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1. ABSTRACT 
 
 This paper is concerned with the statistical 
analysis of data obtained in studies of the joint action of 
drugs. The three methods that are compared are illustrated 
on real data (1), using the statistical package SAS. It is 
argued that while the results obtained using these methods 
do not differ substantially, the method allowing for 
estimating simultaneously all required parameters is to be 
preferred. It allows for a statistical test for the significance 
of the joint action of the drug combinations to be carried 
out.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2. INTRODUCTION 
 

Combinations of drugs have been known to be 
highly successful in treating different diseases for many 
years (2). There is a considerable amount of literature 
discussing related scientific issues as well as the 
experimental design and analysis of experiments aiming at 
identifying the existence of synergistic or antagonistic drug 
effects (2, 3, 4). Such experiments are a great deal more 
complex than studying the effect of the drugs separately, 
and typically take a long time to complete, and require 
substantial resources. Therefore, it is very important to 
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Table 1. Ratios of the concentrations of compounds B and 
A. Ray 1 – compound A only, ray 2 – compound B only, 
rays 3-7 – stack 1; rays 8-14 – stack 2. 

Ray Study 1 Study 2  
3 4.96  49.61 
4 2.48  24.80 
5 9.92  99.21 
6 1.24  12.40 
7 19.85  198.43 
8 4.96  49.61 
9 0.50  4.96 
10 49.65  496.07 
11 0.20  1.98 
12 124.11  1240.18 
13 0.10  1.00 
14 248.23  2480.36 

 

 
Figure 1. Response values when no compounds have been 
used. 
 
develop a suitable statistical approach for analyzing such 
data. 

 
This paper discusses typical methods of analysing 

such data, demonstrating them on a dataset kindly provided 
by William Greco and based on his work (1). The dataset 
contains data from two studies. Greco’s description of the 
experiments is as follows. 

 
“The first drug is trimetrexate (TMQ), a 

lipophilic inhibitor of the enzyme, dihydrofolate reductase; 
and the second drug is AG2034, an inhibitor of the enzyme, 
glycinamide ribonucleotide formyltransferase (GARFT). 
The first experiment included 2.3 µM  folic acid in the 
medium, and the second experiment included 78 µM  folic 
acid in the medium. All drug concentrations are in µM. The 
endpoint was the growth of HCT-8 human ileocecal 
adenocarcinoma cells, in wells of 96-well plates, as 
measured by the SRB protein stain. Treatments of cells in 
wells by drugs were randomized across the plates. Each 
96-well plate included 8 wells as instrumental blanks (no 
cells; values are NOT subtracted from treated cell wells); 
thus 88 wells were used for drug treatments. Five replicate 
plates were used for each set of 88 treatments. Each of 
these two large data sets came from two 5-plate stacks (a 
maximum of 880 treated wells per experiment). There were 
176 control wells per experiment (cells, but zero 
concentrations of both drugs). Each single agent was 

studied at 11 dilutions; the two drugs were combined in 12 
different fixed ratios per experiment, and also studied in 11 
dilutions.  The recorded endpoint is an absorbance 
measurement (ranging about 0.0-2.0), recorded in an 
automated 96-well plate reader. Complete experimental 
details and mechanistic implications are included in 
Faessel et al (1998). 
 

      The data set for the low (2.3 µM) folic acid 
case contains 871 data points (9 points were deleted for 
experimental problems); and the data set for the high (78 
µM) case includes 879 data points (1 point was deleted). 
The former data set includes the complication of synergism 
dominating for some fixed ratios and antagonism 
dominating for other ratios. The latter data set includes the 
phenomenon of very large (super) synergy, and possible 
differential background effects (recorded absorbances at 
very high drug concentrations) for the single agents.” 
 

We refer to the compounds TMQ and AG2034 as 
compounds A and B, to the response of interest as Y, and to 
the data collected at 2.3 µM and 78 µM folic acid as Study 1 
and Study 2, respectively. A ray design (4) has been used in 
each of the studies, where the rays are defined by the constant 
ratios of the tested compounds for which the response has been 
measured - see Table 1. Each study is conducted using two 
stacks of plates. In order to allow for testing the significance of 
the differences between the stacks within each study, one 
combination in common was tested on each of the two stacks 
within each study. These combinations are rays 3 and 8. 
 
3. STATISTICAL METHODOLOGIES 
 

The statistical analysis of data obtained in a 
combination study should follow the usual steps of any 
complex statistical investigations. The details of these steps 
depend on the aim of the study itself.  We present some of 
the available methods and apply them to analyse the data 
described in Section 2. The computer package SAS is used 
to analyse the data. SAS has been previously reported to be 
a powerful tool in such calculations (5), however the code 
provided by the authors is incomplete and cannot be used. 
The SAS code implementing the statistical analysis in the 
current paper is available from the author on request. All 
figures in this paper were created using general graphical 
tools provided by ODS Statistical Graphics in SAS 
Software, Version 9.2.  
 
3.1. Preliminary statistical analysis 

Figure 1 shows a histogram of the observations 
when no compounds have been used. It is clear that there 
are unusually small observations in the Study 1. Using such 
values in the subsequent statistical analysis can create 
various problems. On the basis that these values were not 
seen as representing genuine variability, they were 
excluded from the dataset. The remaining observations can 
be seen as approximately following the normal distribution, 
seen by the closeness of curves for the kernel estimation 
and the normal probability density function for the data.  

 
 Statistical tests show no sufficient evidence for 
differences between the observations taken in the two
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Figure 2. The data for Study 1. 
 

 
 
Figure 3. The data for Study 2. 
 
 studies and the two stacks of plates. The data for the latter 
are therefore pooled. 
 
Figure 2 shows all data for each ray of Study 1, while 
Figure 3 shows all data for each ray of Study 2. Careful 
inspection of these plots indicates possible problems in the 
subsequent analyses of the data.  For example, it can be 
seen that the data for Ray 7 of Study 1 includes virtually no 
observations producing responses in the middle between 
the maximum and the minimum and without such 
observations the estimation of important parameters may 
not be possible. It can be also seen that in all plots the 
variability of the response increases with the response. This 
is an important observation which influences the definition 
of the model in Section 3.2. 
  
3.2. Main Analysis 
 
 The statistical analysis of bioassay data for a 
single compound action requires estimating the mode 

( ) ,
101 iixiY ε+

+
γ−δ

+γ= βα−
(1) 

 

where Yi is the response observed at a dose whose 
logarithm to base 10 is xi, α corresponds to the logarithm to 
base 10 of the IC50 of the drug; β is the Hill slope, named 
after Hill (6) who proposed the model; γ is the mean 
response when no compound has been used and δ is the 
mean response for maximum possible drug effect. When α 
is smaller the drug is more potent. In ( iε  is the 
experimental error which we assume to be normally 
distributed with zero mean and variance that could be 
heterogeneous, e.g. 2)( εσφ Y . Based on practical experience, 
also supported by the data shown in Figures 2 and 3, we 
assume that ρ=φ YY )( , where ρ is another model 
parameter that needs to be estimated. There are certainly 
many different ways to reparameterize model (1) and the 
right choice depends on the robustness of the numerical 
procedure used to estimate the model parameters and the 
scale on which an estimate of the potency is required. 
Methods for estimating the parameters of nonlinear models 
like (10) are described in the literature (7-9). 
 

When a ray design has been used to study the 
joint effect of two drugs, say A and B, the data for each ray 
can be treated as a new drug, defined by the ratio in which 
the two drugs have been combined, and analysed by 
estimating model (1). Evidence that model (1) is not 
applicable would indicate that mechanistic  considerations 
different from those assumed by Hill and Michaelis and 
Menten (10) to justify model (1) are present, and therefore 
the study of such a drug combination may require a 
different treatment.  

 
Typically the assessment of the joint action of 

two compounds is carried out by evaluating the evidence of 
its deviation from what would be expected if the joint 
action of the two compounds were additive. The definition 
of additivity proposed by Loewe (11) is most commonly 
used, though other definitions (12) also exist. Loewe’s 
definition leads to the so called combination, also called 
interaction, index 

B

b

A

a

D
D

D
DCI +=

  
(2) 

where DA and DB are doses of the compounds A and B, 
respectively, producing the same mean response as a 
combination of doses Da and Db of the two compounds. If 
CI < 1, this provides evidence of synergistic action of the 
drugs, while if CI > 1, this suggests an antagonistic action. 
Some researchers provide general advice about how 
smaller or larger than one the CI value should be in order to 
declare the drug action as synergistic or antagonistic. 
However, as the combination index is a random variable 
following approximately lognormal distribution, a better 
approach is to test CI for its significance. Such a statistical 
test would take into account the variability in the 
experiment and the number of observations used to 
estimate the combination index. 
 
 We estimate DA = IC50A and DB = IC50B as well 
as Da and Db for each ray using the following three 
methods, with SAS/STAT Software, Version 9.1.3.          

Table 2. Study 1. Methods M1 and M2. Estimates of the LogIC50 (α). Individual models for each ray. 
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 Homogeneous variance Heterogeneous variance 
Ray Estimate Standard Error Estimate Standard Error 
1 -2.8840 0.0277 -2.8836 0.0188 
2 -2.2190 0.0232 -2.2141 0.0178 
3 -2.6085 0.0156 -2.6157 0.0118 
4 -2.5697 0.0226 -2.5707 0.0148 
5 -2.5849 0.0187 -2.5945 0.0138 
6 -2.6728 0.0218 -2.6772 0.0145 
7 -2.4756 11.0986 -2.4806  
8 -2.6410 0.0205 -2.6528 0.0148 
9 -2.7952 0.0254 -2.7975 0.0172 
10 -2.8111 0.1210 -2.8747 0.0241 
11 -2.8706 0.0288 -2.8657 0.0197 
12 -2.5501 0.0247 -2.5512 0.0191 
13 -2.8685 0.0285 -2.8663 0.0213 
14 -2.4418 0.0216 -2.4460 0.0161 
 
Table 3. Study 1. Methods M1 and M2. Estimates of the Hill’s slope (β). Individual models for each ray 
 Homogeneous variance Heterogeneous variance 
Ray Estimate Standard Error Estimate Standard Error 
1 -2.2146 0.2701 -2.2436 0.1729 
2 -3.1630 0.4227 -2.6237 0.2552 
3 -6.1619 2.7414 -4.0424 0.3811 
4 -5.2128 0.8215 -5.0270 0.4789 
5 -4.6937 0.7349 -3.5923 0.3881 
6 -3.6302 0.4889 -3.6340 0.3312 
7 -18.8973 5538.8315 -18.2115  
8 -5.6210 1.5845 -3.4556 0.3497 
9 -2.6595 0.3482 -2.2805 0.1477 
10 -5.8322 6.0973 -3.4322 0.4789 
11 -2.1606 0.2783 -2.0191 0.1383 
12 -2.9418 0.4383 -2.6589 0.2676 
13 -2.2650 0.2861 -2.0015 0.1565 
14 -3.9111 0.6763 -2.9750 0.2358 
 
Table 4. Study 1. Methods M1 and M2. Estimates of the bottom level (γ). Individual models for each ray 
 Homogeneous variance Heterogeneous variance 
Ray Estimate Standard Error Estimate Standard Error 
1 0.1382 0.0222 0.1391 0.0063 
2 0.1530 0.0203 0.1433 0.0076 
3 0.1415 0.0169 0.1349 0.0045 
4 0.1302 0.0204 0.1293 0.0054 
5 0.1383 0.0167 0.1329 0.0054 
6 0.1275 0.0200 0.1287 0.0047 
7 0.1329 0.0169 0.1330 0.0063 
8 0.1401 0.0182 0.1305 0.0054 
9 0.1320 0.0216 0.1243 0.0047 
10 0.1501 0.0161 0.1457 0.0051 
11 0.1395 0.0225 0.1338 0.0057 
12 0.1594 0.0192 0.1554 0.0068 
13 0.1459 0.0207 0.1377 0.0073 
14 0.1508 0.0194 0.1429 0.0045 
 
Table 5. Study 1. Methods M1 and M2. Estimates of the top level (δ). Individual models for each ray 
 Homogeneous variance Heterogeneous variance 
Ray Estimate Standard Error Estimate Standard Error 
1 1.1731 0.0087 1.1729 0.0094 
2 1.1672 0.0086 1.1687 0.0094 
3 1.1683 0.0082 1.1704 0.0090 
4 1.1698 0.0090 1.1702 0.0099 
5 1.1639 0.0082 1.1660 0.0091 
6 1.1605 0.0086 1.1607 0.0094 
7 1.1686 0.0085 1.1692 0.0090 
8 1.1678 0.0090 1.1707 0.0101 
9 1.1787 0.0090 1.1805 0.0099 
10 1.1679 0.0087 1.1706 0.0099 
11 1.1766 0.0089 1.1770 0.0098 
12 1.1722 0.0090 1.1729 0.0100 
13 1.1661 0.0082 1.1673 0.0089 
14 1.1594 0.0093 1.1613 0.0104 
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Table 6. Study 1. Method M2. Estimates of ρ 
 Heterogeneous variance 
Ray Estimate Standard Error 
1 1.3333 0.1596 
2 1.1932 0.1677 
3 1.4122 0.1368 
4 1.2969 0.1378 
5 1.2688 0.1475 
6 1.4600 0.1420 
7 0.9910 0.1301 
8 1.3603 0.1479 
9 1.5776 0.1506 
10 1.3194 0.1404 
11 1.4420 0.1524 
12 1.2115 0.1476 
13 1.1815 0.1584 
14 1.6164 0.1509 

 
Table 7. Study 1. Method M2. Estimates of 2

εσ  
 Heterogeneous variance 
Ray Estimate Standard Error 
1 0.0934 0.0054 
2 0.0949 0.0056 
3 0.0894 0.0053 
4 0.0993 0.0058 
5 0.0906 0.0054 
6 0.0941 0.0055 
7 0.0940 0.0056 
8 0.0998 0.0060 
9 0.0952 0.0056 
10 0.0964 0.0059 
11 0.0949 0.0056 
12 0.0986 0.0058 
13 0.0884 0.0052 
14 0.1013 0.0060 

 
Table 8. Study 1. Method M3. Estimates of the model parameters 

Ray Parameter Estimate Standard Error 
1 α -2.8813 0.0187 
1 β -2.2302 0.1622 
2 α -2.2116 0.0170 
2 β -2.4692 0.1797 
3 α -2.6157 0.0124 
3 β -4.1880 0.4397 
4 α -2.5725 0.0141 
4 β -5.1806 0.4564 
5 α -2.5969 0.0141 
5 β -3.6828 0.3606 
6 α -2.6812 0.0151 
6 β -3.7907 0.3451 
7 α -2.4794   
7 β -18.8972   
8 α -2.6538 0.0137 
8 β -3.6961 0.3470 
9 α -2.7958 0.0172 
9 β -2.5329 0.1793 
10 α -2.8750 0.0214 
10 β -3.1808 0.3416 
11 α -2.8630 0.0196 
11 β -2.0748 0.1398 
12 α -2.5449 0.0183 
12 β -2.2819 0.1849 
13 α -2.8689 0.0217 
13 β -1.9669 0.1367 
14 α -2.4447 0.0157 
14 β -2.9758 0.2378 
  γ 0.1366 0.0016 
  δ 1.1698 0.0026 
  ρ 1.2810 0.0394 
   σε 0.0956 0.0015 
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Figure 4. Study 1. Method M3. Logarithm to base 10 of the 
combination indices and 95% confidence intervals for the 
rays (ray number given in brackets). 
 

 
 
Figure 5. Study 2. Method M3. Logarithm to base 10 of the 
combination indices and 95% confidence intervals for the 
rays (ray number given in brackets). 
 

• M1: Model (1) is fitted for each ray assuming ρ = 
0. This simplifies the analysis. This method 
requires the use of PROC NLIN. 

• M2: Model (1) is fitted for each ray, obtaining 
also the maximum likelihood estimate of ρ. This 
method requires the use of PROC NLMIXED.  

• M3: A global model - fitting simultaneously (1) 
for each ray including the mono therapies, 
estimating common values for γ, δ, ρ and 2

εσ , 
and calculating the combination index for each 
ray and testing it’s significance. This method 
requires the use of PROC NLMIXED.  

In all cases the default setting for the SAS procedures are 
used. 
 
4. COMPARISON OF METHODOLOGIES 
 
4.1. Study 1 
 Tables 2-5 show the estimates of the parameters 
of model (1) α, β, γ and δ when methods M1 and M2 are 

used. Not surprisingly the standard errors of the 
parameters’ estimates when method M2 is used are smaller. 
However, the differences between the estimates for α for 
the studied combinations are relatively small. Both methods 
incurred difficulties in estimating α for ray 7, although this 
is shown in the computer output differently: when method 
M1 is used, the standard error is reported much higher than 
the other standard errors, while for method M2 a standard 
error for the estimate of α is not produced. The inspection 
of the data (Figure 2) discussed in Section 3.1 indicated the 
problem with the data for this drug combination - there are 
not enough points in the middle range of values for the 
response.  
 
 The close similarity of the estimates of γ and δ 
(Tables 4 and 5) provides further evidence that there is no 
notable variability in the results between plates and raises a 
question whether separate estimates of the parameters for 
each ray in this study is indeed necessary. This concern can 
also be extended to the estimates of ρ and 2

εσ  obtained 
using method M2 provided in Tables 6 and 7. For example, 
nothing would justify the use of different estimates for ρ 
for each drug combination, as the variance of the response 
depends on its mean and not on the compound that has 
been studied. 
 

Method M3 does not have any of the 
shortcomings that methods M1 and M2 have. The model 
parameters estimates when this method is used are shown 
in Table 8. The estimates of α are similar to those obtained 
previously by methods M1 and M2, and their standard 
errors are in general smaller then those obtained with 
method M1, but they are larger then those obtained using 
method M2. The latter could be explained by the over-
fitting that methods M1 and M2 do, i.e. providing different 
estimates for the parameters γ, δ, ρ and 2

εσ . On the 
contrary, using method M3 allows for obtaining common 
estimates for γ, δ, ρ and 2

εσ . 
  
Table 9 shows the estimates of the logarithms at 

base 10 of the combination index (2) for all rays obtained 
using method M3. The tests for significance show strong 
evidence of synergistic action for rays 3,  5, 8, 10, 12 and 
14; some evidence for synergy for rays 4 and 6, but no 
evidence for synergy for rays 11 and 13. Furthermore, the 
strength of synergy appears to increase with the ratio of the 
drugs up to a ratio of 49.65, and then decreases as the ratio 
increases further. Clear illustration of this phenomenon is 
shown on Figure 4 which shows the 95% confidence 
intervals for the logarithm to base 10 of the combination 
index. If the distribution of the combination index, rather 
than of its logarithm, is assumed to be approximately 
normal, the tests for significance provide very similar 
results to those presented in Table 9. This may not be the 
case in the analysis of other data. 
 
4.2. Study 2 
 The data for this study are shown in Figure  3. 
When their analysis is carried out in the same way as that 
used for Study 1, similar results are obtained. Therefore 
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complete details are not provided. All methods failed to fit 
a sensible model to the data for ray 14 and the results for 
this drug combination are omitted. Method M2 also had 
difficulties estimating β for rays 7 and 10. Table 10 lists the 
logarithm to base 10 of the combination indices for the 
studied drug combinations, while Figure 5 shows their 95% 
confidence intervals. There is clear evidence for synergistic 
action of the drugs, and it appears to be largest at the drug 
ratio 49.65, the same ratio for which the synergy was 
largest in Study 1. Therefore, it seems the increase of the 
folic acid increases the strength of synergy between the two 
drugs, but does not appear to change the drug ratio at which 
the largest synergy occurs. However, this observation has 
to be checked experimentally. 
 
5. CONCLUSIONS 
 
 The results obtained during all stages of the 
statistical analysis are important for the understanding of 
the joint action of drugs. For example, the plots of the raw 
data (Figure 2 and Figure 3) help the motivation and 
understanding of the subsequent statistical analysis. The 
three compared methods showed consistent results. 
However, results obtained using method M1 ignored the 
heterogeneity of the variance of the response of interest, 
while those obtained with method M2 appear to 
underestimate the standard errors of the estimates of α and 
β for all drug combinations. Method M3 allows for all 
required estimates to be obtained using all data. A 
statistical test for the significance of the drug combinations 
is easy to carry out too.  
 
 The data that were used to compare methods M1, 
M2 and M3 have some limitations and therefore various 
possible complications in the statistical analysis of 
combination data could not be illustrated. For example, no 
information is available about which data are collected on 
the same plates and whether the data are collected on one 
or on different occasions. Often many compounds are 
studied and the variability due to using different plates and 
running experiments on different occasions cannot be 
ignored. Evidence that such variability exists in the two 
studies analysed in Section 4 is obvious from the 
comparison of the results for rays 3 and 8 which correspond 
to identical drug combinations tested on different batches 
of plates. There is not enough data in this experiment to 
obtain estimates of the variability due to this and other 
sources of variability. Naturally this leads to the need to 
carefully consider the experimental design for a 
combination study. However, this issue will be addressed in 
a separate publication. 
 

There are situations when the distribution of the 
response may not be approximately normal, e.g. the 
response could be a binary or categorical variable. In such 
cases, method M3 is still capable of producing correctly the 
required statistical analysis. This also applies to the case 
when one or all of the drugs are not full inhibitors. 
Furthermore, the approach that we recommend, based on 
programs written in SAS, is flexible and can be tailored to 
the specific features of any particular combination study. 
Alternative approaches based on software specifically 

developed for analysis of combination studies may be a 
useful tool in the hands of an experienced statistician but 
should not replace him or her.  
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