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1. ABSTRACT

Wilson’s disease (WD) is an autosomal 
recessive disorder which is caused by poor excretion 
of copper in mammalian cells. In this review, various 

issues such as effective characterization of ATP7B 
genes, scope of gene network topology in genetic 
analysis, pattern recognition using different computing 
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approaches and fusion possibilities in imaging and 
genetic dataset are discussed vividly. We categorized 
this study into three major sections: (A) WD genetics, 
(B) diagnosis guidelines and (3) treatment possibilities. 
We addressed the scope of advanced mathematical 
modelling paradigms for understanding common 
genetic sequences and dominating WD imaging 
biomarkers. We have also discussed current state-of-
the-art software models for genetic sequencing. Further, 
we hypothesized that involvement of machine and deep 
learning techniques in the context of WD genetics and 
image processing for precise classification of WD. 
These computing procedures signify changing roles of 
various data transformation techniques with respect to 
supervised and unsupervised learning models.

2. INTRODUCTION

Metals are indispensable micronutrients for 
growth of all organisms (1). They are an integral part of 
various enzymes and are responsible for the existence 
of several diverse redox reactions. These enzymes 
go on to play a central role for determining metabolic 
and biological processes inside the cells by balancing 
several processes such as: free radical detoxification, 
neurotransmitter synthesis, oxidative metabolism 
and neurotransmitter synthesis actions (2). Despite 
the crucial role of metals within cells, the imbalance 
prevalence of metals homeostasis interrupts the 
conventional mechanism of biological metabolic 
processing. This imbalance leads to hereditary 
disorders like Wilson’s disease (WD) and Menkes 
disease (MND). WD is a very rare disorder initially 
described by Wilson (3) as a lenticular degeneration 
syndrome caused by copper overloading in mammalian 
cells. In this study, we describe WD as a syndrome of 
neurological and liver cirrhosis symptoms.

WD epidemiology revelation shows that 
the carrier frequency or mutation sequence does 
not show uniformity over geographical landscape. 
This has been shown to have appraisal incidence of 
one in 55000 births (4). A recent study of molecular 
sequencing showed a higher prevalence in Japan 
due to consanguinity (5). Authors also described 
characteristic differences of occurrence of WD in Asia 
and others such as for Japanese population (33-68 per 
million) and European population (12-29 per million). 
It shows our primary issue which emphasizes over 
inconsistency of WD prevalence and its analogue 
with genetic mutants variations. To resolve this issue, 
several studies have been performed to obtain a 
specific pattern in genetic coding variant annotations. 
These coding variants or mutations conceal strong 
information about the epidemiology of an autosomal 
recessive disorder. Out of those major issues, a precise 
lack of understanding of mitochondrial genomics to 
find a unique mutation pattern in all WD patients is an 
open question to genetic experts. It is well known that 

a mutation pattern is a permanent alteration of various 
nucleotide sequences and this mutation pattern is 
different for different geographical regions for WD. 
So, an essential step is to analyze a complete gene 
sequence environment and its gene interaction. 

Another issue that is related to precise 
detection of WD is using hepatic and cognitive imaging 
of WD patients. For WD diagnosis, conventionally, liver 
and neurological images are used to analyze variation 
of structural features. Very little efficient hypotheses 
have been proposed to distinguish characterization 
features for WD liver cirrhosis and alcoholic liver 
cirrhosis (6, 7). So, the method of finding a specific WD 
imaging pattern is unknown, our search shows not a 
single hypothesis is proposed which can be converted 
into a mathematical model and provides some effective 
imaging classification between WD liver cirrhosis and 
alcoholic liver cirrhosis. 

In our hypothesis, we discussed liver imaging 
along with neurological symptoms which in combination 
with genetic biomarkers (region of genomic DNA and 
gene encoding pattern) applied in a machine or deep 
learning frame work provides a powerful paradigm for 
WD classification and risk stratification. To collect these 
features, abdomen imaging manifestations, motor 
activates analysis and Cis region status identification 
must be frequently performed by practitioners. In further 
processing, a set of these biomarkers is used for feature 
selection step in a machine or deep learning model. 
This study presents a review that integrates information 
about WD from different sources such as genetics, 
clinical trials for diagnosis, and treatment studies. 
Further, we extract more meaningful inference based 
on the deep learning based supervised paradigm. We 
showed an improved version of WD diagnosis process 
in Figure 1 where imaging, deep learning and genetics 
play a significant role to provide precise detection of WD 
and effective treatment.

The layout of WD discussion is as follows: 
section 2 discusses the copper carrier gene and 
corresponding ATPase family, with the issue of 
correlation between different WD mutations and 
epidemiological variations. To resolve this, we discussed 
a deep learning based supervised paradigm also 
known as Deep learning for identifying Cis- Regulatory 
Elements and other applications (DECRES) and a 
Cis- regulatory theory-based hypothesis to couple WD 
mutations and epidemiological variations. We discussed 
involvement of deep learning model: convolution neural 
networks (CNN) to obtain a precise genomic and 
imaging pattern, which may enhance the genetic study 
of inherited diseases. Section 3 constitute discussion 
over WD diagnosis in terms of liver and neurological 
imaging and application of ML and DL approaches 
to show prominent characteristics of biomarkers. 
Section 4 contains detailed discourse over data fusion 
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techniques and classification measurement indexes 
to corporate performance of competitive approaches. 
Section 5 describes overall important points of the study 
and finally section 6 concludes by providing significant 
outcomes from entire research work. 

3. WILSON’S DISEASE GENETICS 

WD is an autosomal recessive disorder which 
is characterized by improper copper excretion in the 
body. Clinical trials are in favor of improper copper 

accumulation in primarily the liver, brain and retina. 
Genetic regulation of the cellular copper metabolism 
is performed by copper transporting P-type ATPases 
and altered mutations in ATP7B gene (Figure 2A). 
The ATP7B gene is located in the trans-Golgi network 
(Figure 2B) of hepatocytes and the brain and maintains 
the balance of copper level by excess copper excretion 
into bile and plasma.

Forbes (8) analyzed structure of the ATP7B 
protein and its functional traits by defining site-directed 

Figure 1. Improved version of WD diagnosis.

Figure 2. (A)Structure of copper-transporting ATP7B Gene, (B) Localization of ATP7B in TransGolgiNetwork in Liver.
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mutations inside it. The authors showed that the WD 
protein can be categorized into 5 domains (Figure 3). 
These domains are: (1) Phosphatase domain (TGEA 
motif Thr-Gly- Glu Ala), (2) Phosphorylation domain 
(DKTGT motif Asp-Lys-Thr-Gly-Thr), (3) ATP binding 
domain (TGDN motif), (4) metal binding domain (six 
copper binding motifs at the N-terminus in the cytosol) 
and (5) eight Transmembrane segments. Functionally 
ATP7B gene receives copper ions from Antioxidant 
1 copper chaperone (ATOX1) which is a cytosolic 
protein and transport directly into hepatocytes. In WD, 
altered mutations in ATOX1 block copper pathway 
from cytosol to copper binding domains and proper 
copper transportation is disrupted.

Apart from discussion of ATP7B protein, 
several articles have been published over WD 
mutation spectrum findings (9) and the epidemiology 
of WD (10). However, these articles suffer from lack 
of correlation findings between regional variations 
of genotype-phenotype traits and unique mutation 
findings. This is a possible reason for poor diagnosis 
confirmation of WD in random case study. Further, 
after performing mutation testing, practitioners are not 
sure on the precise confirmation of WD existence. To 
resolve this issue, we propose a hypothesis that is 
based on a combination of genome prediction theory 
with supervised machine and deep learning methods.

In our hypothesis, it is considered that for 
an effective correlation between genetic variations 
and unique mutation finding, it is essential to explain 
characteristics of Cis- regulatory regions (CRRs) of 
the ATP7B gene. Genetic experts should give more 
attention over enhancer and promoter components 
of DNA in WD. These two components play a crucial 
role in gene expression control. In deep learning 
perspective, an advance supervised deep learning 
model that can be used to classify the mutation 
characteristics based on CRRs dataset is DECRES. 

This model was implemented by Li (11) and available 
at https://github.com/yifeng-li/DECRES. It uses 
multilayer layer perceptron for identifying regulatory 
regions. The practitioner can use deep feature 
selection algorithm (DFS) for feature selection of 
ATP7B DNA based CRRs dataset. This model has 
worked efficiently over classification of GM12878 
lymphoblastoid cells with an accuracy of 93.59% 
(11). Before applying DECRES, WD gene expression 
data must be cleaned so that it can handle all the 
missing numeric values and replicate values from 
intracellular signaling pathways and downstream 
transcription factors of a sequence. In order to work 
with this framed sequence, initial step include deep 
feature extraction with a new one-to-one sparse 
layer added to conventional multi-layer perceptron 
(MLP) architecture. The model is regularized so 
that overfitting does not happen. One common 
regularization method is elastic-net (38). The inclusion 
of sparse layer allows the model to learn the non-
linearity of features ordinarily not estimated by linear 
models. Back propagation learning rule was applied 
for updating the weights. It is found that the features 
extracted from the model were discriminatory and 
enriched with regulatory element increasing accuracy 
of the classifier.  Alternatively, time serial model can 
also be effective to analyze complex interactions 
between both across small time segments. This 
analysis can help to maintain an index to represent 
activity measurement of genes. To implement time 
series model, genetic experts require CRRs activity 
variation sequence (12) based datasets. An un-
regular activity can be simulated as spike sorting 
method where an abrupt change in signal and high 
variation in specific motif activity can be a significant 
measure to estimate the causes of WD. Similar 
time dependent models like autoregressive moving 
average (AMR) and autoregressive integrated moving 
average (ARIMA) can also be effective to observe 
variation deviation in defected genetic mutations.

Figure 3. Asystematic structural model presentation of ATP7B protein.
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4. WILSON’S DISEASE DIAGNOSIS 

Apart from genetics, WD diagnosis also 
has issue of precise knowledge discovery findings 
and its application in prediction of WD existence. 
WD diagnosis is mainly based on lower abdominal 
imaging characterization and neurologic symptoms 
detection but several clinical findings (13) are also in 
favor of hepatic and neurological deficits with cornea 
syndrome. Several vitro researches have been 
performed for precise diagnosis of WD symptoms 
findings but, till date, no strong diagnosis test is 
available for confirmation of pediatric WD existence.

4.1. Magnetic resonance imaging biomarkers 
study

WD imaging studies can be classified into 
neurological disorders study and hepatic cirrhosis 
study. In hepatic studies, symptoms of WD are 
confirmed based on visibility of focal liver lesion in 
hepatocytes. Visibility of focal liver lesion is categorized 
by (1) diffuse intensity level characteristics of nodules, 
(2) size of nodules. This classification model elaborates 
major liver cirrhosis and their correlation with different 
imaging techniques. To explore clear understanding 
of liver lesion, several MR imaging-based studies 
(14) have been reported. Table 1 shows the liver 
lesion stages variations in terms of liver nodules 
specifications and characterization (15). Also, in Table 
1 a comparative analysis of structural features of 
normal liver tissues and liver affected by WD is shown.

To show hepatic involvement in WD, Dohan 
(15) preformed a set of liver imaging manifestations 
and showed degree of intensity enhancement in 
nodules (Figure 4) (15). Authors considered focal liver 
lesion status and intensity variations in hepatocytes 
as important biomarkers for WD detection but found 

no correlation with confirmation of WD possibilities 
because other factors like alcohol consumption may 
also be the cause of presence of focal liver lesion.

4.2. Magnetic resonance imaging manifestations 
of brain in Wilson’s disease

Usually neurological symptoms develop in 
the third decade of life and mainly involve Dystonia, 
Seizure, Chorea, Dysarthria, Resting tremor and other 
psychiatric disturbances. One important observation 
is the presence of the Kayser–Fleischer13 ring with 
almost all cases of neurological involvement in WD.

In our hypothesis, common imaging 
biomarkers such as muscles contraction status in basal 
ganglia, dysfunction in cerebellum region and pixel 
intensity pattern combined with genetic biomarkers 
(class predictor genes set) form observations set 
for classification. In this phase, statistical offline 
feature values are mapped along with statistical 
genetic motif data. One similar demonstration was 
performed by Kim (39, 40), where a small sample of 
financial data was trained by using CNN. Analysts 
can extend imaging features (41) by appending a 
new dimension of features related genetic properties. 
One advantage of this demonstration is availability of 
online DCNN server to handle such type of data. This 
server automatically fix hyper-parameters for applied 
CNN model. This approach can be estimated as 
binary classification where two classes (1) Class WD 
prediction and (2) Non class WD prediction determine 
the state of fused data (Figure 5). The detection of WD 
or Non-WD depends over effective characterization 
of WD gene expressions with neuro/ liver images. To 
characterize it, effective noise removal techniques and 
transformations can be applied. After refining both 
genetic and imaging data, an advance feature selection 
procedures extracts prominent features with precise 

Table 1. WD nodules and characterization in normal case Vs. WD case

Nodules specifications Normal case WD case

Regenerative nodules No hyper-enhancement is seen in pixel intensity of 
MR images.

In WD cases irregular liver shape is seen.
Hypo-intense pixels are observed.

Nodules in hepatic 
steatosis

Micro vesicular Macro vesicular

Nodular fatty infiltration - Very rare changes are observed in hyperintense signals in 
T1-weighted MR images.

Pseudo-mass Normal tissue structure Advanced cirrhosisin liver tissue.

Honeycomb pattern Normal nodules structure Several hypo-intense nodules covered by hyper-intense septa 
are seen

Dysplastic nodules                  __ Atypical liver cell structure found in WD. 

Malignant nodules Not exist in normal case. The specific type of malignant nodule is called as HCC is more 
frequently (95%) found in WD. 

Another type of malignant nodule is intrahepatic 
cholangiocarcinoma which is very rare in WD. 
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Figure 4. A. Fat-suppressed MR image confirms hypointense liver nodule (arrows). B. The homogeneous and hypointense nodule (arrows) relative to the 
adjacent hepatic parenchyma. C. Nodule is markedly hypointense indicating free diffusion. D. Fat-suppressed image showing 3-D volumetric interpolated 
breath-hold examination and nodules (arrows) shows degree enhancement like adjacent hepatic parenchyma. E. Nodule (arrows) shows lower degree 
of enhancement compare to adjacent hepatic parenchyma. F. The nodule (arrow) is isointense to the adjacent hepatic parenchyma

Figure 5. Fusion of WD data taken from neural images and microarray data.
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accuracy level. This step mitigates the redundant and 
less significant attributes. In genetic data, prominent 
genes can be obtained by filtering the higher ranking 
gene set with specification of their risk stratification 
score. A normalization step specifies range of 
parameters for both datasets so that a unique mapping 
procedure can access the statistical properties of 
amalgamated dataset. Now both individual datasets 
can be put in a single data storage file for classification 
purpose. Class prediction can be used as strong 
genetic biomarker also in genetics and already has 
been used in molecular classification of Cancer (16). 
It can be accessed by RankGene software (17). 
Earlier, recurrent neural networks (RNNs) along with 
long short term memory (LSTM) have been applied to 
genetic data which are discussed later.

Another method that can be used to classify 
infected region in WD and non-WD cases is CNN. 
It is an effective algorithm which is a mathematical 
classification model (Figure 6). CNN constitutes three 
basic components: (A) Input, (B) Convolution layer and 
(C) Pooling. To incorporate with CNN in medical image 
data, dense liver lesion images are used as input 
and transferred into convolution layer where image 
characterization is performed by applying convolution 
operation between kernel matrix and original liver 
image matrix. This operation provides feature image 
mapping of entire image with respect to filter. The 
output of convolution layer is passed into pooling layer 
and information related to spatial locality of evaluated 

feature is reduced (18, 19). In last decade, CNN has 
been widely used by research community for tissue 
characterization (20) and medical image segmentation 
(21). A brief description of DL techniques and its 
applications are given later.

In our hypothesis (Figure 1), we discussed 
integration of two medical domains for strong diagnosis 
of WD. Primary domain is WD diagnosed liver images 
and secondary is gene profiling data in the form of 
regulatory sequence code image. In primary domain, 
several research (22) have been performed over liver 
image characterization using CNN and other models. In 
the secondary domain, chromatin shift, its association 
with disease variations and conserved segments (23) 
are merged with different genomic biomarkers and 
applied to CNN. These two steps of learning train with 
huge amount of data.  Implementation of a strong 
fusion algorithm integrating two domains is another 
challenge. This problem can be easily mapped with 
Big- data where data is voluminous and collected 
from several sources. In Big-data, such problems 
are resolved by fusion techniques (24) (Discussed 
in section 5.3). In medical domain, fusion process is 
already successfully performed over medical images 
(25, 26). 

4.3. Wilson’s disease treatment 

Wilson’s disease is a metal disease disorder, 
so the objective of treatment must be reduction of 

Figure 6. A CNN classification model for WD prediction based on liver tissues or neuro-tissues variations and genetic biomarkers.
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copper accumulated content from the tissues. WD 
treatment study can be divided into two stages: In 
initial phase of therapy, therapist tries to abrogate 
excess copper contents from tissues and in later stage 
they perform maintenance to overcome copper level 
and further its re-accumulation. A characterization 
table (Table 2) is shown to represent pros- and cons of 
some popular chelating agent.

There are several other chelating agents are 
also used for WD treatment, but no chelating is perfect for 
WD treatment. Based on recent studies (2014 – till date), 
some new chelating agents can be better alternatives 
compared to old chelating agents. Zinc mono therapy 
is better than D- Penicillamine but in some cases, it 
fails and creates new issues such as nausea, vomiting, 
brain cell death and abdominal pain (36). Compared 
to old chelating agents, Methanobactin (MB) (37) a 
newly developed peptide, performed outstandingly 
in rats for hepatic copper accumulation, liver damage 
and cirrhosis tissues impairment. DMPS with zinc is 
another possible alternative. If these alternatives are 
not performing well then hepatocyte transplantation, 
Stem cell transplantation and gene therapy (34) can be 
used alternative to liver transplantation.

5. LEARNING METHODOLOGIES

Linear classification problems were the first 
problems to be encountered intelligently by machines. 
These problems were successfully dealt using 
K-Nearest Neighbors (KNN) (42), perceptrons (43) 
etc. KNN is a lazy learning algorithm which assigns the 
test instance the most frequent class of its K nearest 
neighbors. Perceptron is a two-layer hierarchical 
network of computing nodes. The nodes do the 
computing while weights of network connections get 
updated based on the bias with respect to linear 

classification problem. A basic difference between KNN 
and perceptron is that KNN does not learn anything 
while in a perceptron learning is stored among the 
network weights.

However, with time the size and complexity 
of data has increased manifold. Bio-informatics data 
such as WD require gene sequencing over millions of 
samples. Traversing and making decisions on such 
data may take years of computation time and special 
hardware. Learning algorithms based on ML/DL 
techniques can play a crucial role in understanding the 
non-linear relationship between instances within such 
dataset. In the next few subsections we cover some 
ML and DL techniques and their applications in bio-
informatics and medical imaging.

5.1. Machine learning techniques

Various ML techniques have been developed 
over the years for characterization of data. The 
ML technique is a two-stage process: feature 
extraction and characterization. In feature extraction, 
mathematical tools based on domain knowledge 
is required to extract features from gene and image 
data. Optionally, feature selection methodologies can 
be applied to reduce the extracted features. In the 
second stage, characterization algorithms are applied 
for classification task. A generalized process model of 
ML process is shown in Figure 7. Some of the most 
popular ML techniques are K-Nearest Neighbor (KNN), 
Support Vector Machine (SVM), Artificial Neural 
Networks (ANN), Naïve Bayes Algorithm etc. 

KNN have been discussed earlier. ANNs can 
be two layers like perceptron, or may be multiple layers 
i.e., multi-layer perceptrons. There are many types of 
learning laws for ANNs. ANNs can be categorized as 

Table 2. Characterization of popular chelating agents

Chelating agents Characterization References

D- Penicillamine 
(Copper excretion 
via urine)

Major cause of alteration in the dermal elastic tissue (27)

It develops adverse effects and even worsening of neurological symptoms in WD patients. 
Discontinuation of the DPA treatment, a rapid clinical deterioration may take place, resulting in the 
necessity of a liver transplantation or even in the death of the patient 

(28)

Neurologic deterioration (29)

Zinc and Trientine

Zinc therapy demonstrates poor efficacy in    controlling liver disease in pre-symptomatic children with 
Wilson’s disease

Zinc is associated with gastrointestinal adverse effects in nearly 20% of children (30)

Zinc monotherapy is effective in Wilson’s disease patients with mild liver disease diagnosed in childhood (31)

Zinc monotherapy treatment for a long time may create neurological deterioration.
Sodium dimercaptopropanesulfonate (DMPS) combined with Zinc produces with better results compare 
to Zinc monotherapy in neurological WD compare to D-penicillamine (DPA) 

(32)

Liver 
transplantation

Overall, neuropsychiatric symptoms improved after liver transplantation, substantiating arguments for 
widening of the indication for liver transplantation in symptomatic neurologic Wilson’s disease patients 
with stable liver function 

(33)

Recurrent hepatitis C virus (HCV) infection (34)

Anastomotic stenosis is another major issue associated with liver transplantation (35)
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iterative and no-iterative. Backward propagation (BP) 
(44) is the most popular iterative law for updating of 
weights in ANNs. Extreme Learning Machine (ELM) 
is a non-iterative single-layer feed-forward neural 
network which learns its weights in a single-pass (45). 
It uses the concept of Moore Penrose inverse form 
(46) to give the least square solution. SVM uses two 
strategies for characterization. In the first approach, 
SVM tries to find maximum margin hyper plane dividing 
the two classes. In the case of non-linear classification, 
SVM applies kernel trick: transfers the problem from 
low to higher dimension space where the classes 
are linearly separable. The Naïve Bayes algorithm 
uses conditional probability model for classification. 
It computes the posterior probability of class of a 
particular instance based on the prior probability, 
evidence and likelihood. There are several areas in 
genetics and medical imaging where ML strategies 
have been successfully applied. We will discuss ML-
based applications in genetics and medical imaging in 
the next few sub-sections.

5.1.1. Machine learning techniques in genetics

Effective decision support system in healthcare 
requires accurate characterization of gene expression 
data and its correspondence with community of patients. 
A generalized model for genome classification in the 
context of training/testing paradigm is given in Figure 8. 
Each part of the model is described as follows:

5.1.1.1. Stage 1-Data pre-processing

The objective of genetic data prepressing is 
preparing data suitable for given application. It improves 
the performance of applied computing approach 
by strongly integrating with data format standards. 
In supervised learning environment, it is essential 
to pre-process data using Adaptive mode (47, 48). 
Conventionally it handle dynamic data in context of 

structural changes in gene sequence over time (49). A 
sharp inclusion of bulk data involvement with adaptive 
mode pre-processing may enhance performance of 
large and complex genetic data bundle. A recently 
developed Micro-PreP software framework (50) may be 
coupled with adaptive pre-processing in the following 
steps: (1) filtering of bad and empty spots, parsing 
spot description (PrePrep module), (2) normalization, 
scaling, data visualization and data exploration (Prep 
module) and (3) handling of replicate slides and 
intra-slide replicate spots,  low signal filtering, outlier 
detection, slide quality indication output of additional 
tables: Cyber-T, SAM, engene and ANOVA (PostPrep 
module). Some other available frameworks for this 
purpose are GENALEX 6 (51), Genomic Analysis 
Toolkit (52), Arlequin (53, 54) and many more.

5.1.1.2. Stage 2-Dataset division (training and test-
ing test suits)

Although there are no rules of thumb to 
fix criterion for dataset division but some primary 
assumptions can standardize the validation of proposed 
model. Here we discussed two competing concerns as 
(1) when less training data is available and (2) large 
training data is available. In earlier methods, statistical 
observations show higher variance in their parameter 
values so it would be great sense to balance normal 
variance in training data and testing data. In later 
methods, it does not make sense to balance variance 
because it is normally distributed over dataset but 
also suffer from curse of dimensionality so practitioner 
should apply training algorithms which estimate better 
convergence over large dataset.

5.1.1.3. Stage 3-Weighted gene expression net-
work analysis (WGENA)

To study pairwise correlation between 
genetic features, WGENA is widely applied approach 

Figure 7. Generalized ML process model.
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to handle high dimensional genetic data. It creates 
Pearson correlation matrix between available 
variables for all samples and design topological 
network between expression modules based on 
correlation. Some other prominent application of 
WGENA are data reduction, clustering, feature 
selection, genomic data integration and support for 
data meta-analysis techniques. The theme behind 
WDENA deals five step procedure which are: (1) 
correlation matrix formation, (2) co expression 
selection, (3) survival related modules and their 
characteristics identification, (4) Representative 
genes clustering and (5) Gene network prognostic 
score creation. A detailed analysis of this step can be 
understood from here (55, 56, 57).

5.1.1.3. Stage 4- Features and labels estimation

In this stage, a threshold parameter is defined 
for the mapping of all the prominent features selected 
in previous step. This mapping function is significant 
to measure adjacency level of all the genes. These 
individual adjacency levels are stored as topological 
overlap matrix (TOM) and it assist to classify similar 
gene expressions on accordance of adjacency level 

and its features. Some important features are gene 
modules, gene label (if available), and dissimilarity 
index and so on. This network can be approached 
for optimization purpose for dimension minimization 
using graph reduction approaches. So a compressed 
WGENA graph with optimal features and adjacency 
index is demonstrated for classification purpose.

5.1.1.5. Stage 5-Genetic data classification and 
parameter tuning

In machine learning approaches, several 
types classification algorithms are available i.e., 
comparison of the performance of Decision Trees 
and SVM in context of structural data of genes (58). 
Authors concluded that SVM outperform to classify 
larger training data compare to decision tree method. 
Bayesian network was used to analyze genetic data 
and developed multiple statistical measures for model 
validation (59). Similarly, Newton et al. also applied 
Bayesian model over Escherichia coli genetic data and 
observed fluctuations in fluorescent intensities at each 
spot on the microarray. To train parameters in these 
algorithms, several frameworks have been proposed. 
Some promising framework that can be used in genetic 

Figure 8. ML-based genome classification in the training/testing paradigm.
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data are (1) Genetic algorithm in Neural network 
classification (60), (2) Fuzzy ruling for classification 
and parameter tuning (61, 62), (3) Parameter tuning in 
SVM (63) and many more.

5.1.1.6. Stage 6-Performance evaluation using net 
score over survival analysis

Several risk prediction models (64) can be 
used to predict performance level of applied estimation 
approach. Some popular approaches are based on 
Brier score (65) to measure prediction performance of 
applied framework, C-statistic for discriminative ability 
of model (Based on ROC curve) (66), goodness-of-fit 
statistics for calibration (67, 68), Net Reclassification 
Index (NRI) (69),  Integrated Discrimination Index (IDI) 
(70, 71).

It has been applied in identifying single 
nucleotide polymorphisms (SNPs) in genetic data 
which is responsible for several diseases including 
cancer (72, 73). Ensemble ML techniques (74) have 
been also applied on genetic expression data to 
characterize cancerous and non-cancerous tumor 
cells. 

5.1.2. Machine learning techniques in medical 
imaging

There is a widespread application of ML 
techniques in medical imaging. The training/testing 
paradigm for ML is shown in Figure 9. Similar to gene 
data, images are pre-processed and divided into train 
and test data. Features are extracted by using various 
properties of image i.e., shape, texture, curvature 
etc. Thereafter, ML algorithms are applied on these 
features for characterization.

Suri and his team have applied ML techniques 
for chronic liver disease classification from ultrasound 
(US) images (75). Haralick (76), Fourier transform (77), 
Gabor texture (78), discrete cosine (79) and Gupta 
(80) features were extracted from the US images. 
Backward Propagation Neural Network was applied 
to characterize live images as normal/abnormal. Suri 
and his team also characterized fatty liver disease 
from US images (81, 82). In the first case, high-order 
spectra and discrete waveform transform features 
were extracted and then decision tree (83) and 
fuzzy classifier (84) was applied with fuzzy classifier 
obtaining higher accuracy. In the second case, Gabor, 

Figure 9. ML Training/testing paradigm for medical images.
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GLCM (85) and GRLM features (86) were extracted 
and ELM and SVM methods were applied with ELM 
scoring higher accuracy. In the next subsection, we 
describe DL and its various applications in genetics 
and bio-medical images.

5.2. Deep learning techniques

Over the past few years, DL techniques 
have become very popular among machine learning 
community. This is owed to decrease in computer 
hardware costs along with emergence of Big Data 
(87). There are many advantages of DL with respect 
to ML techniques. The biggest advantage is the 
independence from feature extraction algorithms. DL 
algorithms apply multiple layers of abstraction on the 
input data to capture non-linear relationships within the 
data components. Thus the deep features obtained 
are of high quality. Feature extraction algorithms 
are dependent on the domain knowledge. DL is 
independent of any pre-requirement of knowledge 
about data. This makes DL an open-to-all platform for 
people who do not have any prior information about 
data. This independence also allows DL to work 
on multiple combinations of data for better training 
without worrying about commonality or differences 
of the features. Further, DL have multi-tasking ability 
i.e., the features extracted from DL framework can be 
used for both classification and segmentation. It’s also 
proven that DL models can be used for different kinds 
of data i.e., CNNs have been applied to images (88), 
signal data (89), genetics (90) etc. Additionally, DL 
systems are capable of transfer learning (91). Some 
of the disadvantages of DL are as follows: DL is highly 
costly in terms of computing time and space. It may 
take several hours or even days to train a DL-based 
model depending on the processing power of graphical 
processing unit (GPU). It’s also observed that initial 
training results may vary for the same data and may 
take more time to converge at an optimal point. There 
are many different kinds of DL models available: CNN, 
autoencoders (92), deep belief network (DBN) (93), 
residual neural network (ResNet) (94), long short term 
memory (LSTM) (95) etc. CNN as already discussed 
earlier, uses convolution operations to extract features 
and pooling for downsampling the features. Additionally, 
it uses rectifier linear unit (ReLu) after convolution 
operation as an activation function. ReLu is used 
specifically to tackle the issue of vanishing gradients 
(96). DBNs are inspired from Restricted Boltzmann 
Machine (97). It uses a stack of RBNs consisting of 
multiple hidden layers and a single visible layer. It is 
used for unsupervised learning. Autoencoders are also 
used for unsupervised learning where the number of 
output nodes is equal to the number of input nodes. If 
the number of hidden nodes are less than input/output 
nodes than the network learns a compressed form 
of input. Similarly, if the number of hidden nodes are 
greater interesting relationship within input data can 

be understood. DL models becomes tougher to train 
with increase in depth and therefore the training error 
accumulates. In order to prevent error accumulation 
original mapping of data is recast by integrating input 
data and the difference between the input and output 
mapping. This strategy is the principle of ResNets. In 
this way the training error does not increase. LSTMs 
are employed for time series data, speech control, 
natural language processing etc. and can be employed 
for predicting genetic sequences. It consists of a 
memory cell and three gates for control of memory, 
input and output.

5.2.1. Deep learning for genetics

In genetics, DL has been employed for 
annotate and interpret non-coding genome (98), 
nucleic acids binding interactions (90), classify 
cancer types based on gene expression data (99). 
Traditional computing procedures in gene computation 
lack in various challenges such as (1) Effective 
merging of next generation sequence technology with 
large genomic dataset, (2) Proper characterization 
of genomic biomarkers such as exons location, 
promoters and enhancer regions and their status 
and nucleosomes position, (3) High cost of pattern 
mapping approaches among various set of genomes, 
(4) advance knowledge management and many more. 
To deal with these challenges, Deep learning may 
concentrates over some graphical methods such as 
genetic residual network design (100, 101) where 
node to node connections shows connections between 
different nucleotides and weight of that link depends 
over genetic map distance (102, 103, 104), efficient 
procedures to decompose gene regulatory network 
into simple functional paths and network minimization 
(105, 106).  

5.2.2. Deep learning for medical imaging

DL has been widely used in medical image 
analysis (107). In abdominal imaging, DL has been 
used for fatty liver disease characterization (108), liver 
cancer (109) where higher accuracy was obtained 
when compared with conventional techniques.

5.3. Fused mechanism for Wilson’s disease de-
tection using machine learning and deep learning 
paradigm

In this sub-section we have provided a fused 
architecture using both ML/DL paradigm for WD 
detection. This architecture has two pathways. The 
ML-classifier takes genetic data, patient symptoms as 
input and providing normal/abnormal results based on 
previously trained data. Logistic Regression is applied 
to grade the results in low and high risk zones. This 
information along with symptoms, patient liver US 
images are fed into the second pathway consisting 
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of DL-based classifier. Finally, based on outputs 
the patient is either diagnosed with WD or declared 
normal. A process model of the approach is given in 
Figure 10.

6. DISCUSSION

The main objective of this review was to 
elaborate deep learning application involvement 
in rare disease (WD) study. Apart from theoretical 
considerations, we tried to propose those hypotheses 
which may be a cause of evolutionary change in the 
discovery of rare diseases and their corresponding 
diagnosis criteria. In the WD genetic study section, our 
hypotheses promoted involvement of cis regulatory 
regions study with DECRES package, which may 
be effective to find biomarkers which can correlate 
mutation variations with the epidemiology of WD. 
Another sub-aim was to study of WD phenotypes- 
genotype traits characterization by deep learning 
algorithms. In the diagnosis section, we represented 
a combined study of genetic and imaging biomarker 
and their application in infected region classification in 
WD or alcoholic domain. We considered that for strong 
WD prediction, a combined study of biological factors 
and predictive models is required. These models can 
be more effective in genetics declaration and cirrhosis 
classification. 

In WD treatment, we described a detailed 
analysis of all frequent and popular chelating agents 
such as D-Penicillamine, Trientine, Zinc and their 
functionality to bind copper ions and form a complex, 
heavy compound. These chelating agents are not 
accomplished safe and associated with specific 
newly derived symptoms such as fever, rash, 

degenerative changes in skin, serous retinitis, Anemia 
and Hepatotoxicity. To resolve these symptoms, we 
addressed newly developed treatment alternatives and 
described that how these alternatives can be proper 
replacement of conventional treatment strategies. 

7. CONCLUSION

We showed different possible cases 
associated with WD study in terms of seen biomarkers 
in genetics models, hepatic and neurological studies to 
classify different possibilities. We also tried to propose 
a hypothesis for the purpose of diagnosis. In future, 
application of various statistics-based enhancements 
can increase the importance of this article. These 
enhancements can be in terms of imaging-based 
algorithm involvement in imaging study, WD signal 
band spectrum findings and their mappings with new 
cases and simulation based classification algorithms 
may provide some optimized and interesting results in 
future.
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