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1. ABSTRACT

Rotenone is a pesticide that has been shown 
to induce the pathological symptoms of Parkinson’s 
disease (PD) in both cellular and animal models. In this 
study, we investigated the protective effect of Agaricus 
blazei extract on rotenone-induced dopaminergic 
degeneration and apoptosis in mice model. A. blazei 
extract blocked the rotenone-mediated diminution 
of dopamine transporter (DAT) and vesicular 
monoamine transporter 2 (VMAT 2) expression and 
the downregulation of Bcl-2 and the upregulation 
of Bax, caspases-3, -6, -8 and caspase-9. Present 
data suggest that A. blazei extract plays a crucial 
role in regulation of proteins expression such as DAT 
and VMAT2 and pro-apoptotic and anti-apoptotic in 
Parkinsonism. In conclusion, the present study shows 
that A. blazei extract act as potential neuroprotective 
agent in the management of Parkinsonism.

2. INTRODUCTION

Parkinson’s disease (PD) is the second most 
common neurodegenerative disease after Alzheimer’s 
disease (AD) that mainly affects the movement in elderly 

population. PD is characterized by tremor, rigidity, 
akinesia and postural instability, which arises largely due 
to the massive loss of dopaminergic (DA-ergic) neurons 
projecting from the substantia nigra (SN) to the striatum 
(ST) (1). PD affects about 1% of the population over 
60 years of age and its incidence increases to 3% of 
the population over 80 years (2). In 2005, the estimated 
number of PD cases worldwide was about 4.4. million 
(3) and by the year 2030, this number will be expected 
to get doubled to about 9 million, based on the expected 
growth of the population over the age of 60. 

Though the cause of PD is not known, most of the 
knowledge about PD pathology is gathered from various 
in vivo and in vitro models involving 6-hydroxydopamine 
(6-OHDA), 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine 
(MPTP), paraquat and rotenone (4-6). Rotenone, a 
naturally occurring plant flavonoid and widely used 
pesticide, mimicked the symptoms of PD, both in vivo 
and in vitro conditions (7-9).

In vitro studies indicated that rotenone can 
easily cross the biological membranes, due to its 
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lipophilic nature and could access into the cytoplasm 
of DA-ergic neurons easily (7). Furthermore it could 
enter into mitochondria and inhibit mitochondrial 
complex I activity. It can also induce reactive oxygen 
species (ROS) generation, mitochondrial membrane 
potential loss (MMP) and release of cytochrome c 
(cyt-c) from mitochondria, which in turn activate the 
caspase cascades and finally leads to apoptosis (10). 
Tyrosine hydroxylase (TH) catalyzes the conversion 
of L-tyrosine to DOPA, which is the initial and rate-
limiting step in the biosynthesis of DA (11). The loss 
of ability to optimally synthesize catecholamines is 
an important step in the progression of PD and other 
neurodegenerative diseases. Indeed, early loss 
of TH activity followed by a decline in TH protein is 
considered to contribute towards DA deficiency, 
which is widely used as a marker of dopaminergic 
depletion in PD (12). Presence of pathological 
inclusions of α-synuclein, a major component of LBs 
in dopaminergic cells contributes to the intra cellular 
neuropathological mechanisms in PD (13). Moreover 
rotenone is transported into dopaminergic neurons 
through DAT and it can be taken into cytoplasmic 
vesicles by the action of the VMAT-2. The combined 
in vivo assessment of DAT and VMAT-2 may provide 
an index of dopaminergic nerve terminal integrity and 
potential vulnerability of surviving neurons (14). 

Symptomatic and effective treatment of PD 
in modern medicine is the supplementation of the 
DA in the form of L-dopa (15). However, long term 
administration typically leads to motor complications, 
such as L-dopa induced dyskinesia (LIDS) (16). Current 
pharmacological therapies for the disease are also 
inadequate. Regrettably, other therapeutic strategies 
such as neural transplantation, deep brain stimulation 
and stem cell transplantation remains in the experimental 
stage. Unfortunately effects to find effective agents that 
provide protection against neurodegeneration have 
been unsuccessful. A number of factors have been 
implicated in the pathogenesis of cell death in PD which 
includes mitochondrial dysfunction, oxidative stress, 
proteosome dysfunction, Lewy bodies formation and 
apoptosis (4), which offers resistant to therapeutic 
agents. Hence drugs from plant origin with multiple 
mechanisms of pharmacological actions including 
antioxidant, anti inflammatory, anti apoptotic and 
mitochondrial protective properties, may be forward in 
delaying/protecting neuron from neurotoxicity.

There is a rich history of the use of natural 
products and their active compounds in the treatment 
of neurodegenerative diseases, including PD. The 
mushrooms have been generally considered as 
functional foods and reported to possess various 
pharmacological properties due to the presence of the 
active components such as the β-glucans, terpenes, 
phenolics, steroids, and nucleosides (17-18). Agaricus 
blazei Murrill (A. blazei), popularly known as sun 

mushroom, has been subject of great interest due 
to its nutritional value and having pharmacological 
properties against various diseases including cancer, 
diabetes, atherosclerosis, hypercholesterolaemia, and 
cardiac diseases. (19) It is rich in various antioxidant 
compounds including gallic acid, syringic acid, 
pyrogallol, and also polysaccharides. (20) It is also 
reported to contain more amounts of nucleosides and 
nucleotides, adenosine etc., (21) which are able to 
exert neuroprotective actions. (22) Recently, Soares et 
al. (23) reported that the oral administration of A. blazei 
extract offered neuroprotection against experimentally 
induced cerebral malaria and paracetamol injury by 
virtue of its antioxidant, mitochondrial protective, and 
anti-inflammatory properties. Thus considering, the 
increased neuroprotective effect of A. blazei during 
the progression of PD, we aimed to study the effect 
of this mushroom extract on dopaminergic protective 
and antiapoptotic properties against rotenone-induced 
mice model of PD.

3. MATERIALS AND METHODS

3.1. Chemicals

Rotenone was purchased from Sigma 
Chemical Company, Bangalore, India. Anti-Bcl-2, anti-
Bax, Caspase-3, Caspase- 8, Caspase-9, DAT and 
VMAT-2 antibodies were obtained from Cell Signalling 
(USA) and b-actin antibodies were purchased from 
Santa Cruz Biotechnology, Inc, (USA). Anti rabbit HRP 
conjugated secondary antibody (Sigma chemical, 
USA). All other chemicals were of analytical grade.

3.2. Preparation of methanolic extract of A. blazei 

Mushrooms were collected and then air dried 
in an oven at 38°C. For methyl alcohol extraction, 20 g 
of dried mushroom samples was weighed, ground into 
a fine powder, and then mixed with 200 ml of methyl 
alcohol at room temperature at 17 × g for 24 hours. The 
residue was re-extracted under the same conditions 
until the extraction solvents became colorless. The 
extract obtained was filtered on a Whatman no. 1 
paper and the filtrate was collected, then methyl 
alcohol was removed using a rotary evaporator 
at 38°C to obtain the dry extract. The extract was 
placed in a plastic bottle and then stored at −80°C.

3.3. Animals and drug treatment

Male Albino mice (25–30 g) aged 10 weeks 
was procured from the Biogen Laboratory, Bangalore, 
India. They were kept under ambient conditions and 
fed with standard pellet and water ad libitum. All the 
experimental protocols conformed to the National 
Guidelines on the proper care and use of Animals 
in Laboratory Research (Indian National Science 
Academy, New Delhi, India, 2000) and were approved 
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by the Animal Ethics Committee (SJC/IAEC/2015– 
2016/01; Dated 05/10/2015).

3.4. Experimental group

Twenty-four animals were randomized and 
distributed into four groups (n = 6): Group I - control 
(0.1. ml of sunflower oil i.p. for 45 days), Group II - mice 
treated with rotenone (1 mg/kg/day i.p. in sunflower oil 
for 45 days), (24) Group III - mice treated with A. blazei 
extract (100 mg/kg b.w. p.o for 45 days), (24) and 
rotenone (as group II) and Group IV - mice treated with 
A. blazei extract alone (100 mg/kg). Then the animals 
were sacrificed. The striatum and substania nigra were 
procured and utilized for the protein expression studies 
of dopaminergic and apoptotic indices. 

3.5. Western blotting

Tissue samples were homogenized in RIPA 
buffer and centrifuged at 10,000 rpm for 30 min to 
isolate the supernatant. Protein amount was estimated 
according to method of Lowry et al. (25) and the 
sample containing 50 lg protein was loaded onto the 
polyacrylamide gels. The gel was then transferred onto a 
nitrocellulose membrane (PALL Corporation, Biotrace). 
The membranes were incubated with the blocking 
buffer containing 5 % non-fat dry milk powder or BSA for 
2 h to reduce non-specific binding sites and blots were 
probed with various antibodies: Caspase-3, Caspase- 
8, Caspase-9, Bax, Bcl-2, β-actin (1: 2000) and DAT 
and VMAT 2 (1:1000) with gentle shaking overnight 
at 4 C. After this, membranes were incubated with 
their corresponding secondary antibodies (anti-rabbit 
IgG conjugated to HRP) for 2 h at room temperature. 
The membrane was washed thrice with TBST for 30 
min. Immunoreactive protein was visualized by the 
chemiluminescence protocol (GenScript ECL kit, USA). 
Densitometric analysis was performed with a computer 
using a gel image analysis program. The data were then 
corrected by background subtraction and normalized 
against β-actin as an internal control.

3.6. Statistical Analysis

Statistical analysis was performed by one-
way analysis of variance followed by Duncan’s multiple 
range test (DMRT) using Statistical Package for the 
Social Science (SPSS) software package version 
15.0. All data are expressed as mean ± SD for six rats 
in each group. Results were considered statistically 
significant at p<0.05.

4. RESULTS

4.1. Effect of A. blazei extracts on DAT and VMAT2 
Expressions 

To find out the protective effect of A. blazei 
extract against rotenone induced neurodegeneration, 

the expression pattern of phenotypic markers (DAT 
and VMAT2) in SN and ST was analyzed by Western 
blotting. Rotenone treatment significantly alleviated 
the expression of DAT and VMAT2 in both SN and 
ST compared to control group (*p < 0.05). Meanwhile, 
treatment with A. blazei extract reinstated these 
protein expressions distinctly as compared to rotenone 
group (#p < 0.05). There were, however, no significant 
changes between control and A. blazei extract treated 
groups (Figure 1).

4.2. A. blazei extract effect on rotenone induced 
apoptotic gene expressions

Mice treated with chronic rotenone manifested 
significant induction in the expression of Bax and 
depletion in the expressions of Bcl-2, Caspases-3, -6, 
-8 and -9 in SN as compared to control animals (*p < 
0.05). Meanwhile, these alterations were significantly 
attenuated by co-treatment with A. blazei extract 
when compared to rotenone alone-treated animals 
(#p < 0.0.5). The results also revealed that prolonged 
treatment of A. blazei extract to mice had no significant 
changes in the expression of pro- and anti-apoptotic 
markers as compared to the control mice (Figure 2).

5. DISCUSSION

Corona et al. (26) demonstrated that the 
i.p. administration of rotenone resulted in loss of TH- 
neurons in SN with significant motor defects. In the 
experimental PD animals, decrease in the activity of 
TH and the dramatic drop in the expression of TH 
have been suggested to be of underlying importance 
in the pathogenesis of PD (27). It is suggested that 
the decrease in nigral DA caused by rotenone 
coincides with the enzymatic inactivation of TH with 
affecting the actual level of TH protein expression 
and cell counts. The key aspect of our study was that 
gavage administration of A. blazei was able to save 
TH expression in cells during a period when rotenone 
treatment alone would have abolished it. Furthermore, 
S-glutathionylation of TH enzyme has been suggested 
to be accelerated by ROS (28). In fact, it was reported 
that antioxidants exert a protective effect on TH 
immunoreactivity (29). Oral treatment of A. blazei may 
enhance TH expression in ST and SN may be due to 
its antioxidative property (30).

DAT is a critical regulator of DA distribution 
within the brain and is also a crucial determiner 
of the neurotoxicity of various toxins (4). Although 
DAT expression is essential for normal DA 
neurotransmission, it also prevents the entry of 
toxin. Degeneration of dopaminergic neurons in PD 
may lead to decrease in DA storage efficiency due 
to the decreased DAT population on the depleted 
dopaminergic neurons (31). The nigrostriatal system 
has more and heterogeneous DAT distribution and 
the transporter is found on plasma membranes of 
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Figure 2. Effect of A. blazei on rotenone induced apoptosis in experimental animals. Administration of rotenone significantly increased the expression of 
pro-apoptotic proteins Bax, Caspase-3, -6, -8 and -9 and decreased the expression of anti-apoptotic protein Bcl-2. Pretreatment with A. blazei attenuated 
apoptosis by decreasing the expressions of pro-apoptotic markers. Protein expressions were quantified using β-actin as an internal standard and values 
are expressed as arbitrary units and given as mean ± SD. *p < 0.0.5 compared to control, #p < 0.0.5 compared to rotenone group.

Figure 1. Effect of A. blazei on rotenone induced DAT and VMAT2 in SN and ST of experimental animals. Injection of rotenone significantly reduced 
DAT, and VMAT2 expressions in SN and ST. Pretreatment with A. blazei significantly increased DAT, and VMAT2 expression. Protein expressions were 
quantified using β-actin as an internal standard and values are expressed as arbitrary units and given as mean ± SD. P*< 0.0.5 compared to control, #p 
< 0.0.5 compared to rotenone.
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axon terminals (32). Decline in the DAT expression 
is due to the loss of dopaminergic cells and fibers as 
a consequence of rotenone treatment in rats (24). 
Our western blot analysis indicated that declined 
expression of DAT in SN of rotenone treated mice, 
whereas oral administration of A. blazei extract led to 
increased protein expression levels of DAT in the SN 
as compared to rotenone alone group, which may be 
due to its neuroprotective effect. 

Analyzing the VMAT-2 protein expression 
is a reliable indicator of vesicular concentration and 
provides a more accurate measure of nerve terminal 
density compared to other phenotypic markers such 
as DAT and TH protein expression levels (32). VMAT-
2 serves as a neuroprotective factor by sequestering 
neurotoxin into vesicles and a critical regulator of 
cytoplasmic DA levels and dopaminergic function. 
Chen et al. (33) reported that the loss of VMAT-2 
action in dopaminergic neurons may be a precursor to 
PD. Therapeutic strategies to prevent degradation of 
VMAT-2 or restore its function may be fruitful areas of 
investigation in PD research. Our western blot analysis 
showed the diminution of VMAT-2 expression in SN 
of rotenone treated mice, however, co-administration 
of A. blazei significantly attenuated rotenone induced 
neurotoxicity via enhanced VMAT-2 expression in mice. 

α-synuclein is abundant in neuronal cytosolic 
proteins enriched at presynaptic terminals and are 
thought to be involved in synaptic function and plasticity 
(34). It is a major component of LBs and neurites, and 
present abundantly in LBs (35). The role of α-synuclein 
in normal cell function and in neurodegeneration have 
not been elucidated elaborately, but its potential roles 
in synaptic plasticity (36), neuronal differentiation, the 
up-regulation of DA release and mitochondrial deficits 
(37) have been reported. Previous findings imply that 
rotenone induced α-synuclein aggregation is probably 
mediated by oxidants generated from ROS generation 
(38). Because α-synuclein may be selectively and 
specifically nitrated, and it may link oxidative and 
nitrative damage to the onset and progression of 
neurodegenerative synucleinopathy lesions (39). 
Moreover, it was reported that oxidative stress 
can drive to α-synuclein aggregation and inclusion 
formation in cellular models (40). Rotenone leads to 
upregulation of α-synuclein expression, where as oral 
administration of A. blazei to PD mice partially rescued 
the level of α-synuclein. 

During normal ageing, the rate of neuronal 
apoptotic cell death in dopaminergic neurons lies 
between 0.5. and 0.7.% per year and that the number 
of dopaminergic neurons is around 3,00,000-4,00,000 
at the beginning of degeneration, one expects five to 10 
dying neurons every day. In PD brains, the estimated 
rate of cell death could be around 5% per year and a 
maximum of 100 apoptotic neurons could be detected 

in the SN of PD patients (41). Apoptosis has recently 
been recognized as an important mode of cell death 
in PD (42). This has mainly been discovered by the 
identification of key markers of apoptotic cell death 
including mitochondrial Cyto-C release, alterations 
in Bax/Bcl-2 ratio, activation of caspases and DNA 
fragmentation in PD (42). Bcl-2 an antiapoptotic protein, 
appears to directly or indirectly preserve the integrity 
of the outer mitochondrial membrane, thus preventing 
Cyto-C release and mitochondria mediated cell 
damage initiation, whereas the pro-apoptotic protein, 
Bax, promotes Cyto-C release from mitochondria 
(43). Dhanalakshmi et al. (24) reported that rotenone 
treatment increased the expression of Bax protein and 
decreased Bcl-2 expression, resulting in imbalance 
between Bcl-2/Bax. This was also in concurrence with 
our results. Bax is translocated to the mitochondria, 
which results in increased colloidal osmotic pressure 
and mitochondrial swelling (the inner membrane 
cristae unfolded), rupturing of outer mitochondrial 
membrane and ultimately Cyto-C release (44), thereby 
leading to the activation of various caspases (45). 

Role of caspases in the pathogenesis of PD 
has been established on the basis of studies in both 
postmortem brain tissue and animal models (46). 
Both extrinsic pathway or death receptor pathway and 
intrinsic pathway or mitochondrial pathways are known 
to be involved in the pathogenesis of PD. In intrinsic 
pathway, released Cyto-C could form apoptosomes 
together with apoptosis-activating factor-1 (Apaf-1) and 
procaspase-9, leading to the activation of caspase-9 
and subsequent activation of caspase-3 (47). Apaf and 
Cyto-C binds to procaspase 9 to form an apoptosome 
by activating caspases-9, leading to subsequent 
proteolytic activation of the executioner caspases 
-3, -6 and -7, ultimately resulting in apoptosis. In the 
extrinsic pathway, activation of caspases 8 results in 
proteolytic activation of the executioner caspases -3, 
-6 and -7 resulting in apoptosis (48). In the present 
study, expressions of Caspases -3, -6, -8 and -9 
significantly increased in rotenone treated animals 
when compared to control animals, which indicate that 
both the intrinsic and extrinsic pathways play important 
roles in apoptosis. Findings of our study demonstrate 
that pretreatment with A. blazei to rotenone treated 
mice suppresses apoptosis not only by decreasing the 
release of Cyto-C, but also by inhibiting the activation 
of caspases-9, -8, -6 and -3 and increasing Bcl-2 and 
decreasing Bax expressions. 

5. CONCLUSION

A blazei administration protects rotenone 
induced dopaminergic cell loss by its anti-apoptotic 
action. Based on results of our investigation, we 
speculate that A. blazei might be a promising candidate 
for the prevention or treatment of PD, but further 
clinical studies are required.
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