscular disease (70). Analyzing 
ALS patients data from Affymetrix HG-U133A Platform 
GPL96 performing a variance modeling approach, 
myofibril genes like nebulin and alpha F-actin, 
tropomyosins (Tpm-1/2/3) and troponins (Tnn-c1/c2/
i2/t1) were identified significantly downregulated, while 
actin-capping proteins like Capza1, Capzb and Tmod1 
upregulated respectively. These results indicate the 
unique role of myofibril gene dysregulation in ALS 
as a result of actin-myosin interaction inability (70). 
Whole genome expression profiles of sALS patients 
motor cortex samples were performed, identifying 
potent alterations in selectively genes implicated 
in cell cycle phases, iron regulation homeostasis, 

cytoskeleton structure development and synaptic 
plasticity molecular pathways (71). In a recent study, 
genes implicated in glutamate metabolism, ER stress, 
activation of chaperones and endoplasmic reticulum 
response have been indicated differentially expressed 
among ALS patients with motor neuropathy human 
motor nerve biopsies (72).

3.2. ALS microarrays studies associated  
with post-transcriptional regulation of  
gene expression

Alternative splicing of mRNA transcripts 
with emphasis on the nucleo-cytoplasmic transport, 
translational silencing and RNA degradation, provides 
an important mechanism for gene regulation and 
proteomic diversity generation, diversifying in parallel 
protein modular functions, with neuronal circuits 
development and synaptic function and plasticity 
significant impact (73–75). Dysregulations in RNA 
metabolism, a strong attribute of ALS at multiple 
levels, contribute to the pathogenesis of the disease, 
including changes in miRNA biogenesis, spliceosome 
integrity and RNA editing (76, 77). Mutations in Tardbp 
gene have been found in about 3 to 4% of fALS cases 
and in about 2% of sALS patients (78, 79). Evidence of 
the role of mutations in ribosomal proteins TDP-43 and 
FUS/TLS have been indicated for their contribution in 
messenger RNA processing and splicing regulation 
due to their interaction with splicing factors (80, 81). 
TDP-43, as a highly conserved heterogeneous nuclear 
ribonucleoprotein, aggregates in the cytoplasm and 
nuclear compartments of neurons and glial cells, 
being often accompanied by nuclear clearance of 
the protein (82, 83). The availability of genomic 
technologies provides the convenience to unravel 
disease mechanisms. Gene expression profiling 
studies using microarrays have been used in order to 
investigate the transcriptome profiles of the ribosomal 
proteins regulation in different ALS-animal models or 
cell lineages. Applying Affymetrix GeneChip Mouse 
Gene 1.0. ST arrays on C57BL/6J mouse brain, TDP-
43 target genes associated with synaptic function 
and development were identified, depending on their 
localization at the presynaptic membrane of axon 
terminals (84). GO analyses revealed that TDP-43 may 
be a potent RNA regulator of genes involved in synaptic 
transmission process such as syntaxins, syntaxin 
binding proteins, synapsin and synaptophysins (84). An 
extended microarray analysis on brain of GMR-Gal4/
UAS-TDP-43 transgenic Drosophila model indicated 
numerous altered genes implicated mainly in cellular 
oxidative homeostasis and cell cycle regulation. 
Ucp4b gene profile has been detected upregulated 
in transgenic flies, while notch genes related to prion 
disease have been founded upregulated, suggesting 
that TDP-43 investigates alteration effecting Notch 
neuronal regulation and intercellular communication 
pathway in ALS pathogenesis (85).
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In parallel, mutations in Fus gene have been 
observed repeatedly in ALS, sharing many common 
characteristics with TDP-43 as binding proteins with 
RNA recognition motifs. FUS protein localized into the 
nucleus of neurons and glial cells, founded in complex 
with RNA polymerase II along with several transcription 
factors like YB-1, PU.1 and NF-κB, establishing FUS 
aggregation as the most prominent pathological 
feature in both FTLD-FUS and ALS-FUS (10, 86–88). 
Applying Affymetrix GeneChip Mouse Exon 1.0. ST 
exon array, gene expression changes and alternative 
splicing occasions have been examined to elucidate 
the significant role of this gene in primary Fus-deficient 
motor neurons, cerebellar neurons, cortical neurons 
and glial cells (89). Comparing Fus-mediated gene 
expression profiles of motor and cortical neurons no 
significant alterations have been observed contrary 
to neuronal cells and cerebellar neurons samples. 
Additionally, motor and cortical neuronal cells profiles 
were found similar to glial cells but not in alternative 
exon profiles. A group of differentially motor- and 
cortical neuron-specific splicing incidents like Mapt, 
Digap4 and Snap25 have been identified. Channel-
associated genes Synj1, Scn8a and Rims1 have 
been revealed as conceivable Fus-regulated motor 
neuron-specific alternative splicing targets with motor 
neuron degenerative contribution along with Kcnip, 
Stxbp1 and Fmr1 as cortical-neuron-specifc splicing 
events (89). Extending the previous study, the same 
group investigated alteration in gene expression 
and alternative splicing profiles of TDP-43-silenced 
primary cortical neurons (90) comparing additionally 
the previous transcriptome profiles with Fus-silenced 
neurons prolifes provided by Fujioka et al. Utilizing 
Affymetrix GeneChip Mouse Exon 1.0. ST Array, 25% 
of genes with altered expression levels additionally to 
10% of genes with differentially spliced exons were 
similar to the transcriptome profiles of both TDP-43-
silenced primary cortical neurons and Fus-silenced 
primary cortical neurons (90). These results indicate 
a significant overlap in gene expression alterations 
sharing also common molecular pathways, suggesting 
in summary that both TDP-43 and FUS proteins may 
affect common downstream RNA-regulated cascades 
which potentially may be associated with the ALS 
mechanism.

sALS-associated epigenetic marks have 
been investigated using Illumina Human Methylation 
27 DNA BeadChip array, resulting in aberrant gene 
expression (91). This study examined ALS-dependent 
methylation dysregulation of several genes previously 
implicated in neuronal development, differentiation, and 
proliferation either mutations in genes associated with 
mental retardation and neurodegeneration, providing 
a better understanding of disease pathogenesis and 
facilitate the discovery of new therapeutic targets. In a 
different study, the transcriptome profile of spinal cord 
and cerebellum of TIA-1 depleting mice was dissected 

using GeneChip HT Mouse Genome 430 2.0. Array 
Plates (Affymetrix), with emphasis in lipid storage 
and membrane trafficking, demonstrating the role of 
TIA-1 protein as a potential effector on mRNA lipid 
homeostasis regulation in the brain (92).

4. microRNAs IMPLICATION IN  
AMYOTROPHIC LATERAL SCLEROSIS

Several studies indicate miRNAs as important 
contributors in motor neuron diseases associated with 
the central nervous system development, neuronal 
differentiation and pathogenesis of neurodegeneration 
(93–95). MiR-34b and miR-9 are playing a potential 
role in Huntington’s disease (96, 97), whereas miR-
206, miR-29, miR-132 and miR-153 implicate in 
Alzheimer’s disorder (98–100). In the midbrain of 
patients with Parkinson’s disease, the levels of miR-
133b have been founded increased, suggesting 
this agent contribution as a negative regulator of 
dopaminergic neuron development (101). Additionally, 
miR-7 and miR-153 have been identified to regulate 
alpha-synuclein levels post-transcriptionally (102, 
103). In ALS a number of microarrays studies have 
identified the essential contribution of microRNAs as 
significant biomarkers, pathogenesis regulators or 
potential therapeutic targets as well like mir-9, -23a, 
-29b, -455, -106, -338–3p and -451 (104–108). MiR-
155 is presented as a well-promising therapeutic 
target in ALS supporting pro-inflammatory pathways 
through interactions with anti-inflammatory molecules 
like inositol phosphatase SHIP1 and protein kinase 
phosphatase-1 (109–111). TDP-43 plays an important 
role in miRNA pathway, while mutations in this protein 
have been characterized as a common attribute in 
disease pathogenesis, perturbing miRNAs biogenesis 
or causing altered expression profiling of mature 
miRNAs as well (112). The skeletal muscle-specific 
miR-206 slows ALS progression by sensing motor 
neuron injury and promoting the compensatory 
regeneration of neuromuscular synapses, indicating 
as a promising candidate molecular marker of this 
motor neuron disorder (113, 114).

The miRNAs transcriptome profiling of 
SOD1G93A mice brain cortex has been analyzed 
using mouse miRNA microarrays 8x15K V2 from 
Agilent Technologies (115). From a pool of significant 
hybridized miRNAs of mouse brain microglia the 
same amount was observed also in the whole 
immune system and brain whereas in overexpressed 
transgenic mice a numerous of different miRNAs were 
founded upregulated. Microarray analysis revealed 
that miR-155, -146b, -22, -365, -125b, -214 have been 
identified as key immune system contributors which 
could control neuroinflammatory pathways, suggesting 
the strong connection between immune system and 
brain microglia (115). The differential profile of miRNAs 
has been investigated at the spinal cord of SOD1G93A 
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transgenic mouse model using miRCURYTM LNA 
array v.18.0. from Exiqon, illustrating a huge number of 
significant deregulated miRNAs (116). Elevated levels 
of miRNA-9 three months upon animal death, suggest 
this molecule as a prominent event in ALS mechanism 
(116). In order to determine viable miRNA therapeutic 
targets for ALS, miRNA transcriptome changes in both 
SOD1G93A rat and SOD1G93A mouse spinal cord tissue 
have been measured using Affymetrix Mouse Genome 
430 2.0. array (109). A plethora of miRNAs profiles 
were found altered in the end-stage ALS mice and rats 
spinal cord, focusing mainly on miR-155 expression 
and the potential anti-miR-155 positive treatment 
contributing this molecule as a novel well-promising 
therapeutic target for ALS disorder (109). Toivonen et al. 
investigated miRNAs alterations in the skeletal muscle 
of SOD1G93A mice upon hybridization on Affymetrix 
GeneChip miRNA 2.0. chips (113). Significantly altered 
miRNAs like miR-1, -133a, -133b, -145, -21, -24 and 
-206 were identified from extensor digitorum longus 
muscles and plasma of animals, with muscle-enriched 
miR-206 being the only one with increased expression 
among male and female groups at neonatal, pre- or 
late- symptomatic state of ALS progression. This 
expression pattern has been evaluated also in 
human ALS patient’s serum, prompting miR-206 as a 
promising candidate biomarker for this selective motor 
neuron disease.

The expression profiles of human miRNAs 
have been analyzed using Miltenyi Biotec PIQO 
miRXplore microarrays in peripheral leukocytes of 
sALS partients in an earlier stage of the disease (107). 
Numerous microRNAs were revealed down-regulated 
compared to healthy patients, whereas miR-338–3b 
was indicated significantly up-regulated in sALS 
patients’ blood, evidence which was found also in brain 
from ALS patients (117). These specific microRNAs, 
which were associated for the first time with sALS, play 
an important role in PI3K/AKT pathway, like miR-451 
or miR-638 in nervous system regulation. Raman et 
al., exploting Applied Biosystems TaqMan Low Density 
Arrays, determined gene expression transcriptome 
changes on miRNA levels in human fibroblast cultures, 
suggesting fibroblasts as a potential disease model 
for sALS- and PLS-pathophysiological mechanisms 
study and therapeutic targeting (75). Comparative 
analysis identified hundreds of significantly 
differentially expressed transcripts either in sALS 
or in PLS fibroblasts respectively, with a variety of 
genes being implicated in miRNA biogenesis along 
with transcription, metabolism, RNA processing stress 
response and signaling (75).

5. DISCUSSION

ALS is a complex and multifactorial disease 
characterized by the involvement of several pathogenic 
conditions. The underlying pathophysiology of ALS is 

not clearly understood causing by several molecular 
mechanisms proposed to explain the neuronal 
degeneration in ALS. Large scale gene expression 
microarray analyses represent an excellent tool aiming 
to clarify the disease’s molecular pathways complexity 
either to elucidate the contribution of distinct 
biochemical pathways of this specific disorder (57). 
These pathways, as presented in Table 1, encompass 
predominantly oxidative stress, endoplasmic 
reticulum stress, mitochondrial dysfunction, 
axonal disorganization, glutamate excitotoxicity, 
abnormal neurofilament function, protein misfolding, 
accompanied by the impairment of RNA processing 
and aggregated proteins accumulation, demonstrating 
important ALS regulatory key features (56, 118).

In order to extend microarrays measurements 
focusing on ALS pathogenetical mechanisms 
being primarily examined complementary to the 
transcriptome, the implication of RNA-seq is 
necessary. Next-generation sequencing technologies 
are revolutionizing our ability to characterize diseases 
at the genomic, transcriptomic and epigenetic levels 
(119, 120). RNA-Seq constitutes a developed deep-
sequencing technology approach providing an 
accurately measurement of the level of transcripts 
(30, 119). As described earlier, RNA-mediated 
neurodegeneration is acutely implicated in ALS. 
Significantly mutated RNA-binding proteins i.e. TDP43, 
FUS, SOD1, ubiquilin and optineurin have been 
found in aggregates into the motor neurons cytosol 
in ALS patients, leading either to their misfolding 
and mislocalization or to perturbed RNA metabolism. 
Dysregulation of RBPs has been recently emerged 
as a prominent pathogenic mechanism, which follows 
the discovery of cytoplasmic mislocalization and RBPs 
aggregation in afflicted sALS neurons (73, 78, 79). 
RNA-Seq analysis performed by Illumina Genome 
Analyzer tried to interpret the effects of Fus associated 
with ALS pathogenesis either on wild-type or R521G 
and R522G mutated or knocked-down one, displaying 
alternatively splicing patterns (122). DAVID Functional 
Annotation Tool analysis revealed significant changes 
in ribosomal-related genes expression in wild-type 
Fus overexpressed samples along with spliceosome-
related genes effectiveness upon Fus silencing. 
Extended data interpretation gave prominence to 
genes associated with RNA-binding motif regulation 
and endoplasmic reticulum targeting. It should be 
highlighted that a compelling number of differentially 
expressed genes has been identified increased both in 
R521G and R522G Fus mutant forms, demonstrating 
that FUS alterations may contribute to the disease 
mechanisms (122).

RNA-seq methodology has been 
demonstrated that TDP-43 plays a significant role 
as an ion channel regulator, in synaptic transmission 
and release, in neurotransmitter 123). TDP-43 
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 Table 1. Recent gene expression profiling studies in ALS animal models and patient’s samples associated
with critical mechanisms in ALS pathogenesis and progression

Samples Mechanism associated with the 
pathogenesis of ALS 

Significant Findings Reference

SOD1G85R Drosophila model Oxidative stress Cell-specific expression of both dSOD1 and G85R 
influencing lifespan, hydrogen peroxide sensitivity 
and lipid peroxidation levels alteration

55

SOD1G93A mouse model Cytoskeleton-related genes in motor neurons 
and Schwann cells in the presymptomatic 
stages

Differentially regulation of Kif1b gene in the sciatic 
nerve Schwann cells along with spinal cord motor 
neurons 

60

SOD1G93A mouse model Tight junction, antigen processing and 
presentation, oxidative phosphorylation, 
endocytosis, chemokine signaling pathway, 
ubiquitin mediated proteolysis and glutamatergic 
synapse at both pre-symptomatic ages

Initial triggering for neuronal degeneration and 
muscle adaptation keeps function before the onset 
of ALS symptoms.
The Ube2i expression in astrocytes on the early 
mechanisms in ALS

61

SOD1G93A mouse model axon migration Netrin-1, astroglial glutamate transporter EAAT2 
regulation

62

SOD1G93A mouse model Extracellular matrix GPNMB as a potential therapeutic target for ALS 63

SOD1G93A mouse model Wnt signaling pathway Upregulation of Wnt signaling components and 
target genes involved in growth regulation and 
proliferation

64

SOD1G93A mouse model Immunological, angiogenic activation, and 
anti-oxidative processes seems to promote 
neuroprotective effects that are associated with 
slower disease progression.

Increased major histocompatibility
complex I expression by motor neurons

65

human oculomotor and 
spinal motor neurons, 
rotent
oculomotor and spinal cord

Synaptic transmission, ubiquitin-dependent 
proteolysis, mitochondrial function, 
transcriptional regulation, immune system 
functions, and the extracellular matrix

Enhanced GABAergic transmission associated with 
ALS progression

23 

human ALS patients Skeletal muscle damage, oxidative metabolism Correlation of Prkr1a, Foxo1, Trim32 and Actn3, 
with sarcomere integrity to mitochondrial
oxidative metabolism

68

Motor neurons from patient 
muscle biopsies

unique downregulation
of major thin and thick filament in ALS

myofibril gene dysregulation as a result of loss of 
actin-myosin interaction.

70

Drosophila dysregulations in RNA metabolism Expression of TDP-43 specifically in neurons 
elicited significant expression differences in genes 
and pathways

85

central nervous system 
primary cells 

Dysregulations in RNA metabolism Mapt, Stx1a, Scn8a, identification regulated by Fus 
as potential therapeutic targets for ALS/FTLD.

89

Mouse primary cortical 
neurons

Dysregulations in RNA metabolism RNA targets of TDP-43 and FUS as a common 
pathway in ALS / FTLD neurodegenerative 
processes 

90

Mouse motor neurone-like 
cell mode,
patient-derived fibroblasts

Dysregulations in RNA metabolism loss of nuclear TDP-43 is associated with RNA 
processing abnormalities in ALS motor neurones

127

Tia-1 KO mouse nervous 
tissue
spinal cord and cerebellum

Dysregulations in RNA metabolism Genetic ablation of the Tia-1 assosiacted with mRNAs 
encoding lipid homeostasis factors in the brain

92

astrocytes from non-
transgenic and TDP-
43M337V
transgenic cells

Dysregulations in RNA metabolism Pathogenic TDP-43 affects the expression of 
secretory
proteins (Chi3L1) contributing to non-cell-autonomous
neuron death

128

SOD1G93A mouse model Gene expression regulation at post-
transcriptional level

miR-365 and miR-125b interfere, respectively, with 
the interleukin-6 and STAT3 pathway determining 
increased tumor necrosis factor alpha (TNFα) 
transcription

115

SOD1G93A mouse model Gene expression regulation at post-
transcriptional level

miRNA-9 significant role in the pathogenesis of 
SOD1G93A transgenic mice

116

SOD1(G93A) rat, 
SOD1(G93A) mouse, ALS 
patients

Gene expression regulation at post-
transcriptional level

miR-155 is indicated as a potential therapeutic
target extending survival and disease
duration in the SOD1G93A mouse

109
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regulates important genes while loss of function or 
overexpression could exhibit strong effects like altered 
splicing and clustered annotation of misspliced genes 
associated with nervous system development, cell 
projection morphogenesis, ATP-dependent chromatin 
and regulation of dendrite morphogenesis. Using 
HITS-CLIP technology coupled with RNA-seq, the 
pivotal role of Fus in neurodegeneration has been 
revealed as a neuronal transcriptome regulator (124). 
Sequencing human brain samples and mouse neurons 
differentiated from embryonic stem cells respectively 
followed by gene ontology enrichment analysis, has 
been indicated that Fus is participating in an enormous 
network of cross-regulation of RBPs i.e.TAF15, 
EWS together with FUS constitute the FET family 
of RBPs, characterized by a strong enhancement in 
genes responsible for neuronal projection, controlling 
synaptic, neuronal recognition progress and function 
(124). Whole transcriptome profiling study of laser 
capture microdissected motor neurons was performed 
using the transgenic G85RSOD1-YFP mouse model at 
a presymptomatic state, developing a compelling 
number of differentially expressed genes among G85R 
and wild-type motor neurons which are linked mainly to 
neuronal function (125). More precisely, GO analysis 
illustrated enrichment of genes controlling neurite 
outgrowth, axon formation, calcium metabolism, 
calcium sensing, ion homeostasis and mitochondrial 
function. RNA-Seq analysis of motor neurons in these 
transgenic G85RSOD-YFP mice identified slightly mRNA 
profile alterations. Post-translational effects, could 
involve interactions between mutant SOD1 misfolding 
and cellular cytosolic or membrane proteins, affecting 
conceivably their role in macromolecular trafficking 
and or synaptic organelle function (125). RNA-
seq data analysis at the spinal cord of transgenic 
FUSR521C mice observed numerous enriched functional 
annotation groups which regulate extracellular matrix, 
including members of the collagen and cadherin gene 
families, phagocytosis, chemotaxis, immune-mediated 
processes, ion channel, synaptic specificity and neuron 
outgrowth (126). The transcriptome data indicated 

also microglia-specific molecular markers associated 
either with CNS cell types or peripheral myeloid 
immune cells like Olfml3, Tmem119, and Siglec-H. 
Simultaneously, RNA-seq data demonstrated that that 
SOD1G93A microglia expressed fundamental neurotoxic 
factors, like Mmp12, Optn, Spp1, TNF-a, IL-1b, IL-a 
along with receptors for type 1 Ifnar1 and Ifnar2 and 
the proinflammatory oxidase NOX2, evidences that 
attribute a complicated transcriptional profile, revealing 
neuroprotection and neurotoxicity concurrently (126).

In ALS pathogenesis, it has been assumed 
that damaging a selective population of motor neurons 
leads to disease onset, duration and length of survival. 
It is essential to understand comprehensive disease’s 
etiology to identify novel neuroprotective agents that 
might postpone either allow disorder’s furtherance in 
parallel with the urgency of compelling therapeutic 
strategies able to reduce the burden of motor damage 
(129–132). Further research’s direction should be 
focused on deepening our comprehension on cellular 
and pathological mechanisms causing ALS. The 
potential of transcriptomic analysis helps to define 
candidate genes and novel prognostic biomarkers 
for future investigation, disease course and treatment 
response. All new insights contribute to unravel 
transparently ALS pathogenesis demonstrating 
likewise perspicuous targets for future therapies.
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