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1. ABSTRACT 
 

Normalization is a prerequisite for almost all 
follow-up steps in microarray data analysis. Accurate 
normalization across different experiments and phenotypes 
assures a common base for comparative yet quantitative 
studies using gene expression data. In this paper, we report 
a comparison study of four normalization approaches, 
namely, linear regression (LR), Loess regression, invariant 
ranking (IR) and iterative nonlinear regression (INR) 
method, for gene expression. Among these four methods, 
LR and Loess regression methods use all available genes to 
estimate either a linear or nonlinear normalization function; 
while IR and INR methods feature some iterative processes 
to identify invariantly expressed genes (IEGs) for nonlinear 
normalization. We tested these normalization approaches 
on three real microarray data sets and evaluated their 
performance in terms of variance reduction and fold-
change preservation. By comparison, we found that (1) LR 
method exhibits the worst performance in both variance 
reduction and fold-change preservation, and (2) INR 
method shows an improved performance in achieving low 
expression variance across replicates and excellent fold-
change preservation for differently expressed genes. 

 
 
 
 
 
 
 
 
 
 
2. INTRODUCTION 
 

DNA microarray technology has enabled high-
throughput measurements of tens of thousands of mRNA 
levels, providing us a powerful tool to investigate 
biochemical pathways and gene regulatory networks, to 
identify phenotype-specific biomarkers, to assess cellular 
response to drug compounds, and to classify disease states 
at molecular level. For example, recent studies in cancer 
research demonstrate that gene expression profiling can 
reveal distinct tumor subtypes not evident by traditional 
histopathological methods (1). Although it is optimistic to 
assume that gene expression data alone will be sufficient 
for the reconstruction of complete regulatory pathways, 
several recent studies successfully demonstrate the 
potential for inferring regulatory networks from gene 
expression data (3). 

 
While high-throughput measurements of gene 

expression levels are likely to provide important 
information about cellular processes (e.g., revealing 
previously unrecognized patterns of gene regulation) and 
generate new hypotheses warranting further study, 
widespread use of microarray profiling methods is limited 
by the need for further technology developments, 
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particularly computational bioinformatics tools not 
previously included by the instruments. Recently, much 
effort has been devoted to the development of high-level 
data analysis tools such as clustering (4-6), classification 
(2,7,8) and Bayesian network methods (3).  As more and 
more computational tools are made available to researchers, 
it has become increasingly clear that the key issue in 
microarray data analysis is how to extract quality 
information about the biological system being studied. 

 
As a first step in accurately exacting biological 

information, it is necessary to filter out experimental noise 
and correct for systematic errors confounding the raw data 
obtained by this complex technology. Potential sources of 
systematic errors include array surface chemistry, 
microarray printing, labeling methods, hybridization 
parameters, image analysis and RNA isolation (9-11). The 
process to correct for systematic error, generally termed 
normalization, is introduced to correct the differences 
across different arrays in probe labeling, probe 
concentration, hybridization efficiency and potentially 
other factors. 

 
Normalizing multiple arrays to allow quantitative 

follow-up analyses presents one of the great challenges in 
microarray data analysis. Many normalization methods 
have been proposed in literature, the popular ones include 
global normalization or linear regression (LR) (12), Loess 
normalization (13), invariant ranking (IR) method (14), 
quantile normalization (15), and iterative nonlinear 
regression (INR) method (16,17). Regardless of their large 
technical differences, two basic steps in these methods 
involve: (1) selection of reference genes for normalization 
and (2) choice of a linear or nonlinear regression function 
for normalization (11).  

 
For instances, Affymetrix’s global normalization 

method uses all the genes for normalization with a linear 
regression function; Loess normalization method also uses 
all the genes for normalization but with a nonlinear 
regression function derived from M-A plots (18). In 
contrast, IR and INR methods use a subset of genes (i.e., 
rank invariant genes) for deriving a nonlinear regression 
function for normalization (14,16), while quantile 
normalization uses all the genes but the transformation 
function is derived in such a way that makes the 
distribution for each array in a set of arrays the same (15). 
In addition, housekeeping genes were used in the past for 
normalization under the assumption that they are constantly 
expressed genes (19), while in fact the expression levels of 
housekeeping genes can vary significantly (20). Exogenous 
control genes can also be used for normalization, and many 
reports have supported that it is an excellent and 
universally applicable normalization strategy (21).  

 
Profound effect of normalization has been found 

on detection of differentially expressed genes and 
classification of phenotypes (22,23). Hoffmann et al. 
employed four different normalization methods and all 
possible combinations with three statistical algorithms for 
detection of differentially expressed genes (22). They found 
that the influence of normalization is significantly higher 

than that of three subsequent statistical analysis procedures 
examined. Hua et al. used a model-based approach to 
generate synthetic gene expression values for studying 
normalization procedures’ impact on classification 
performance. Their experiment results demonstrated that 
normalization could have a significant benefit for 
classification under difficult experimental conditions (23).  

 
In this paper, we report the experimental results 

from a comparison study of four normalization methods, 
namely, LR, Loess, IR and INR. We tested the 
normalization methods on three real and representative 
microarray data sets and evaluated their performance in 
terms of variance reduction and fold-change preservation. 
The performance in variance reduction mainly reflects the 
ability of a normalization method in correcting system error 
to make consistent gene expression measurements across 
multiple arrays. The performance of fold-change 
preservation, on the other end, shows the ability of a cross 
phenotype normalization method to reveal true phenotypic 
changes in gene expression measurements, which is critical 
to follow-up analyses to detect differentially expressed 
genes and classify different phenotypes. Note that we use 
the term “cross phenotype normalization” here to 
emphasize the importance of fold-change preservation. 
Between different phenotypes, the gene expressions are 
more diverse than within a phenotype. Hence, the 
normalization based on whole gene population (like LR 
method and Loess method) will introduce even large 
variance, impacting the fold-changes of the differentially 
expressed genes particularly. INR and IR are two methods 
that are based on invariantly expressed genes (IEGs) for 
normalization, although different ways are used to select 
the IEGs.  We believe that for cross phenotype 
normalization, this is an important strategy to combat the 
large variance between different phenotypes. 
 
3. NORMALIZATION METHODS  

 
There have been many approaches proposed to 

normalize microarray gene expression data. Even though a 
variety of normalization strategies exit, we can categorize 
different normalization methods into three practical 
approaches: (1) global approach, (2) invariant gene 
approach and (3) exogenous control gene approach. The 
global approach is based on the assumption that the total 
mass of mRNA per cell is constant. Consequently, the total 
integrated intensity across all the genes should be roughly 
same in any two arrays. Rather than using all the genes, a 
subset of non-differentially expressed genes, i.e., 
invariantly expressed genes (IEGs), would be a good 
choice for normalizing microarray data across conditions. 
In contrast, using exogenous control genes for 
normalization is a universally applicable strategy since it 
does not depend on the assumptions like the ones described 
above. The use of exogenous control genes to normalize 
microarray data, while technically the most complex to set 
up and calibrate, may provide the best strategy for refining 
normalization methods.  

 
In this section, we will focus on global and 

invariant gene approaches and give a detailed description of 
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each method.  Specifically, we will describe the algorithms 
of three global approaches  - linear regression (LR), Loess 
regression and quantile normalization; and two invariant 
gene approaches - invariant ranking (IR) and iterative 
nonlinear regression (INR). 

 
3.1. Linear regression 

Linear regression (LR) method is the most 
commonly used normalization approach in large-scale gene 
expression analysis. This LR method is also referred to as 
“global scaling” in Affymetrix’s analysis tools (12). The 
LR method can be described as follows for performing 
normalization in the probe level. A baseline array is first 
chosen; in practice, the array with median intensity is a 
reasonable choice for normalization. All other arrays are 
then normalized to this baseline array by some scaling 
factors estimated by linear regression. If ,k baselinex are the 

intensities of the baseline array a ,k ix  is an array other 

than the baseline array (whe 1, ...,k p=  represents the 
probe), the scaling factor β can be obtained via a common least-square minimization 
procedure, i.e., by minimizing the following mean squared 
error between ix  and its linear regression estimate ˆix : 
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As pointed out in (24), the linear regression 

method implicitly rests on the assumption that the amount 
of mRNA per cell is constant.  However, this assumption is 
theoretically and practically questionable for several 
reasons like due to gene-dependent multiplicative errors 
and not the whole genome covered by an array (24).   

 
3.2. Loess regression 

Microarray expression levels may have large 
dynamic range that will cause scanner systematic 
deviations such as nonlinear response at lower intensity 
range and saturation at higher intensity. Although data 
falling into these ranges are commonly discarded for 
further analysis, the transition range, without proper 
handling, may still cause some significant error in 
differential expression gene detection. To account for this 
deviation, locally weighted linear regression (Loess) is 
regularly employed as a normalization method for such 
intensity-dependent effects (18). 

 
This approach is based upon the idea of the M 

versus A plot (i.e., M-A plot), where M is the difference in 
log expression values and A the average of log expression 
values (25). For any two arrays (denote as i-th array and j-
th array) with probe intensities ,k ix and ,k jx  (where 1, ...,k p=  

represents the probe), respectively, we calculate M and A as 
following: 
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A normalization function can be obtained by 
fitting this M-A plot using Loess regression. With the fitted 

normalization function 

ˆ
kM , the normalization adjustment is ' ˆ

k k kM M M= −  in order 

to be close to 0kM =  axis. Thus, adjusted probe 
intensities for i-th and j-th arrays are given as  
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To deal with more than two arrays, the method 

can be further extended to look at all distinct pair-wise 
combinations. For each pair of arrays, we perform the 
Loess regression fitting in M-A plot and record the 
adjustment accordingly. After having performed on all 

distinct pairs, we have adjustments '

, ,k m nM  for each array m 

with respect to arrays, 1, ..., 1, 1, ...,n m m N= − + , where 
N is the total number of arrays. We then calculate the 
average adjustment to be applied to array m: 
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    (4) 
 
This process can be performed iteratively, which 

was properly termed as cyclic Loess regression method in 
(15). Although it seems to be a time consuming process, as 
reported in (15), the process will be stopped in a few 
iterations when the adjustments to be applied become small 
enough. 
 
3.3. Invariant ranking 

Contrast to the three normalization methods 
described in previous subsections, invariant ranking (IR) 
method differs in selecting a subset of genes for 
normalization (14). In particular, a subset of non-
differentially expressed genes, i.e., invariantly expressed 
genes (IEGs), is identified by an iterative ranking method 
to estimate the normalization function. The method can be 
described as follows. For any two arrays, as in previous 
subsection, denoted as i-th array and j-th array with probe 
intensities ,k ix and ,k jx  ( 1, ...,k p=  for the probe), we 

will first rank the probe in two arrays according to its 
intensity, denote the ranks as ,k ir  and ,k jr  for probe k in i-

th and j-th arrays, respectively.  We then calculate the rank 
difference between the two arrays, i.e., , ,k k i k jd r r= −  and 

normalize the rank difference as following: 
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Figure 1. A block diagram of the normalization method by iterative nonlinear regression. 
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The invariant set of genes is selected by comparing kD to a 

threshold kR given by 
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where, L and H are the rank difference thresholds for the 
low and high ends of the difference  intensity range. As we 
can see, kR is the linearly interpolated threshold between 
two ending thresholds (i.e., L and R). Specifically, probe k 
is included in the invariant set, if k kD R< ; otherwise 
excluded from the invariant set. This selection process 
repeats, taking the current invariant set as input, until all 
normalized rank differences meet the threshold criteria. 
Once the final invariant set has been selected, the 
normalization function can be estimated by applying a 
nonlinear fitting technique, smoothing splines with 
generalized cross validation (GCVSS) (26), to the invariant 
set. 
 
3.4. Iterative nonlinear regression 

In this subsection, we describe INR 
normalization method in details. Figure 1 illustrates the 
block diagram of INR method consisting of two basic 
steps: (1) iterative IEG selection and (2) nonlinear 
regression normalization. As we can see, IEG selection is 
based on an iterative procedure that alternatively selects 
control genes (IEGs) and estimates nonlinear regression 
function for normalization. The final set of IEGs will be 
obtained when the iterative IEG selection procedure 
converges and subsequently, a nonlinear regression 
function will be estimated based on these IEGs. Next, we 

will describe the iterative IEG selection procedure and the 
outline of INR algorithm. 

 
Different from most existing methods, INR 

normalization method relies on IEGs that can be selected 
iteratively by sector-shaped nonlinear regression (16). 
Specifically, we have developed an INR algorithm that 
alternatively selects IEGs and estimates normalization 
regression function. In an ideal case, i.e., without 
systematic errors, IEGs are the genes whose expression 
ratios are close to 1 between two microarray experiments, 
defined by the following equation mathematically:  

floating

reference

( )1
1 ,

1 ( )

s i

s i
δ

δ
≤ ≤ +

+
    

   (8) 
where references  and floatings  represent the expression 

levels of the reference (baseline) array and the floating 
array (i.e., the array to be normalized), respectively;  δ is a 
pre-defined small threshold, and i is the gene index. Figure 
2. shows an example of IEGs (as defined by Eq. (8)) in a 
scatter plot of two arrays, which reveals a sector-shaped 
distribution of IEGs. 
 

Microarray data normalization aims to find a 
mapping function between the gene expression levels 
obtained from two samples or experiments. 
Mathematically, the gene expression levels in a floating 
array ( floatingŝ ) can be modeled as a nonlinear regression 

function of the raw expression levels ( floatings ) embedded 

with some systematic errors: floatingŝ  = f(sfloating) [14].  

When the true IEGs are known or can be identified, we can 
estimate the nonlinear regression function by minimizing 
the mean squared error (MSE) between the expression 
levels in floating and reference arrays: 
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Figure 2. IEGs distributed within a sector-shaped region 
shown in scatter plot. 
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   (9) 
where NIEG is the number of IEGs and reference ( )s i  is the 
expression level of a particular IEG in a reference array. 
The popular forms of the nonlinear regression function 
include polynomials and smoothing splines. In particular, 
we have used the following three forms in the 
implementation - quadratic polynomials, cubic polynomials 
and smoothing splines with generalized cross validation 
(GCVSS) (26). It seems that cubic polynomials possess 
some advantage over quadratic polynomials and GCVSS, 
due to the accuracy in model fitting and low computational 
complexity in model parameter estimation.  

 
In this paper, we describe an iterative procedure 

to find IEGs for nonlinear normalization as follows (15,16). 
The procedure repeats the following two steps until it 
converges: (1) selecting IEGs from a sector-shaped region 
in scatter plot of the floating and reference arrays; and (2) 
normalizing the floating array using the estimated nonlinear 
regression function based on selected IEGs (see Figure 1). 
Initially, we use a relatively large sector for selecting 
potential IEGs. For instance, we can start with using all the 
genes as IEGs (i.e., using a 90-degree sector angle), and 
perform an initial normalization accordingly. We then 
gradually decrease the angle of the sector-shaped region 
and select a new set of IEGs for normalization.  The 
iterative procedure continues until there is no significant 
change in the content of IEGs and the estimated regression 
function converges to a 45-degree straight line (i.e., f(s) = 
s).  Figure 3 illustrates the iterative process of IEG 
selection as the size of the sector decreases. The rationale 
of this approach lies in that after each normalization 
iteration the true IEGs shall move closer to a narrow sector 
around the 45-degree line as shown in Figure  2. Our 
numerical experiments have provided compelling evidence 
in support of such an iterative IEG selection scheme.   

4. EXPERIMENTAL RESULTS 
 

We have implemented several normalization 
methods including LR, Loess, IR and INR algorithms in 
C/C++ and integrated the modules into dChip software 
(27). In addition, all four above-mentioned methods have 
been implemented in a way that normalization can be 
carried out either at probe level for oligonucleotide array 
data or at gene level for cDNA array data. When carried out 
at probe level, we only use perfect match (PM) probes to 
select IEGs for normalization. Note that this is consistent 
with the implementation of iterative ranking (IR) method 
(14), but different from Bolstad’s implementation where 
both PM and mismatch (MM) probes are used for invariant 
probe selection (15).  

 
4.1. Data Sets and expression measurement 

We used three data sets in our experimental tests 
- a dilution study from GeneLogic, a muscular dystrophy 
(MD) profiling study from Children’s National Medical 
Center (CNMC), and a non-biological variability study 
from the Consortium for Functional Glycomics (CFG). The 
dilution data set was made available to the public 
specifically for comparison between different 
normalization methods (28). A total number of 60 arrays 
were acquired by Affymetrix’s 75 HG-U95A microarrays 
to study the dilution/mixture effect of two sources of RNA 
from human liver tissue and central nervous system (CNS) 
cell line. The CNMC's MD data set with 125 arrays was 
acquired by Affymetrix's GeneChip (U133A) microarrays 
to study different types of muscular dystrophy (29). The 
Consortium for Functional Glycomics (CFG) has acquired 
32 microarrays using custom-designed Glyco-gene Chips 
for assessment of sources of non-biological (technical) 
variability (30). Variables examined in the processing of 
RNA samples and gene chips include: (a) technician 
extracting RNA, (b) RNA isolation, (c) DNAse treatment 
of RNA, (d) biotin labeling of cRNA, and (e) day of 
hybridization to GLYCOv1. All samples in this study were 
C57/Bl mouse brain RNA. For all three data sets, the gene 
expression measurements were obtained using Affymetrix's 
Microarray Suite 5.0 (MAS 5.0) probe set interpretation 
algorithm (12), although other algorithms like robust 
multiple-array average (RMA)  (31) and model-based 
expression index (MBEI) (32) can also be used.  

 
4.2. Normalization plots 

Figure 4 – Figure 7 show some typical results of 
the normalization methods when applied to GeneLogic’s 
data set on dilution study. In the experiment, we chose an 
array (94407hgu95a11) as the baseline array since it is of 
median intensity among all arrays. The upper row in Figure 
4 shows a second array (94394hgu95a11) normalized to the 
baseline array, while the lower row showing a third array 
(94420hgu95a11) before and after normalization. In a 
similar fashion, Figure 5 shows the normalization results 
using Loess regression method. As we can see, after 
normalization, the M-A plot of an array and baseline array 
is centered on 0M = .  Figure 6 and Figure 7 show the 
results using IR and INR methods, respectively. Both IR 
and INR methods estimated nonlinear regression functions 
based on the selected IEGs as shown in Figure 6(b) and  
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Figure 3. Iterative sector-shaped IEG selection by reducing 
the sector angle gradually. 

 
Figure 7(b) (i.e., the red points). Evidently, as we 

can see from the figure, INR method effectively moved the 
IEGs to the 45-degree sector after normalization (Figure 
7(c)). 

 
Figure 8 shows examples of the iterative IEG 

selection process when applied to CNMC’s MD data set. A 
large sector was initially used for IEG selection and 
regression function estimation. As iteration goes on, the 
sector was gradually narrowed down since IEGs were 
expected to move closer to the 45-degree line after each 
interim normalization step. The final set of IEGs was 
obtained when the following two conditions met: (1) the 
selected IEGs differ little from those selected in the 
previous step, and (2) the estimated regression function is 
close to the 45-degree line in scatter plot. Figure 9 shows 
the normalization result of INR, showing scatter plots of 
two MD arrays prior to normalization, final selected IEGs, 
and normalized MD arrays, respectively. 

 
4.3. Performance comparison 

To compare the performance of normalization 
methods such as LR, Loess, IR and INR methods, we used 
the following two criteria to quantitatively assess whether 
one method outperforms the other (14): (1) lower variance 
of expression level across replicated arrays, and (2) 
preservation of true fold-change in controlled realistic 
simulations. As discussed in (14), the first criterion ensures 
that genes known to have identical expression levels shall 
remain or incline to being identically expressed after 
normalization. The second criterion ensures that the first 
criterion is not achieved at the expense of destroying the 
very biological variations the technology aims to detect. 
Note that other criteria such as bias comparison based on 
spike-ins are also valuable to assess the performance of a 
normalization method under consideration (15). 

  
4.3.1. Variance comparison  

In GeneLogic’s dilution study, there are 30 arrays 
for each RNA source (Liver or CNS) with 6 different 

masses of cRNA (1.25, 2.5, 5.0, 7.5, 10.0, and 20.0 µg). 
Each dilution level was hybridized on HG-U95A chips and 
then scanned by 5 different scanners as replicate 
measurements. This data set is ideal for performance 
comparison of different normalization methods, since non-
biological variability (or systematic errors) was purposely 
introduced through replicates and dilutions, while the goal 
of normalization is to correct these system errors so that 
multiple arrays can be further analyzed for the problem 
being studied.  

 
We used two sets of the 60 arrays of dilution 

study and one set of non-biological variability study from 
CFG for our variance comparison; the first set consisting of 
30 arrays of liver, the second set consisting of 30 arrays of 
CNS, and the third set consisting of 32 arrays of C57/Bl 
mouse brain RNA. The following normalization methods 
were applied to the data sets: (1) LR method, (2) Loess 
method, (3) IR method and (4) INR method. After having 
normalized the arrays by these normalization methods 
respectively, we calculated expression measurements for 
each probe set on each array using MAS 5.0. We then 
computed the mean and variance of the expression 
measurements across all 30 arrays in each set. For variance 
comparison, we performed a pair-wise comparison between 
all four normalization methods. For any two methods (e.g., 
INR against IR), we counted the number of probe sets that 
have a larger variance of expression measurements using 
INR than that using IR. The percentage of the probe sets 
with larger variance was then calculated and used to assess 
the method’s performance according to Criterion 1 (14). 

 
Figure 10 shows the results using the liver data 

set from GeneLogic’s dilution study. As we can see, all 
four normalization methods significantly reduced the 
expression variance when compared to the raw data 
(denoted as “UN” in Figure 7). All these normalization 
methods, in overall, produce more consistent expression 
measurements across these 30 arrays. In particular, IR and 
INR methods outperformed LR method in reducing the 
variance of expression measure (only about 30% and 28% 
of probe sets having larger variance than that using LR 
method, respectively). Furthermore, INR method showed 
68% of probe sets having less variance than that from IR 
method, i.e., only 32% of probe sets having larger variance 
than that of IR method.  

 
Figure 11 and Figure 12 shows the variance 

comparison results on the CNS data set and mouse brain 
data set, which again confirmed similar observations: (1) 
INR method exhibited a much better performance than LR 
and Loess methods in keeping the expression 
measurements consistent; (2) INR method further reduced 
the expression variance compared to IR method. 
  
4.3.2. Fold-change comparison 

In order to conduct fold-change comparison, we 
have constructed two sets of controlled realistically 
simulated microarray data based on GeneLogic’s dilution 
data set. We chose ten replicates and dilution arrays to 
begin with - five of them were the replicate arrays at 5µg 
mass of cRNA from liver tissue and the other five were at 
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Figure 4. Scatter plots of the results using LR method. (Upper) sample array 94394hgu95a11 against the baseline array 
(94407hgu95a11); (Lower) sample array 94420hgu95a11 against the baseline array; (a) Before normalization, (b) estimated 
normalization function (green line), and (c) after normalization. The blue line is at 45-dgree. (Note: x-axis: floating array; y-axis: 
baseline array.) 
 
10µg mass of liver cRNA. The simulated microarray data 
sets were constructed using the same procedure as 
originally designed by Schadt et al. (14). Below, we give a 
brief description of the procedure. 
 

In the first set, 300 genes that were consistently 
detected as present across five low-intensity replicate 
arrays (5µg Liver cRNA) and 600 from high-intensity 
replicate arrays (10µg Liver cRNA) were randomly 
selected. Six sets containing 50 genes each for the low-
intensity arrays and 100 genes each for the high-intensity 
arrays were then generated by a random selection process 
from the sets of 300 and 600 genes selected. The 
expression measurements of the selected genes in each of 
the six sets were then multiplied by 2.0, 0.5, 4.0, 0.25, 6.0, 
and 0.17, respectively, to simulate fold-changes between 
the samples. The ten original arrays (without modification) 
and ten modified arrays were used to compare the 
performance of normalization methods in preserving the 
controlled fold-changes.  The same procedure was used to 
construct the second simulated data set consisting of ten 
replicates (5µg and 10µg of CNS cRNA) from dilution 
study of CNS. Similarly, the ten original arrays and ten 
modified arrays were used in the comparative experiments. 
Finally, a third data set was constructed in the same way 

using 10 mouse brain arrays from CFG as described in 
Section 3.1. 

 
We tested the four different normalization 

methods (LR, Loess, IR and INR) on the same simulated 
data sets. After normalization, we calculated the fold-
changes of the altered genes and computed the mean square 
errors (MSEs) between the observed and true fold-changes 
across replicates as follows: 

 

       
0 2

fold_change
1

1 ˆ( ) ,
N

i i
i

R R
N

ε
=

= −∑   

               (10) 
 

where N is the number of arrays being modified (in this 
case, N = 10); 0

iR is the true fold  change (i.e., ground 

truth) and ˆ
iR  is the observed fold change after 

normalization. Again, we performed a pair-wise 
comparison between all four normalization methods. For 
any two methods (e.g., INR against IR), we counted the 
number of genes having larger fold_changeε  when using 
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Figure 5. M-A plots of the results using Loess method. (Upper) sample 94394hgu95a11 against the baseline array 
(94407hgu95a11); (Lower) sample 94420hgu95a11 against the baseline array. (a) Before normalization, (b) estimated 
normalization function (green curve), and (c) after normalization. The blue line is at M = 0. (Note: x-axis: floating array; y-axis: 
baseline array.) 

 
Figure 6. Scatter plots of the results using IR method. (Upper) sample 94394hgu95a11 against the baseline array 
(94407hgu95a11); (Lower) sample 94420hgu95a11 against the baseline array. (a) Before normalization, (b) estimated 
normalization function (green curve), and (c) after normalization. The red dots are the selected IEGs and the blue line is at 45-
dgree. (Note: x-axis: floating array; y-axis: baseline array.) 
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Figure 7. Scatter plots of the results using INR method. (Upper) sample 94394hgu95a11 against the baseline array 
(94407hgu95a11); (Lower) sample 94420hgu95a11 against the baseline array. (a) Before normalization, (b) estimated 
normalization function (green curve), and (c) after normalization. The red dots are the selected IEGs and the blue line is at 45-
dgree. (Note: x-axis: floating array; y-axis: baseline array.) 
 

 
 
Figure 8.  Iterative IEG selection by nonlinear regression - selected IEGs are in red: (a) initial IEGs (i.e., all the PM probes), (b) 
selected IEGs after 5 iterations, (c) selected IEGs after 10 iterations, and (d) final selected IEGs. 
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Figure 9. Normalization by INR method - an example of CNMC’s MD data set: (a) scatter plot of unnormalized arrays, (b) 
selected IEGs for normalization, and (c) scatter plot of normalized arrays. The blue line indicates the 45-degree line.  
 
 

 
 
Figure 10. Variance comparison using GeneLogic dilution data set (Liver). Four normalization methods, (1) LR, (2) Loess, (3) 
IR and (4) INR, are compared in terms of expression variance reduction. The normalization results are also compared with the 
unnormalized arrays (denoted as UN in the figure). The table should be interpreted as in the following example: (INR, LR) = 
28% means that with INR method, only 28% of the genes are of larger expression variance than that with LR method. 
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Figure 11. Variance comparison using GeneLogic dilution data set (CNS). Four normalization methods, (1) LR, (2) Loess, (3) IR  
and (4) INR, are compared in terms of expression variance reduction. The normalization results are also compared with the 
unnormalized arrays (denoted as UN in the figure). The table should be interpreted as in the following example: (INR, LR) = 
25% means that with INR method, only 25% of the genes are of larger expression variance than that with LR method. 

 
Figure 12. Variance comparison using GFC mouse brain data set. Four normalization methods, (1) LR, (2) Loess, (3) IR and (4) 
INR, are compared in terms of expression variance reduction. The normalization results are also compared with the unnormalized 
arrays (denoted as UN in the figure). The table should be interpreted as in the following example: (INR, LR) = 6% means that 
with INR method, only 6% of the genes are of larger expression variance than that with LR method. 
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Figure 13. Fold-change comparison using GeneLogic dilution data set (Liver). Four normalization methods, (1) LR, (2) Loess, 
(3) IR and (4) INR, are compared in terms of fold change preservation. The table should be interpreted as in the following 
example: (INR, IR) = 16% means that with INR method, only 16% of the differentially expressed genes are of larger fold-change 
than that with IR method. 
 

 
 
Figure 14. Fold-change comparison using GeneLogic dilution data set (CNS). Four normalization methods, (1) LR, (2) Loess, 
(3) IR and (4) INR, are compared in terms of fold change preservation. The table should be interpreted as in the following 
example: (INR, IR) = 30% means that with INR method, only 30% of the differentially expressed genes are of larger fold-change 
than that with IR method. 
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Figure 15. Fold-change comparison using CFG’s mouse brain data set. Four normalization methods, (1) LR, (2) Loess, (3) IR 
and (4) INR, are compared in terms of fold change preservation. The table should be interpreted as in the following example: 
(INR, IR) = 10% means that with INR method, only 10% of the differentially expressed genes are of larger fold-change than that 
with IR method. 
 
INR than that using IR. The percentage of the genes with 
larger fold_changeε was then calculated for assessing the 

performance according to Criterion 2 (14).  
 
Figure 13 shows the comparison results of fold-

change preservation on the first testing data set (Liver). The 
performance can be observed as follows.  First, LR method 
was the worst one among all four normalization methods in 
preserving the authentic fold-changes. Second, Loess 
method was the second worst method in that it exhibited 
96% of genes having larger fold_changeε than that using IR 

method, and 100% of genes having larger fold_changeε than 

that using INR method. Third, INR method gave the best 
performance in terms of fold-change preservation, only 
16% of genes having larger fold_changeε than that using IR 

method.  
 
Figure 14 and Figure 15 show the comparison 

results on the second and third testing data sets (CNS and 
mouse brain, respectively). Among all four normalization 
methods, LR method was again the worst one in terms of 
fold-change preservation.  As expected, INR method 
continued to show the best performance in preserving fold-
changes, specifically, only 30% (or 25%) of the genes 
having larger fold_changeε than that using IR method (or 

Loess method) in the CNS data set; 10% against IR method 
(or 0% against Loess method) in the mouse brain data set. 

5. CONCLUSION  
 

In this paper, we have reported a comparison 
study of four normalization methods, namely LR, Loess, IR 
and INR methods, for normalizing gene expression data. 
We tested the normalization methods on three real 
microarray data sets – GeneLogic’s array data set for 
dilution study, CNMC’s microarray data set for muscular 
dystrophy study and CFG’s data set for non-biological 
variability study – to evaluate their performance. The 
experimental results have demonstrated that an improved 
performance can be obtained using normalization methods 
for correcting systematic errors. It becomes evident to us 
that correct selection of IEGs is the key to assure the 
success of any normalization method. Not like other 
methods (e.g., LR method, Loess method and quantile 
method), INR and IR methods are the only ones that 
perform the normalization based on IEGs selected via 
carefully designed procedures.  

 
Specifically, we compared the performance of the 

above-mentioned normalization methods based on the 
following two criteria: (1) expression variance reduction 
and (2) fold-change preservation. From the experimental 
results, we have come to the conclusions that (1) LR 
method was the worst one among the four normalization 
methods tested on the data sets used in the experiments; 
and (2) INR method outperformed all other three methods 
(LR, Loess and IR methods) in reducing expression 
variance across replicates and preserving the fold-changes 
of targeted differentially expressed genes. 
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 It is worth noting that there have been several 
other important comparison studies on microarray data 
normalization (14,15,32). Schadt et al. have compared the 
IR method with LR and GCVSS methods (14). They have 
demonstrated that the selection of invariantly expressed 
genes (IEGs) is very important for reducing the array 
variance without compromising the fold-change 
preservation. Since they used the same criteria (variance 
reduction and fold-change preservation) as those in this 
paper to evaluate the performance, the results from their 
study were consistent with our results.  Furthermore, our 
method (i.e., INR) improves the performance with a novel 
IEG identification method (by iteratively normalizing the 
floating array so that the IEGs are moved to the 45-degree 
line in the scatter plot). Bolstad et al. also conducted a 
comparison study to evaluate several normalization 
methods like Loess, LR, IR and quantile methods (15). In 
their study, they used variance and bias as the criteria to 
evaluate the performance of each method; they also used 
GeneLogic’s dilution data set for variance comparison, but 
used GeneLogic’s Spike-in data set for bias comparison. 
They found that the quantile method gave a slightly better 
performance than the other methods; the LR method was 
the worst among the methods, which is consistent with the 
comparison result in this paper; however, the nonlinear 
method, IR, also did poorly for the spike-in regression in 
their study. Recently, Fujita et al. have also compared 
different methods, including Loess, splines, wavelets, 
kernel smoothing and support vector regression (SVR) to 
evaluate their performances using simulated microarray 
data (32). They have shown that the SVR method was 
favored for microarray normalization due to its robustness 
in estimating the normalization curve. The SVR method is 
essentially a nonlinear method using all the genes, but 
optimized to limit the fitting error while finding a linear 
mapping function as flat as possible (32).  

 
In the future, we will further include those new 

approaches like SVR and quantile normalization to 
complete the performance evaluation of different 
normalization methods for microarray data normalization. 
In addition, we will use the simulated microarray data as 
generated in (32) and bench microarray data together to 
further assess the robustness of each method in terms of 
variance reduction and fold-change preservation. Finally, 
we also plan to further improve the INR method with the 
idea of SVR method to optimize the nonlinear regression 
function for better identifying the ISGs. 
 
6. ACKNOWLEDGMENTS 

 
This work was supported in part by the NIH 

under Grants CA109872, EB000830 and NS29525-13A; 
DOD/CDMRP under Grant BC030280. We thank C. Li and 
W. H. Wong at Harvard University for making dChip 
software, especially the implementation of their iterative 
ranking (IR) normalization method, available to us for 
comparison. We also thank the anonymous reviewers for 
their invaluable inputs that lead to several important 
improvements. 
 
 

7. REFERENCES 
 
1. T. R. Golub, D. K. Slonim, P. Tamayo, C. Huard, M. 
Gaasenbeek, J. P. Mesirov, H. Coller, M. L. Loh, J. R., 
Downing, M. A. Caligiuri, C. D. Bloomfield and E.S. 
Lander: Molecular classification of cancer: class discovery 
and class prediction by gene expression monitoring. 
Science 286, 531-537 (1999) 
 
2. J. Khan, J. S. Wei, M. Ringner, L. H. Saal, M. Lananyi, 
F. Westermann, F. Berthold, M. Schwab, C. R. Antonescu, 
C. Peterson and P. S. Meltzer: Classification and diagnostic 
prediction of cancers using gene expression profiling and 
artificial neural networks. Nature Medicine 7(6), 673-679 
(2001) 
 
3. E. Segal, M. Shapira, A. Regev, D. Pe’er, D. Botstein, D. 
Koller, and N. Friedman: Module networks: identifying 
regulatory modules and their condition-specific regulators 
from gene expression data. Nature Genetics 34(2), 166-176 
(2003) 
 
4. M. B. Eisen, P. T. Spellman, P. O. Brown, and D. 
Botstein: Cluster analysis and display of genome-wide 
expression patterns. Proc. Natl. Acad. Sci. USA 95, 14863-
14868 (1998). 
 
5. P. Tamayo, D. Slonim, J. Mesirov, Q. Zhu, E. 
Dmitrovsky, E. S. Lander and T. R. Golub: Interpreting 
gene expression with self-organizing maps: Methods and 
application to hematopoeitic differentiation.  Proc. Natl. 
Acad. Sci. USA 96, 2907-2912 (1999) 
 
6. Y. Wang, L. Luo, M. T. Freedman and S. Y. Kung: 
Probabilistic principal component subspaces: A 
hierarchical finite mixture model for data visualization. 
IEEE Trans. Neural Nets. 11, 625-636 (2000). 
 
7. S. Ramaswamy, P. Tamayo, R. Rifkin, S. Mukherjee, C.-
H. Yeang, M. Angelo, C. Ladd, M. Reich, E. Latulippe, J. 
P. Mesirov, T. Poggio, W. Gerald, M. Loda, E. S. Lander 
and T. R. Golub: Multiclass cancer diagnosis using tumor 
gene expression signatures. Proc. Natl. Acad. Sci. USA 
98(26), 15149-15154 (2001). 
 
8. J. Xuan, Y. Dong, J. I. Khan, E. Hoffman, R. Clarke and 
Y. Wang: Robust feature selection by weighted Fisher 
criterion for multiclass prediction in gene expression 
profiling. Proc. Int’l Conf. Pattern Recognition (2), 291-
294 (2004) 
 
9. A. Hartemink, D. Gifford, T. Jaakkola and R. Young: 
Maximum likelihood estimation of optimal scaling factors 
for expression array normalization. SPIE BIOS (2001) 
 
10. G. C. Tseng, M. K. Oh, L. Rohlin, J. C. Liao and W. H. 
Wong: Issues in cDNA microarray analysis: quality 
filering, channel normalization, models of variations and 
assessment of gene effects. Nucl. Acids Res. 29, 2549-2557 
(2001) 
 



Cross phenotype normalization of microarray data 
 

185 

11. M. Bilban, L. K. Buehler, S. Head, G. Desoye and V. 
Quaranta: Normalizing DNA microarray data. Curr. Issues 
Mol. Biol. 4, 57-64 (2002) 
 
12. Affymetrix : Affymetrix Technical Note Statistical 
algorithms description document. Affymetrix, Inc. 
(http://www.affymetrix.com/support/technical/whitepapers/
sadd_whitepaper.pdf) (2002) 
 
13. Y. H. Yang, S. Dudoit, P. Luu, D. M. Lin, V. Peng, J. 
Ngai and T.P. Speed: Normalization for cDNA microarray 
data: a robust composite method addressing single and 
multiple slides systematic variation. Nucleic Acids Res. 
30(4), e15 (2002) 
 
14. E. Schadt, C. Li., B. Eliss and W. H. Wong: Feature 
extraction and normalization algorithms for high-density 
oligonucleotide gene expression array data. J. Cell. 
Biochem. 84(S37), 120-125 (2001) 
 
15. B. M. Bolstad, R. A. Irizarry, M. Astrand and T.P. 
Speed: A comparison of normalization methods for high 
density oligonucleotide array data based on variance and 
bias. Bioinformatics 19(2), 185-193 (2003)  
 
16. Y. Wang, J. Lu, R. Lee, Z. Gu and R. Clarke: Iterative 
normalization of cDNA microarray data. IEEE Trans. on 
Info. Tech. in Biomedicine 6(1), 29-37 (2002) 
 
17. J. Xuan, E. Hoffman, R. Clarke and Y. Wang: 
Normalization of microarray data by iterative nonlinear 
regression. Proc.  the Fifth IEEE Symposium on 
Bioinformatics and Bioengineering, 267-270 (2005) 
 
18. J. Quackenbush: Microarray data normalization and 
transform. Nature Genetics Suppl. 32, 496-501 (2002) 
 
19. E. Camerer, E. Gjernes, M. Wiiger, S. Pringle and H. 
Prydz: Binding of factor VIIa to tissue factor on 
karatinocytes induces gene expression. J. Biol. Chem. 275, 
6580-6585 (2000) 
 
20. J. B. Welsh, L. M. Sapinoso, A. I. Su, S. G. Kern, J. 
Wang-Rodriguez, C. A. Moskaluk, H. F. Frierson Jr and G. 
M. Hampton: Analysis of gene expression identifies 
candidate markers and pharmacological targets in prostate 
cancer. Cancer Res. 61, 5974-5978 (2001) 
 
21. A. A. Hill, E. L. Brown, M. Z. Whitley, G. Tucker-
Kellogg, C. P. Hunter and D. K. Slonim: Evaluation of 
normalization procedures for oligonucleotide array data 
based on spiked cRNA controls. Genome Biol. 2(12), 1-12 
(2001) 
 
22. R. Hoffmann, T. Seidl and M. Dugas: Profound effect 
of normalization on detection of differentially expressed 
genes in olgonecleotide microarray data analysis. Genome 
Biology 3(7), 1-11 (2002) 
 
23. J. Hua, Y. Balagurunathan, Y. Chen, J. Lowey, M. L. 
Bittner, Z. Xiong, E. Suh and E. R. Dougherty: 
Normalization Benefits Microarray-Based Classification. 

EURASIP Journal on Bioinformatics and Systems Biology 
2006, Article ID 43056, 13 pages, (2006) 
 
24. A. Zien, T. Aigner, R. Zimmer and T. Lengauer: 
Centralization: A new method for the normalization of gene 
expression data. Bioinformatics 1(1), 1-9 (2001) 
 
25. S. Dudoit, Y. H. Yang, M. J. Callow and T. P. Speed; 
Statistical methods for identifying genes with differential 
expression in replicated cDNA microarray experiments. 
Stat. Sin. 12(1), 111-139 (2002) 
 
26. G. Wahba: Spline methods for observational data, 
CBMS-NSF regional conf. series in applied math. 
Philadelphia: SIAM (1990) 
 
27. C. Li and W. H. Wong: DNA-Chip Analyzer (dChip). 
The analysis of gene expression data: methods and 
software. Edited by Parmigiani, G., Garrett, E.S., Irizarry, 
R. and Zeger, S.L. Springer (2003) 
 
28. GeneLogic: Dilution/mixture datasets. 
http://www.genelogic.com (2002) 
 
29. M. Bakay, Z. Wang, G. Melcon, L. Schiltz, J. Xuan, P. 
Zhao, V. Sartorelli, J. Seo, E. Pegoraro, C.  Angelini, B. 
Shneiderman, D. Escolar, Y.-W. Chen, S. Winokur, L. 
Pachman, C. Fan, R. Mandler, Y. Nevo, E. Gordon, Y. 
Zhu, Y. Dong, Y. Wang and E.P. Hoffman: Nuclear 
envelope dystrophies show a transcriptional fingerprint 
suggesting disruption of Rb–MyoD pathways in muscle 
regeneration. Brain 129, 996-1013 (2006) 
 
30. The Consortium for Functional Glycomics (CFG): 
Glyco-gene Chip and microarrat data. URL: 
http://www.functionalglycomics.org/glycomics/publicdata/
microarray.jsp 
 
31. R. A. Irizarry, B. Hobbs, F. Collin, Y. D. Beazer-
Barclay, K. J. Antonellis, U. Scherf and T. P. Speed: 
Exploration, normalization, and summaries of high density 
oligonucleotide array probe level data. Biostatistics 4, 249–
64 (2003) 
 
32. A. Fujita, J. R. Sato, O. Rodrigues Lde, C. E. Ferreira 
and M. C. Sogayar: Evaluating different methods of 
microarray data normalization. BMC Bioinformatics 7, 469-
479 (2003) 
 
Abbreviations: LR: linear regression, IR: invariant 
ranking, INR: iterative nonlinear regression, GCVSS: 
smoothing splines with generalized cross validation, IEG: 
invariantly expressed genes, MD: muscular dystrophy, 
MSE: mean square error 
 
Key Words: Normalization; nonlinear regression; gene 
expression profiling; microarray data analysis; 
computational bioinformatics 
 
Send correspondence to: Jianhua Xuan, Department of 
Electrical and Computer Engineering, Virginia Polytechnic 
Institute and State University, 4300 Wilson Blvd., 



Cross phenotype normalization of microarray data 
 

186 

Arlington, VA 22203, USA, Tel: 703-387-6057, Fax: 703-
528- 5543, E-mail: xuan@vt.edu 
 
http://www.bioscience.org/current/vol2E.htm 

 
 
 
 


