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1. ABSTRACT

Alzheimer’s disease affects millions of people, 
yet, there are only a limited number approaches for it 
pharmacological treatment. Thus, identifying factors 
that decrease the risk of developing Alzheimer’s 
disease is of paramount importance. A growing body of 
epidemiological and experimental evidence suggests 
that dietary fruits and vegetables have neuroprotective 
effects against the harmful effects of oxidative stress, 
neuroinflammation, and aging. These effects are 
mediated by various phytochemical compounds found 
in plants that exhibit antioxidant, anti-inflammatory, 
and other beneficial properties. This review addresses 
epidemiological and experimental evidence for the 
effects and potential mechanisms of several commonly 
consumed phytochemicals on neuropathology and 
outcomes of Alzheimer’s disease. Based on available 

evidence, we suggest that regular consumption of 
bioactive phytochemicals from a variety of fruits 
and vegetables attenuates age- and insult-related 
neuropathology in Alzheimer’s disease. 

2. INTRODUCTION 

Phytochemicals are compounds produced 
by plants, some of which (e.g., phenols, terpenes, 
and organosulfurs) result in pigmentation, odors, and 
irritants that can protect the plant from internal (e.g., 
metabolic) insults like protein overexpression and free 
radical reactive oxygen species (ROS), and external 
(e.g., environmental) insults like predators, pathogens, 
ultraviolet radiation, and other threats to the plants’ 
survival. Consumption of plants that produce these 
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phytochemicals seems to produce health benefits for 
humans mediated by modulating several biological 
pathways, including inflammatory processes, 
neuronal cell death (apoptosis), neurogenesis, 
neurotransmission, and enzyme function (1, 2). 
Many of these pathways have a direct effect on the 
development of Alzheimer’s disease (AD) and other 
types of age-related neuropathology. This review will 
provide a brief overview of AD etiology, followed by 
an outline of dietary phytochemicals that have been 
shown to affect age- and AD-related neuropathology 
and functional outcomes.

3. ALZHEIMER’S DISEASE NEUROPATHOLOGY

Recent prevalence rates suggest that over 
5 million Americans currently have AD (3), which 
is behaviorally characterized by a presentation of 
memory, motor, language, and executive dysfunction. 
The neuropathological markers of AD were originally 
thought to be limited to the formation of amyloid 
plaques surrounding neurons and the presence of 
neurofibrillary tangles (NFTs) of tau protein inside 
neurons. However, in recent years, the significance 
of mitochondrial dysfunction, neuroinflammation, 
astrogliosis, microglial activation, synaptic loss, 
neuronal damage, apoptosis, disruption of blood 
brain barrier (BBB) permeability, bacterial and 
viral infections, and intestinal microbiota have all 
been identified as significant contributors to AD 
neuropathology (4-19). 

Plaque accumulation has been identified in 
the medial temporal lobe, particularly the hippocampus 
and entorhinal cortex, prior to the emergence of 
behavioral symptoms. These structures have been 
implicated in learning and memory processes, 
which explains the cognitive impairments associated 
with AD. The extracellular plaques consist mainly 
of amyloid-beta (Aβ) peptides cleaved from larger 
amyloid precursor proteins (APP) by γ-secretase and 
β-secretase enzymes. The increasing concentration 
of extracellular Aβ monomers gradually results in their 
polymerization into diffuse aggregates and eventually 
dense-core amyloid plaques (20). Other proteins 
(e.g., apolipoproteins) and non-proteins (e.g., metals, 
hemes, and ROS) have also been found within the 
plaques (21-24). An age related increase in cortical and 
subcortical amyloid plaque levels is one of the most 
salient AD biomarkers (25). NFTs, another prevalent AD 
biomarker, are damaged tau-based microtubules that 
disrupt intracellular transport mechanisms. Typically, 
these damaged neurons are found in areas with 
higher Aβ concentrations. Eventually, these damaged 
neurons are unable to function properly, leading to 
neuronal death. One current hypothesis for the etiology 
of AD is that the gradual accumulation of Aβ between 
the neurons initiates inflammatory and oxidative 
processes that lead to the formation of synaptic loss, 

NFTs, and neurodegeneration, particularly in neurons 
that use acetylcholine and glutamate (20, 26, 27).

Aβ neurotoxicity has been demonstrated in 
hippocampal cell cultures (28), and the deleterious 
effects of Aβ deposition on synaptic functioning in 
the brain have been demonstrated using long-term 
potentiation (LTP), an in vitro model of learning and 
memory (29-31). Aβ has also been shown to induce 
hypersensitivity to excitotoxicity (i.e., damage caused 
by dysfunctional firing of glutamate) and oxidative stress 
in vitro (32, 33). Furthermore, the formation of Aβ-heme 
peroxidase complexes within Aβ plaques begins a 
neuroinflammatory cascade leading to release of ROS 
and damage to muscarinic acetylcholine receptors 
within the brain (34, 35). Importantly, these damaging 
effects can be ameliorated by dietary antioxidants 
(36-38). Although the accumulation of extracellular 
Aβ plaques is a prominent feature of the AD brain, 
synaptic loss within and surrounding the plaques may 
be a better predictor of the cognitive dysfunction seen 
in AD than the total amount of Aβ plaque deposition 
(39, 40). Individuals may be biologically more or less 
susceptible to neuronal buildup of Aβ, which may 
explain why the overall Aβ plaque burden is generally 
not a direct indicator of AD symptom severity (41, 42).

Although it is currently unclear whether Aβ 
deposition is a primary cause of the neurodegeneration 
and behavioral deficits associated with AD, the 
gradual accumulation of Aβ in the brain appears to 
be associated with progressive oxidative stress and 
various harmful downstream effects. Oxidative stress 
associated with AD is believed to be partly responsible 
for damage to neuronal structures that contributes 
to functional deficits and ultimately neuronal death. 
Furthermore, experimental evidence suggests that 
manipulating levels of Aβ deposition in the brain can 
influence the emergence of behavioral deficits.

For example, accelerated Aβ plaque 
accumulation tends to increase the risk of developing 
behavioral deficits associated with AD (i.e., learning 
and memory problems). Pathophysiological conditions 
that accelerate Aβ accumulation in the brain have 
been shown to increase the risk of developing AD. 
These conditions include Down syndrome, which 
is characterized by an overproduction of APP in 
the brain, leading to elevated Aβ production and 
deposition. Individuals with Down syndrome are 
typically diagnosed with some form of dementia by 
approximately 50 years of age (43-45). Additionally, 
several inheritable mutations in the genes for APP 
or γ-secretase lead to elevated APP production and 
Aβ deposition in the brain and an earlier onset of AD 
(46-48). Identification of these genes has resulted in 
the development of transgenic rodent models of AD 
that express high levels of human APP and develop 
age-related neuropathology and cognitive deficits 
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congruent with Aβ aggregation and deposition in the 
brain (49-52). Transgenic rodent models of AD focused 
on Aβ plaque development appear to mirror the 
behavioral hallmarks of AD seen in humans diagnosed 
with AD (53). Additionally, in vivo imaging shows 
that Aβ plaques can aggregate rapidly in transgenic 
rodent brains, and that markers of neurodegeneration 
around these Aβ plaques develop quickly (54, 55). 
Finally, neuroinflammatory processes and oxidative 
stress can induce accumulation of APP and Aβ in the 
brain, increasing the risk for developing AD. Common 
sources of these insults include traumatic brain 
injury, stroke, chronic low-level hypoxia (e.g., due to 
breathing problems), the “Western” diet (56-66), and 
(importantly) the accumulation of Aβ. Oxidative stress 
is a common component of all brain injury and can 
induce further Aβ accumulation, initiating a harmful 
cycle of progressive oxidative and inflammatory load 
in the brain. (67, 68).

In addition to the observation that 
accelerating Aβ accumulation can increase the risk 
of developing AD and associated behavioral deficits, 
experiments with transgenic rodent models of Aβ 
plaque accumulation in the brain have shown that 
reducing Aβ levels in the brain can improve behavioral 
outcomes. These experiments include systemic 
treatments with monoclonal anti-Aβ antibodies and 
dietary manipulations that prevent, or in some cases 
reverse, the neuropathology and behavioral deficits 
associated with AD (53, 69-79). Reducing oxidative 
load in the brain is another pathway to improving 
cognitive function in Aβ transgenic rodent models 
without reducing Aβ levels (80-82). These findings 
suggest that Aβ contributes to the process of oxidative 
stress overload that gradually impacts the function of 
brain structures that mediate learning and memory.

In summary, AD is associated with an 
abnormal buildup of Aβ plaques in the brain, which 
ultimately induces even greater Aβ accumulation in 
the brain. This “amyloid cascade” process creates 
a damaging cycle of neurodegenerative decline, 
including the formation of NFTs, synaptic dysfunction 
and loss, excitotoxicity and apoptosis (83-86). 
Current pharmacological approaches for treating AD 
have focused on stabilizing glutamatergic activity 
by blocking NMDA channels (e.g., memantine) and 
inhibiting acetylcholinesterase (AChE), an enzyme 
that breaks down acetylcholine and has been shown 
to induce Aβ aggregation (e.g., galantamine, tacrine, 
donepezil, and rivastigmine). NMDA antagonists can 
slightly slow the progression of AD symptoms and 
may reduce the susceptibility of neurons to excitotoxic 
degeneration. AChE inhibitors have been shown 
in animal experiments to slow AChE’s promotion 
of Aβ aggregation. Nevertheless, pharmacological 
treatments that target glutamate and acetylcholine 
have ultimately yielded disappointing results. Other 

experimental approaches that have yielded mixed 
results. Active and passive Aβ immunotherapies in 
transgenic mouse models of AD have yielded promising 
results, even in the absence of significant reductions in 
Aβ burden (87-89). Human immunotherapy treatment 
has been more problematic, due to significant toxicity 
and tolerability concerns (90-95). Although theses 
pharmacological failures have raised questions about 
the amyloid cascade hypothesis of AD, it has also 
been proposed that Aβ may initiate a multi-faceted 
pathogenic cascade that causes AD, rather than 
acting as the sole causative factor (83, 96, 97). These 
downstream processes include tau aggregation, 
extracellular senile plaque formations, mitochondrial 
dysfunction, neuroinflammatory processes, blood 
brain barrier (BBB) permeability disruption, and gut 
microbiome disturbances (6, 7, 98-105). Despite 
the lack of significant progress towards effective 
pharmacological interventions for AD, mounting 
epidemiological and experimental evidence indicates 
that diet and other sources of bioactive phytochemicals 
can significantly decrease the risk of developing AD 
neuropathology and symptoms by several potential 
mechanisms (106-109). 

4. PHYTOCHEMICALS AND ALZHEIMER’S 
DISEASE

A growing body of literature demonstrates 
that several bioactive phytochemical compounds, 
including vitamins (e.g. tocopherols and folic acid) and 
other organic compounds (e.g. phenols, terpenes, and 
organosulfurs) can affect aspects of the AD disease 
process. Potential mechanisms for these effects 
include antioxidant / anti-inflammatory properties and 
modulation of Aβ concentrations and toxicity. Indeed, 
several pharmacological interventions of interest in AD 
stem from traditional herbal medicines. For example, 
the AChE inhibitor galantamine is derived from daffodil 
plants, and the anti-inflammation drug aspirin is derived 
from salicylic acid, a polyphenol found in the bark of 
willow trees. Both phytochemicals have garnered 
interest in the treatment of AD. Additionally, the role 
of the gut microbiome has been of increasing interest 
in studying the activity and mechanisms of dietary 
phytochemical compounds. Approximately 100 trillion 
diverse species of very metabolically active bacteria 
line the intestinal tract and have a strong influence (both 
pro- and anti-) on neuroinflammation, neuromodulation, 
and neurotransmission in the brain and periphery. The 
role of the potentially neurotoxic and proinflammatory 
microbial activations and their relationship to age-
related amyloidogenesis and neurodegeneration are 
of increasing interest (110, 111). In addition to the 
gut’s role in the disease process of AD, its microbiome 
is also highly implicated in the bioavailability and 
bioactivation of dietary phytochemicals. It has been 
shown that 5-10% of dietary phytochemicals are 
absorbed initially. The remaining phytochemicals reach 
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the colon, where they undergo extensive metabolizing 
by microbiota. Although the metabolic pathways 
and the molecular targets are not well understood, 
the intestinal microbiome’s breakdown of dietary 
polyphenols may enhance their beneficial properties 
(112-116). Recent studies of the pharmacokinetic 
activity of several microbiome-produced polyphenol 
metabolites found that many of them reached the 
brain in statistically significant concentrations (105, 
114, 117). The following sections provide a survey of 
the epidemiological and experimental evidence for the 
effects of various plants, phytochemicals, and their 
metabolites on AD processes.

4.1. Epidemiological evidence

Several studies have demonstrated that 
regular consumption of a variety of fruits and 
vegetables can decrease the risk for developing 
AD and slow its progression. For example, a large 
Swedish study collected dietary questionnaires from 
young adults approximately 40 years before regular 
cognitive screenings began in older age. It was 
found that higher fruit and vegetable consumption 
in earlier life was associated with a decreased risk 
of dementia and AD (118). Similarly, a study of Irish 
adults, aged 64-93 years, found that consuming 
more fruits and vegetables was associated with 
significantly better overall cognitive functioning (119). 
However, another study reported that consumption of 
dietary tocopherols (isoforms of vitamin E), vitamin C, 
P-carotene, and tea were not correlated with the risk 
of developing AD (120).

Additionally, epidemiological evidence 
that isolated phytochemicals can affect AD remains 
elusive. A study of older American adults to identify 
dementia incidence and AD diagnoses found that 
the use of vitamins C and E alone or in combination 
did not reduce AD or dementia incidence after a 
5-year follow-up (121). Another study examining the 
effects of vitamin E supplementation in mild cognitive 
impairment (MCI) and AD found no evidence that it 
was beneficial (122). However, one study of older 
Chinese adults reported that lower α-tocopherol 
levels were found in those diagnosed with MCI than 
in healthy controls (123), and another recent study 
found that higher dietary intake of vitamins A, C, 
and E is associated with protection from AD (124). 
Nevertheless, the evidence suggests that acquiring 
vitamins through a varied diet of vitamin rich foods 
may provide more protection from AD than the use 
of vitamin supplementation. A recent study of elderly 
French adults examined the association between 
dietary vitamin B consumption and long-term 
incidence of dementia. Higher intake of dietary vitamin 
B reduced the risk of dementia with an approximately 
50% lower risk for individuals consuming the highest 
amounts compared to the lowest consumers (125).

Furthermore, growing epidemiological 
evidence suggests that dietary omega-3 fatty acids, 
most commonly found in flax, nuts, algae, and oil from 
fish that eat algae, may protect against developing AD 
(126-130). The so-called “Mediterranean” diet, which 
is characterized by regular consumption of foods 
with high fatty acid content from fish, nuts, and oils, 
has been of increasing interest, due to the growing 
body of evidence that it is associated with several 
health benefits, including a reduced incidence of AD. 
Consumption of dietary fatty acids appears to explain 
a portion of the diet’s neuroprotective characteristics 
(131), and several epidemiological studies have 
demonstrated that diets supplemented with olive oil 
and/or nuts are associated with improved cognitive 
function in older adults (127, 132, 133). 

Other sources of bioactive phytochemicals 
include colorful, flavorful, and aromatic spices. These 
spices often contain high concentrations of various 
phenols, terpenes, and organosulfurs. For example, 
a study of elderly adults showed that those whose 
diets included curry performed significantly better on 
neuropsychological tests of cognitive performance 
(134). This spice mix includes turmeric, a bright 
yellow root that contains a high concentration of 
the polyphenol curcumin. Light to moderate wine 
consumption has also been associated with a reduced 
risk for AD, although it remains unclear whether the 
effect is due to grape polyphenols (e.g., resveratrol) or 
ethanol (which itself is derived from plants) (135-137).

Phytochemicals can also be consumed by 
other methods other than diet. For example, smoking 
tobacco was previously thought to possibly offer 
protection from Aβ deposition and the occurrence of AD. 
This was in large part due to postmortem examinations 
of the brains of AD that showed significantly lower 
levels of Aβ in the entorhinal cortex of smokers 
(138). However, recent epidemiological studies have 
identified smoking as a risk factor for the development 
of AD (139). A large community study of adults in the 
US found that older individuals who currently smoke 
are more likely to develop AD than those who never 
smoked. Given that experimental evidence of nicotine 
administered in animal models of AD suggests that 
nicotine may be neuroprotective (see section 4.2.6.2.), 
it appears likely that the act of smoking tobacco, rather 
than consumption of nicotine itself, increases the risk 
for developing AD, despite evidence of decreased 
postmortem Aβ in smoker’s brains.

In summary, epidemiological evidence 
suggests that consuming a wide variety of fruits 
and vegetables that containing high concentrations 
of bioactive phytochemical compounds may work 
collectively and synergistically to lower the risk for 
developing AD. Relatively few experimental clinical 
trials have been published assessing the effects of plant/
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phytochemical consumption on AD in humans. Several 
experimental preclinical studies using transgenic 
animals and/or in vitro models have provided evidence 
that various aspects of AD neuropathology can be 
manipulated by plants and their phytochemicals. The 
following subsections outline recent experimental 
literature describing the varied potential benefits of 
bioactive phytochemicals on AD neuropathology.

4.2. Experimental evidence

4.2.1. Polyphenols

Many plants produce polyphenols (large 
assemblies of phenols, which are molecules that 
contain an aromatic ring bonded to a hydroxyl group). 
These include common phytochemicals like the 
phenolic acids, stilbenoids, and flavonoids.

4.2.1.1. Phenolic acids

Several phenolic acids have been shown 
to modulate neuropathological pathways related 
to AD. For example, rosmarinic acid (derived from 
rosemary) and nordihydroguaiaretic acid (derived from 
creosote) have been shown to prevent and reverse 
Aβ aggregation in vitro (140-142). Additionally, coffee 
and tea are plants with relatively high concentrations 
of phenolic acids that possess antioxidant and anti-
inflammatory properties, such as caffeic acid and 
various tannins (143-146). Coffee and tea are also 
discussed in section 4.2.6.1. (caffeine), and tea is 
discussed in more detail in section 4.2.1.3.1. (flavans).

Diets containing high amounts of the spice 
mixture curry have been associated with improved 
cognitive performance in elderly individuals (134, 147). 
Curcumin is a phenolic acid found in the curry spice 
turmeric, which is a bright yellow root related to ginger. 
It is structurally similar to thioflavine-S and Congo red, 
which are histological stains used to visualize amyloid 
fibrils in brain tissue. Interestingly, curcumin will also 
bind to amyloid fibrils in brain tissue sections and 
can be visualized under a fluorescent microscope to 
observe Aβ plaques(148, 149). In addition to its Aβ 
binding properties in tissue sections, it has also been 
demonstrated to prevent and reverse Aβ aggregation 
in vitro (150, 151).

Experimentally, dietary curcumin has been 
reported to prevent oxidative stress, synaptic damage, 
cortical microgliosis, and learning deficits in rats after 
intracerebroventricular infusion of Aβ (152). It also 
decreased Aβ plaques and oxidative stress in APP 
transgenic mice (150, 151, 153) and reduced heme-
Aβ peroxidase damage to muscarinic ACh receptors 
(35). More recent studies with both rats and mice have 
examined whether curcumin attenuates inflammation 
and mitochondrial dysfunction in models of neurological 

insult. The results suggested that curcumin reduced 
post-insult lesion sizes and inflammatory biomarkers 
in the brain, and improved mitochondrial function 
and behavioral outcomes (100, 154). Additionally, a 
transgenic mouse study demonstrated increased levels 
of DNA damage relative to control mice, and reported 
that dietary supplementation with curcumin significantly 
reduced the damage (155). Its experimental effects 
are not limited to rodent models. A recent drosophila 
(fruit fly) experiment found that curcumin reduced 
oxidative stress and protected against age-related 
neurodegeneration (156), and a study of elderly 
humans after 12 weeks of curcumin supplementation 
demonstrated improved artery endothelial function by 
increased vascular nitric oxide bioavailability, reduced 
overall oxidative stress, and improved conduit artery 
endothelial function (157). Curcumin also inhibits 
the pro-inflammatory cytokine nuclear transcription 
factor-κβ (NF-κβ) (158) and modulates other cell-
signaling pathways (159) . Curcumin also possesses 
potent antimicrobial properties which may possibly 
have direct or indirect effects on Aβ aggregation 
or other neuropathological pathways to AD. An In 
vitro study of curcumin demonstrated that curcumin 
dose-dependently inhibits the formation of Aβ fibrils 
and destabilizes already formed Aβ fibrils. However, 
the mechanism by which Curcumin inhibits Aβ fibril 
formation and Aβ fibril destabilization remains unclear 
and could be due to a synergistic effect of curcumin’s 
anti-aging and anti-microbial properties (150, 160, 161).

The anti-amyloid and antioxidant activity 
of curcumin has generated great interest for the 
treatment of AD. However, the insolubility of curcumin 
in water has restricted its use. This restriction may be 
overcome by the synthesis of curcumin nanoparticles 
that maintain anti-oxidative properties, are non-
cytotoxic, and can destroy amyloid aggregates, thus 
approaching the treatment of Alzheimer’s disease from 
several angles.

Pomegranates have been consumed as food 
and used medicinally for millennia and contain high 
concentrations of punicalagins, which break down in 
water to smaller phenolic acids such as ellagic acid, 
ellagitannins, and gallic acid (162-171). Several animal 
and human studies have shown that pomegranate 
juice and extracts demonstrate significant bioactive 
properties, including antioxidant and anti-inflammatory 
effects (166, 172-186). Pomegranate juice, extracts, 
and their bioactive constituents suppress inflammatory 
cell signaling, reduce expression of oxidation-
sensitive genes and pro-inflammatory cytokines in 
response to cellular stress, reduce blood biomarkers 
of inflammation and oxidative stress, and modulate 
endothelial nitric oxide synthase expression (187-189).

Animal experiments in which rodents 
have been given pomegranate extracts or had 
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pomegranate juiced added to their drinking water 
have demonstrated the neuroprotective effects of the 
pomegranate’s bioactive phytochemicals. The amount 
of juice consumed was similar, on a mg/kg basis, to 
a human dose of 1 to 2 cups of pure pomegranate 
juice. Initially, pomegranate’s neuroprotective 
propertied were demonstrated when the offspring 
of pomegranate-supplemented pregnant mice were 
protected from neonatal hypoxic-ischemic brain injury 
(190). These results prompted experiments with APP 
transgenic mice, in which 6 months of consumption 
reduced Aβ plaques in the hippocampus and 
improved maze performance (79). Later experiments 
suggested that the reduction in Aβ levels likely resulted 
from modulations in APP enzymatic processing, 
presumably leading to less production of Aβ and 
increased production of soluble APP-α (sAPPα, 
an endogenous neuroprotective peptide produced 
by α-secretase processing of APP). Another study 
showed that ellagic acid derived from pomegranate 
rinds inhibited β-secretase activity in vitro (191). More 
recent mouse studies examining the consumption of 
pomegranate peel extract showed increased brain-
derived neurotrophic factor expression and reduced Aβ 
plaque density, AChE activity, lipid peroxidation, and 
pro-inflammatory cytokine expression (192). These 
results were similar to other APP transgenic mouse 
studies in which pomegranate juice supplementation 
improved learning and memory and reduced Aβ plaque 
deposition (193) and showed significant improvements 
in memory, learning, and locomotor function while 
reducing anxiety (194). Another recent mouse study 
showed that pomegranate supplementation protected 
against proton irradiation-induced anxiety (195). 
Finally, pomegranate supplementation has been 
experimentally demonstrated to improve cognitive 
performance in humans after heart surgery (196) and 
with mild cognitive impairment (197).

Overall, this growing body of experimental 
evidence shows that the phenolic acids found in 
pomegranates may directly or indirectly provide 
significant behavioral and neuropathological 
protection against age-related disorders, including AD, 
by multiple mechanisms that work together to prevent 
establishment and progression of Aβ deposition and 
neurodegeneration. Interestingly, in vitro experiments 
show that isolated phytochemical components may not 
provide as much benefit as the whole juice, suggesting 
that the wide variety of phenolic acid isoforms present 
in the whole fruit may provide synergistic benefits (185). 
One study even showed that the conjugated sucroses, 
fructoses, and glucoses found in pomegranates 
also have antioxidant properties (183). Some recent 
studies have shown that bacteria in the gut can 
metabolize the large punicalagins into smaller anti-
inflammatory molecules like urolithin-A that may have 
higher bioavailability (166, 198-200). These findings 
suggest that further comparative studies of isolated 

phytochemical metabolites may lead to increased 
understanding of their true mechanisms of action and 
the mediating role of microbiome metabolism. Finally, 
numerous other studies have shown pomegranate 
and its bioactive constituents to be anti-carcinogenic, 
antibacterial, anti-apoptotic, and protective for the 
cardiovascular system (172, 180-186, 201-209), 
suggesting that consumption of pomegranates and 
their juice may protect against AD neuropathology and 
a several other age-related disease processes. 

4.2.1.2. Stilbenoids

Resveratrol is a stilbenoid polyphenol found 
in grapes and nuts that has been shown to induce Aβ 
clearance and decrease Aβ levels in vivo in part via 
intracellular proteasome-facilitated degradation of Aβ 
(210). Additionally, resveratrol modulates several Aβ-
related cell-signaling pathways (211-213), which may 
explain the epidemiological evidence for a decreased 
risk of developing AD among elderly individuals who 
drink small to moderate amounts of wine. Experimental 
models of traumatic brain injury have demonstrated 
that treatment with resveratrol immediately after 
traumatic brain injury reduces oxidative stress and 
even reduces lesion volume (214). These findings are 
supported by resveratrol’s neuroprotective effects in 
adult and neonatal rodent models of ischemic stroke 
(215, 216).

4.2.1.3. Flavonoids

The flavonoid class of polyphenols includes 
the flavans and pigment compounds like the 
anthocyanidins and anthoxanthins.

4.2.1.3.1. Flavans

The flavan class of polyphenols includes 
flavanols such as the catechins, which are found in high 
concentration in tea leaves. Catechins and phenolic 
acids (e.g., tannins) make up about 25% of the tea 
leaf, which also contains psychoactive compounds 
(e.g., caffeine; see section 4.2.6.1.). Tea has been 
used medicinally for centuries, likely because of these 
bioactive phytochemicals. Tea consumption is still 
very common globally, but epidemiological evidence 
correlating tea consumption with the risk of developing 
AD has been mixed. However, multiple lines of 
experimental evidence suggest that tea may protect 
against oxidative stress (217, 218) and that some 
of tea’s compounds may protect various AD-related 
pathways. For example, a transgenic mouse study 
demonstrated that an extract of black tea polyphenols 
significantly reduced memory impairment, oxidative 
damage, Aβ burden, and apoptosis (219).

Isolated catechins found in tea have been 
studied more in depth. Epigallocatechin-3-gallate 
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(EGCG) is a well-characterized catechin found in 
tea that has been shown to decrease behavioral 
impairments, reduce Aβ production, and decrease 
y-secretase activity in transgenic mice (220). In 
another transgenic mouse study, EGCG treatment 
restored respiratory rates and membrane potential, 
reduced ROS production, and increased ATP levels 
by 50 to 85% in mitochondria isolated from the 
hippocampus, cortex, and striatum (221). In addition to 
the neuroprotective effects of ECGC, a recent study of 
aging rats examined a tea extract rich in other catechins, 
but poor in ECGC. The data demonstrated improved 
learning and memory and reduced oxidative stress, 
suggesting that tea consumption is associated with 
multiple catechins having a synergistic neuroprotective 
effect above and beyond isolated tea catechins (222). 
Overall, the phenolic acids and flavonoids found in 
tea offer multi-faceted neuroprotection from AD via 
multiple mechanisms.

4.2.1.3.2. Anthocyanidins

Anthocyanidins are water soluble pigments 
with potent with antioxidant and anti-inflammatory 
properties found in high concentrations in fruits such 
as the blueberry (223-225). Rodent models of AD 
have shown that a blueberry enriched diet significantly 
reduced learning and memory impairments mediated 
by excitotoxicity and oxidative stress, decreased 
neuronal loss, and inhibited AChE activity (226-228). 
In a recent study, a single drink containing blueberry 
flavonoids was given to 8-10-year-old children 2 hours 
before a brief memory assay and was associated 
with overall improved delayed recall, but increased 
susceptibility to proactive interference (229).

4.2.1.3.3. Anthoxanthins

Anthoxanthins are another class of flavonoid 
pigment that includes compounds such as the 
flavones and flavonols. Luteolin is a flavone found in 
the leaves and rinds of many plants, including celery, 
broccoli and citrus fruits that acts on multiple pathways 
associated with the development of AD. Reported 
effects in transgenic mice include decreases in both 
Aβ deposition and tau phosphorylation (which can 
ultimately lead to NFTs in humans). Other studies 
using rat models of AD suggest that luteolin protects 
against Aβ-induced cognitive impairment by regulating 
the cholinergic system, inhibiting oxidative stress, and 
prevented hippocampal cell death in a chemically-
induced model of AD. (230, 231). Additionally, luteolin 
has been shown to reduce neuroinflammation and 
Aβ deposition following experimental traumatic 
brain injury in transgenic mice (232). Finally, luteolin 
demonstrates significant antioxidant action, regulates 
phosphorylation (233, 234), inhibits mitochondrial 
dysfunction induced by myocardial insult, protects BBB 

permeability in AD rodent models, reduces apoptosis in 
Parkinson’s disease rodent models, alleviates obesity-
induced cognitive impairment in a rodent model of 
type-2 diabetes mellitus, and has anti-carcinogenic 
properties in an animal model of lung cancer (235-
239). Thus, like other polyphenols, luteolin seems to be 
readily available in the diet and may provide protection 
from age-related neuropathology from several different 
angles.

Flavonols such as fisetin, quercetin, myricetin, 
and kaempferol have also demonstrated bioactive 
properties of interest to aging and AD research. For 
example, fisetin, which is found in strawberries and 
other fruits and vegetables, enhanced cognitive 
performance and reduced inflammation in a rodent 
model of induced neurodegeneration (240). Fisetin’s 
affects appear to be in part attributable to increases in 
cAMP response element binding (CREB), which plays 
an important role in learning and memory mechanisms 
and has been shown to reduce Aβ plaque formation. 
Additionally, isolated preparations of quercetin and 
myricetin have been shown to reduce Aβ-related 
damage to muscarinic acetylcholine receptors (241, 
242).

Kaempferol and quercetin are flavonols found 
in especially high concentrations in the leaves of the 
gingko biloba tree, which have been used medicinally 
for centuries due to their purported cognitive 
enhancing properties. In addition to kaempferol and 
quercetin, ginkgo biloba also contains terpenes such 
as ginkgolides and bilobalides (see section 4.2.2.1.). It 
has most often been studied experimentally using an 
extract known as EGb761, which has been standardized 
to 24% polyphenol / 6% terpene content, allowing 
relatively easy comparisons between experimental 
studies. Multiple clinical trials have shown that daily 
treatment with EGb761 for a period of 12-24 weeks 
can provide mild cognitive improvements in elderly 
and demented patients (243-245). A study of several 
thousand non-demented elderly adults compared the 
effects of EGb761 to piracetam on cognitive functioning 
over a 20-year period. Results indicated less cognitive 
decline in subjects taking EGb761 than those who 
reported regular use of piracetam (246). Another 
recent randomized, placebo-controlled trial of several 
hundred outpatients was conducted to demonstrate 
the efficacy and safety of EGb761 treatment for 24 
weeks in patients with AD or vascular dementia. 
EGb76 treatment produced significant and clinically 
relevant improvements in cognition, psychopathology, 
functional measures, and quality of life for patients and 
caregivers. Importantly, no significant toxicities were 
observed (243). However, in another randomized, 
placebo-controlled trial, adults aged 70 years or older 
who presented with initial memory complaints were 
administered EGb761 daily and followed for conversion 
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to probable AD diagnoses. In these subjects, EGb761 
did not reduce the risk of progression to AD compared 
with controls given a placebo (247, 248). However, 
like many failed clinical trials of AD treatments, it is 
possible that the intervention was simply started too 
late, since neuropathology generally precedes the 
clinical symptoms by several years.

Several animal and in vitro studies have 
demonstrated that EGb761 can modulate multiple 
pathways related to both brain function and 
neuroprotection. For example, EGb761 has been 
shown to increase dopaminergic transmission in the 
rat PFC(249), increase production of brain derived 
neurotrophic factor in aged rats (250), improve 
mitochondrial respiration in vitro (251), and attenuate 
lipid peroxidation and superoxide free radical production 
in a mouse model of Parkinson’s disease (252) In 
addition to its potent antioxidant properties, EGb761 
also acts as an AChE inhibitor, so several studies have 
compared its clinical effects to pharmaceutical AChE 
inhibitors. One study found that combined treatment 
with EGb761 and donepezil was superior to either 
compound alone and produced fewer side effects than 
mono-therapy with donepezil (253). Although AChE 
inhibitors have demonstrated mostly disappointing 
results in the treatment of AD, research into the 
efficacy of the extract persists because of its minimal 
side effect profile and other potential mechanisms of 
action (254). EGb761 has also been shown to reduce 
Aβ deposition, enhance CREB phosphorylation, 
and promote cell proliferation in the hippocampi of 
young and aged transgenic mice (255). In another 
study, transgenic mice that were given EGb761 for 
20 weeks via dietary supplementation demonstrated 
significantly improved cognitive function, attenuated 
loss of synaptic proteins, inhibition of caspase-1, and 
less inflammation via microglia-induced secretion 
of TNF-α and IL-1β (256). This pattern of results 
suggests that the phytochemicals in EGb761 act on 
AD pathology via multiple synergistic mechanisms, 
including antioxidant, anti-inflammatory, and anti-
AChE pathways (257, 258).

Concerns about the bioavailability of 
phytochemicals like EGb761, such as their ability 
to cross the BBB, have led to recent investigations 
on the pharmacokinetics of these compounds. A 
rat study found that repeated oral administration of 
standard EGb761 doses for 1 week led to as much 
as a 10x increase in the plasma concentration of its 
flavonols components, which were also found in the 
hippocampus, frontal cortex, striatum, and cerebellum 
(259). Thus, although gingko biloba is generally not 
considered a dietary plant, the available evidence 
suggests that readily available concentrated extracts 
may provide beneficial anti-aging and anti-AD effects 
via multiple pathways with a minimal side effect 
profile.

4.2.2. Terpenes

Terpenes are hydrocarbon compounds 
produced by plants (and some insects) that often 
have strong odors and an oily consistency. Terpenes 
of interest to aging and AD research include the 
ginkgolides and bilobalides (found in ginkgo biloba), 
huperzine A (found in Chinese club moss), and the 
phytocannabinoids (found in cannabis).

4.2.2.1. Ginkgolides and bilobalides

As mentioned above, gingko biloba is often 
studied using EGb761, an extract that has been 
standardized to contain 24% polyphenols and 6% 
terpenes (the ginkgolides and bilobalides). Studies 
using EGb761 are discussed in more detail in the 
previous section, and it should be noted that its 
polyphenols and terpenes seem to act together in 
a synergistic fashion to provide its neuroprotective 
effects (257, 258). However, at least one study 
suggests that ginkgolide J, one of its terpenoid 
components, provided similar protection from the 
detrimental effects of Aβ on long term potentiation as 
the whole extract (260).

4.2.2.2. Huperzine A

Huperzine A is a terpene alkaloid with AChE 
inhibiting properties found in the toothed clubmoss 
plant. It has been shown to promote neurogenesis in 
the rodent dentate gyrus (261) and protect mitochondria 
against Aβ deposition by preserving membrane 
integrity and improving energy metabolism (262). Both 
huperzine A and Huprine X, which is synthesized by 
combining components of huperzine A with a synthetic 
AChE inhibitor, improved learning and memory in a 
transgenic mouse model of AD (263, 264). However, 
recent clinical trials have yielded mixed results, and 
the low availability of toothed clubmoss, along with 
the relatively poor performance of pharmaceutical 
acetylcholinesterase inhibitors, has slowed progress 
(265).

4.2.2.3. Cannabinoids

Cannabis is a plant with long history of both 
medicinal and recreational use. Cannabis contains 
a wide variety of terpenes, collectively known as 
phytocannabinoids, that bind with CB1 and CB2 
cannabinoid receptors. CB1 receptors are expressed 
mainly in the cerebral cortex and are thought to 
be responsible for cannabis’ well-documented 
psychoactive effects. CB2 receptors are expressed 
mainly in the periphery and are thought to play a 
role in a variety of inflammatory processes. These 
compounds, including tetrahydrocannabinol (THC), 
cannabidiol (CBD), and cannabinol (CBN), have 
structural similarity to endogenous cannabinoid 
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neurotransmitters such as anandamide and 2-AG, and 
are antioxidant, anti-inflammatory, and neuroprotective 
against excitotoxicity and acute brain damage (266, 
267). Additionally, phytocannabinoids have been 
demonstrated to enhance mitochondrial functioning 
(268) and stimulate neurogenesis within the embryonic 
and adult hippocampus (269, 270).

Aging is associated with dysregulation 
of cannabinoid receptor expression (271), and 
stimulation of cannabinoid receptors with synthetic 
cannabinoids has been shown to attenuate these 
effects (272, 273). A recent study demonstrated that 
THC restored cognitive performance in older mice, 
but, interestingly, the opposite effect was observed in 
younger mice (274). Several studies have suggested 
multiple mechanisms by which cannabinoids, including 
the phytocannabinoids found in cannabis, can also 
affect AD process. There is currently no conclusive 
epidemiological evidence on long-term cannabis users 
and a reduced incidence of AD, but multiple lines of 
experimental evidence suggest a possible protective 
effect. Although the relationship between cannabinoid 
receptors and AD pathogenesis remains unclear, 
cannabinoid receptor expression and the activity levels 
of enzymes that control endogenous cannabinoid 
concentrations change with the development of AD 
(272). Postmortem studies of AD and Down syndrome 
brains reveal consistently elevated levels of CB2 
expression, whereas CB1 receptors are often reduced 
(275, 276) (277-279). These and other observations 
suggest that endogenous cannabinoids such as 2-AG 
mediate inflammatory and neuroprotective processes 
(280, 281).

A study of transgenic mice that also lacked 
CB1 receptors reported that despite a decrease in Aβ 
plaque load, significant learning and memory deficits 
persisted, suggesting that that CB1 receptor deficiency 
can worsen AD-related cognitive deficits independent 
of Aβ plaque load (282). Another study showed that 
the rate of Aβ clearance across the BBB was doubled 
by stimulation of the endogenous cannabinoid 
2-arachidonoylglycerol (2AG) via inhibition of 
endogenous cannabinoid-degrading enzymes (271, 
283). Furthermore, another study demonstrated that 
treatment with a synthetic CB2 agonist reduced Aβ-
induced memory loss (284), and in vitro data shows 
that THC inhibits Aβ aggregation via indirect interaction 
with Aβ peptides (285). Finally, studies of synthetic 
cannabinoids have shown them to ameliorate cognitive 
impairment and neurodegeneration in multiple models 
of Aβ-induced neurotoxicity and neuroinflammation 
independent of antioxidant and/or psychoactive 
properties (286-288). Thus, cannabinoids, including 
those found in cannabis, seem to act on age-related 
and AD-specific neuropathological processes through 
multiple pathways, suggesting a potential role for 
exogenous (e.g., phyto- or synthetic) cannabinoids in 
the prevention and/or treatment of AD.

4.2.3. Organosulphurs

Garlic contains many aromatic sulfur-
containing phytochemicals, including s-allyl cysteine 
(SAC) and di-allyl disulfide, collectively known as 
organosulfurs. Adding an aged garlic extract, SAC, 
or di-allyl-disulfide to the diets of transgenic mice has 
been shown to ameliorate cognitive deficits, reduce 
Aβ plaque formation, reduce abnormal tau build-up, 
and reduce oxidative damage (289-293). SAC has 
been shown to inhibit and reverse Aβ aggregation in 
vitro and in transgenic mice by binding directly to the 
Aβ peptide (294). Another in vitro study examining 
the neuroprotective potential of SAC found reduced 
apoptosis that was not attributable to antioxidant 
activity, but rather to suppression of calpain proteins 
(295, 296). The isolated components of SAC also 
appear to have AD-related neuroprotective properties, 
and may produce a synergistic effect in combination 
with di-allyl-disulfide. Together, these findings suggest 
that garlic and its organosulfur compounds may act on 
several pathways to reduce Aβ plaque formation and 
other AD neuropathology.

4.2.4. Fatty acids

Omega-3 fatty acids, such as α-linolenic acid, 
docosahexaenoic acid (DHA) and eicosapentaenoic 
acid (EPA), are found mainly in flax, nuts, algae, 
and certain fish. DHA and EPA make up about 15% 
of the human brain’s total fatty acids and 30-40% of 
its gray matter. Consuming omega-3 fatty acids can 
reduce inflammation, improve learning and memory, 
increase gray matter volume, and alter gut microbiota 
composition. DHA has been shown to protect against 
Aβ-induced neurotoxicity in transgenic mice and 
has demonstrated anti-inflammatory and anticancer 
properties (297-299). In vitro studies have shown 
that DHA and EPA can reduce Aβ aggregation, 
increase production of neurotrophic substances, and 
decrease production of pro-inflammatory cytokines 
(300). Additionally, omega-3 derivatives can promote 
α-secretase processing of APP, which prevents the 
production of Aβ and leads instead to the production 
of the neuroprotective peptide sAPPα (299). A recent 
study of AD patients found that 24 weeks of omega-3 
supplementation produced increased levels of EPA and 
DHA in plasma and cerebrospinal fluid (CSF) that were 
inversely correlated with CSF levels of phosphorylated 
tau (301). However, another recent study demonstrated 
that Aβ pathology may limit the ability of DHA to readily 
cross the BBB, which may explain why several clinical 
trials have yielded inconclusive or negative results, 
despite the high bioavailability of DHA (302, 303).

4.2.5. Phytovitamins

Epidemiological evidence mentioned in 
section 4.1. suggests a protective effect of dietary 
vitamins against the risk of developing AD, and 
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experimental evidence with humans and rodents tends 
to support this idea. Tocopherols (isoforms of vitamin 
E) and folic acid (an isoform of vitamin B9) are found in 
several commonly consumed plants. A recent clinical 
trial of vitamin E supplementation in AD patients 
taking AChE inhibitors reported a 19% per year delay 
in clinical progression (304), but recent clinical trials 
of vitamin E in isolation have yielded less promising 
results, suggesting that vitamin E may be better suited 
as a complementary therapy for AD (122). However, 
in a study of aged rats, vitamin E-supplementation 
improved age-related cognitive deficits (305), and 
several transgenic mouse studies have demonstrated 
beneficial AD-related effects of supplementing with 
vitamin E. For example, dietary administration of 
vitamin E to transgenic mice reduced Aβ deposition 
(306) along with its associated oxidative stress and 
neuritic dystrophy (307), and it ameliorated behavioral 
impairments, oxidative stress, and injury-accelerated 
Aβ formation resulting from repetitive traumatic brain 
injury (308). Therefore, the data suggest that dietary 
tocopherols may protect the brain from Aβ deposition 
and its associated functional decline.

Other studies have focused on B vitamins, 
because dietary deficiencies have been associated 
with cognitive decline and an increase in AD-related 
neuropathology. For example, a study of elderly 
individuals with a vitamin B deficiency found that 
reversing the deficiency with folic acid (an isoform 
of vitamin B9 found in many fruits and vegetables) 
improved cognitive function after 14 weeks (309). A 
transgenic mouse study looked at the effects of dietary 
folic acid deficiency on neuropathology in transgenic 
mice and reported significant neurodegeneration 
within the hippocampus, although Aβ levels were not 
affected (310). An in vitro study of folic acid deprivation 
demonstrated increased expression of the genes 
involved in encoding the γ- and β-secretases along 
with increased levels of Aβ (311). In a study of high 
dose B vitamin supplements given to healthy adult 
participants over 4-weeks, increased task-related 
functional brain activity was reported (312). However, 
a similar high dose combination of vitamins B6 and 
B12 was ineffective at slowing cognitive decline in 
individuals with mild to moderate AD, suggesting 
that vitamin B may be more effective as a preventive 
measure for AD than as an acute intervention for AD 
related cognitive decline (313). Other trials of folic 
acid supplementation in humans have shown that its 
long-term consumption is associated with decreased 
plasma levels of Aβ and increased grey matter 
volume in the brain (314, 315). These studies, along 
with data showing the neuroprotective effects of folic 
acid on the developing nervous system and the anti-
oxidant properties of dietary tocopherols, suggest that 
consuming phytovitamins may offer neuroprotection 
from oxidative stress that contributes to increased Aβ 
deposition and AD progression.

4.2.6. Psychoactive alkaloids

4.2.6.1. Caffeine

Although tea and coffee contain high 
levels of beneficial polyphenol compounds, the 
psychoactive alkaloid caffeine explains their global 
popularity. Caffeine functions as an insecticide in 
plants and as a psychostimulant in animals. Because 
its stimulant effects (resulting from its competitive 
inhibition of adenosine receptors in the brain) are not 
associated with the euphoria and addictive properties 
characterized by other psychostimulants (e.g., 
cocaine and amphetamines), caffeine has been used 
centuries throughout the globe as a general cognitive 
enhancer. Recent studies with animal models of AD 
have shown that caffeine consumption is associated 
with protection against oxidative stress, improved 
mitochondrial functioning and BBB permeability, 
increased expression of brain derived neurotrophic 
factor, and reduced Aβ deposition and associated 
cognitive deficits (316-320). One study compared 
pure caffeine to “crude” caffeine, which is derived from 
coffee during the decaffeination process and likely 
contains other compounds (e.g., phenolic acids). Both 
supplements had beneficial effects in a transgenic 
mouse model of AD, including neuroprotection from 
Aβ-induced neuronal death via suppressed caspase-3 
activity. However, crude caffeine was more effective 
in reducing learning and memory deficits, and only 
crude caffeine reduced hippocampal Aβ deposition, 
suggesting that “phyto”-caffeine may offer protection 
from AD-related processes above and beyond 
that produced by pure caffeine (321). Interestingly, 
“caffeinol” (a combination of caffeine and ethanol) 
has been shown to demonstrate potent synergistic 
neuroprotection in rodent models of stroke (322-
324). Caffeine’s mild stimulant effects may improve 
cognition, and it appears to offer multiple synergistic 
pathways of neuroprotection from AD pathology, 
including inhibition of Aβ aggregation and protection 
from neurologic insult.

4.2.6.2. Nicotine

Nicotine is another alkaloid that protects the 
tobacco plant from insect predators and produces 
psychostimulant effects in animals, primarily due to its 
agonist action at nicotinic acetylcholine receptors. Like 
caffeine, nicotine has a long history of human use at least 
partially due to its stimulant and cognitive enhancement 
properties. Although some previous studies have 
demonstrated in both humans and animals that 
nicotine may have potential neuroprotective effects on 
AD pathology, further research has demonstrated that 
smokers are at a significantly higher risk of developing 
AD via multiple pathways (325-327). Chronic nicotine 
administration in transgenic mouse models of AD 
has been shown to increase levels of brain-derived 
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neurotrophic factor and prevent long-term memory 
impairment induced by Aβ deposition (328, 329). 
Possible mechanisms include activity at the nicotinic 
acetylcholine receptors, which results in decreased 
oxidative damage, Aβ deposition, and apoptosis. 
In addition to the potential cognitive enhancement, 
antioxidant, and anti-Aβ actions attributed to nicotine, 
its psychoactive metabolite, nornicotine, has been 
show to inhibit Aβ aggregation by forming permanent 
covalent bonds with Aβ peptides (330). These finding 
suggest that pharmaceutical treatment with nicotine 
may provide positive benefits in the treatment and/or 
prevention of AD.

5. SUMMARY

The development of AD-related 
neuropathology and its associated behavioral deficits 
is related to the gradual accumulation of Aβ plaques 
and NFTs in the cortex over the lifespan. This causes 
increased oxidative stress and inflammation in the brain, 
leading to further Aβ deposition, neuronal degradation, 
and other downstream effects. A variety of acute or low-
grade chronic neurological insults can accelerate this 
process, and current pharmacological treatment options 
appear to be only minimally beneficial.

In the absence of effective pharmaceutical 
therapies for AD, focusing on lifestyle factors 
associated with reducing risk of developing AD appears 
to be the most effective preventive measure. The 
difficulty of demonstrating consistent beneficial effects 
of phytochemicals in humans is not surprising, given 
the similar failures of pharmacological interventions. 
Nevertheless, several lines of research demonstrate 
that long-term consumption of various phytochemicals 
may attenuate multiple neuropathological processes 
associated with the development of AD. The results of 
experimental data from animal studies and clinical trials, 
along with a growing body of epidemiological studies, 
lend credibility to the idea that bioactive phytochemicals 
can have beneficial effects via multiple mechanisms 
related to general brain aging, including regulation of 
the intestinal/gut microbiome and BBB permeability, 
modulation of neurotransmitter degradation and 
binding, anti-inflammatory and antioxidant effects, 
reduced susceptibility to excitotoxicity and apoptosis, 
stimulation of neurogenesis and long-term potentiation, 
and maintenance of proper mitochondrial function 
and other cellular processes related to learning 
and memory (331, 332). Additionally, bioactive 
phytochemicals have demonstrated beneficial effects 
on multiple AD-specific processes, including inhibition 
of Aβ production by modulating enzymatic processes 
and reducing Aβ deposition in the brain by decreasing 
aggregation and increasing clearance.

Given that AD is progressive, insidious, and 
ultimately fatal disease effecting a significant portion 
of older individuals, delaying the onset of AD by even 

a slight margin would significantly impact its incidence. 
Mounting epidemiological and experimental evidence 
suggests that a lifetime of consuming an abundance 
of neuroprotective phytochemicals may provide 
significant protection from environmental and age-
related insults that accelerate the progression of AD 
neuropathology (76, 194, 333). Furthermore, diets 
containing a wide variety of bioactive phytochemicals 
from multiple plant sources may provide synergistic 
benefits over supplementing with isolated compounds 
(334, 335). Finally, chronic adherence to diets rich in 
diverse sources of bioactive dietary polyphenols may 
protect against neurodegenerative disorders such as 
AD, but may also confer additional health and age-
related benefits. 
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