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1. ABSTRACT 

  
                 The design and analysis of drug combination 
studies continue to be an area requiring further 
methodological developments. Faessel et al. (1998) studied 
the joint effects of the combinations of trimetrexate (TMQ) 
and the GARFT inhibitor AG2034 to inhibit the growth of 
HCT-8 human ileocecal adenocarcinoma cells. Their 
experiments provide a rich data resource to validate the 
performance of new experimental design and analysis 
methods for future experiments. In this paper, we first re-
analyze the same data with a nonparametric model and 
briefly review the experimental design used in the original 
paper. By comparing the analysis results, we found that the 
fixed ratio design and the usage of the parametric model for 
estimating the interaction index are based on an assumption 
not supported by the data. We then show how the 
efficiency of the experiments would be improved had the 
maximal power experimental design based on uniform 
measures been used. The usage of the proposed maximal 
power experimental design is further supported by 
simulation studies. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2.   INTRODUCTION   
 
               Faessel et al. (1) studied the synergistic effect of the 
combination of trimetrexate (TMQ) and the GARFT inhibitor 
AG2034 to inhibit the growth of HCT-8 human ileocecal 
adenocarcinoma cells. Two experiments were carried out to 
test the interaction between the two drugs. The first experiment 
included 2.3µM folic acid in the medium, and the second 
experiment included 78µM. An absorbance measurement 
(ranging about 0.0-2.0) was recorded for each well as the 
treatment effect when the growth of HCT-8 human ileocecal 
adenocarcinoma cells was observed. Since the methods in the 
two experiments are the same, this paper focuses on the 
experiment with lower folic acid concentration (2.3µM) 
 

Eleven wells with five repetitions on each 
concentration were used for each drug alone. Faessel et al. (1) 
assumed that the single drug responses follow the Hill equatio 
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Figure 1. Dose-effect models for single drug 

 
 
Figure 2.  Plot of the combinations of TMQ and AG2034 
based on the ray design. 
 
where Econ is the control absorbance at a drug 
concentration of 0; D is the concentration of the drug used 
in the treatment, B is the extrapolated background at 
infinite drug concentration, ID50 is the median effective 
concentration of the drug and m is the slope parameter. 
Based only on the observations using no drugs or single 
drugs, the estimates are Econ = 1.199, B = 0.144 for both 
drugs. For TMQ alone ID50,TMQ = 1.253e−3, m1 = −2.124 
and for AG2034 alone ID50,AG2034 = 5.927e−3, m2 = −2.953. 
The fitted models and the observed data are plotted in 
Figure 1, with the vertical axes standing for percentages (in 
log scale) of the estimated Econ parameter. 
 

The combination experiments of TMQ and 
AG2034 were then implemented according to a ray design 
(multiple fixed ratios) Eleven ratios between the two drugs 
were chosen from 1:0.004 to 1:10, with 11 dilutions in each 
ratio group except that 22 dilutions were administered for 
the ratio d1:d2 = 1:5, where d1 and d2 are the doses of TMQ 
and AG2034 in a combination, respectively. Then, a total 
132 combinations were involved in the experiments. The 
deployment of the design points are shown in Figure  2.  
 

Figure 2 shows that most design points are 
located around the origin. Specifically, more than 72% of 
the 132 points are in the region: d1 < 0.007µM and d2 < 
0.034µM. Although we may have some pharmacological 
basis of the two inhibitors to speculate which dose ranges 

should be studied, it is not certain which dose region should 
be considered for the combination. This extremely 
unbalanced design might have put too much weight in the 
lower left corner of the dose region, leaving the points in 
the middle behaving like outliers in parameter estimation 
and resulting in unstable statistical analysis. Indeed, the 
fixed ratio design points were selected along the straight 
lines 

cdd += 12 5 ,     (2) 
 
with eleven choices of intercepts c, where 5 is the estimated 
slope. We find that points corresponding to large c values 
dominate the estimation of the interaction indices. 
Including or excluding these points, which comprise a very 
small proportion of the data set, leads to very different 
estimated dose responses. 

 
The fixed-ratio design has been widely 

employed in combination studies for its simplicity (2-4) 
In the fixed-ratio design of two drugs, the individual 
drugs are administered in amounts that keep the 
proportions of each drug constant. To investigate the 
joint action of two drugs at different ratios, Gennings et 
al. (5) proposed the ray design where a ray corresponds 
to one fixed ratio. The basic assumption for ray design is 
that synergism is a function of the proportions in the 
combination, i.e., one proportion may be markedly 
synergistic while another is simply additive (6) However, 
this assumption is violated in many drug combination 
studies, including (1), which reports the inhibition of 
growth of the HCT-8 cell line by TMQ and AG2034, as 
showed in Section 3 below. Furthermore, the potential 
non-constant relative potency of drugs is ignored in the 
fixed ratio design, which results in non-uniformly 
scattered combinations, and the power to detect 
synergism is thus undermined.  Thus, the fixed ratio 
design may miss an apparent interaction at a particular 
combination design point and thus may be inadequate for 
combination studies of multiple drugs. 

 
In this article, Section 3 analyzes the interaction 

index surface using the data from the combination study of 
TMQ and AG2034 to inhibit the growth of the HCT-8 cell 
line with a nonparametric model and demonstrates the 
consequences of the fixed-ratio experimental design used in 
the original paper. We then suggest the maximal power 
experimental design based on uniform measures to improve 
the efficiency of the experiments in Section 4. A simulation 
is followed to demonstrate the properties of the maximal 
power design. We conclude with a discussion in Section 5. 
  
3. NONPARAMETRIC ESTIMATION OF THE 
INTERACTION INDEX SURFACE 
 
               In the combination study of TMQ and AG2034 
against the HCT-8 cell line, 5 replicates at each of 
combination were administered and the whole data set 
consists of 660 observations with nonzero concentrations 
for both drugs. Faessel et al. (1) assumed a parametric 
nonlinear model for the interaction response surfac



Efficient design and nonparametric analysis of synergy 

260 

 
 
Figure 3. The estimated dose-response surface based on 
model (3) 

 
 
Figure 4. The estimated dose-response surface using the 
nonparametric thin plate spline 
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The synergism-antagonism parameter α is to be 
estimated from the observed data. The two drugs are 
considered additive if α = 0, synergistic (antagonistic) if 
α > 0 (α < 0) In this case, the synergism effect is not 
identifiable for each combination design point (d1, d2)  
Instead, it is a label on the whole data set depending only 
on the estimated value (and its standard deviation) of α. 
In Faessel et al. (1), it was estimated that α = 1.5 ± 0.25 
at 95% significance level, therefore the two drugs are 
significantly synergistic. 
 

For the given estimated paramet α̂  = 1.5,   The 
surface of the predicted responses generated from 
equation (3) is shown in Figure 3 with 480 observations 
after dropping those combinations with c > 0.1 as 
defined in equation (2) To compare with the parametric 
modeling, we use the nonparametric (thin plate spline) 
estimation where no specific form of dose response 

relationship is assumed (7) The fitted response E 
predicted with an arbitrary dose combination (d1, d2) is 
given b 
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on the choice of the kernel function φ and the 
coefficients q1, q2, q3, c1, …, cK admitting a best fit on 
the K observations (d1,i, d2,i, Ei), i = 1, …, K. Ruppert, 
Wand and Carroll (8) showed that this estimate can also 
be derived from the mixed-effect model, hence leading to 
a convenient formulation of the surface estimation. 
Given the same 480 observations in the form of (d1,i, d2,i, 
Ei), the fitted response surface is shown in Figure 4.  It is 
worth noting that the surface in Figure 4 asymptotes (or 
actually reaches zero); whereas, the parametric surface in 
Figure 3 does not. Then, there is a difference between the 
estimated dose-response surface based on the parametric 
approach and that based on non-parametric approach.  
Since there is a lack of rigorous goodness of fit test for 
the nonparametric and parametric models, we calculated 
that the ratio of the mean squares of the model to the 
residual mean squares for the parametric model is 2.35 
folds greater than that for the nonparametric model while 
the mean square error for the parametric model is 10% 
greater than that for the nonparametric model.  
 

Although the nonparametric response surface 
provides more a complete description on the joint action 
(9-10), the approach does not give any summary measure 
on drug interaction. The determination of drug 
interaction was based on the visualization of whether the 
contours of the response surface were concave up or 
down (11) Prichard and Shipman (12) proposed using the 
differences of the theoretical additive surface and the 
response surface to reveal regions of synergy and 
antagonism. However, the theoretical additive surface 
(12) ignores experimental variations of the single drug 
dose-effect curves and the assessment of drug interaction 
does not take into account the experimental variation in 
the combination study (e.g., no confidence surface is 
given)   Thus, we shall use the three-dimensional 
interaction index surface and its confidence region to 
assess drug interactions. Berenbaum (13) defined the 
interaction index  
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where DE,1 and DE,2 denote the doses of TMQ and AG2034 
alone yielding the same effect E, respectively, and (d1, d2) 
is the combination of concentrations of TMQ and AG2034 
that yields the same effect E. If τ =1, we say that the two 
drugs are additive, in Loewe's sense, at the combination 
(d1, d2) If τ < 1 (>1), the two drugs are synergistic 
(antagonistic) at the combination (d1, d2) Note that τ is a 
function of (d1, d2), say τ = h (d1, d2)  Usually τ varies at 
different combinations. 
 

Since the parameters in equation (1) are 
estimated for both TMQ and AG2034, for a given effect
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Figure 5. The nonparametric interaction index surface 
estimated based on the complete dataset 

 
Figure 6. Close-up look of the interaction index surface in 
the small region of TMQ < 0.007µM and AG2034 < 
0.034µM in Figure 5. 
 
level E, the dose DE yielding the effect level E is obtained 
by 
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Thus, using equation (5), we can calculate the 

interaction index iτ  for each combination (d1,i, d2,i) 
according to the observation in the form (d1,i, d2,i, Ei), i = 1, 
…, 660.  Fang et al. (14) developed a method to directly 
estimate the interaction index surface nonparametrically 
using thin plate splines. Sühnel (15) also discussed a 
similar concept of response surface for interaction. 

  
We first use the method proposed by Fang et al. 

(14) to estimate the interaction index surface h (d1, d2) 

based on  the complete dataset of 660 observations. The 
contour plot of the fitted surface is shown in Figure  5. 
Green regions in this contour plot indicate synergism, and 
red regions indicate antagonism between the two drugs. 
The darkness of the colors corresponds to the intensity of 
the interactions. The yellow regions consist of those dose 
combinations with index values around 1. Particularly 
the solid curves in the yellow region indicate the 
combinations with exact additivity (say, τ =1), and the 
dotted curves outline the 95% confidence intervals 
(regions) of additivity. Remarkably the estimated indices 
on the 660 observed combinations have a maximum of 
12.71, while the maximum value of the fitted surface is 
about 55.47. This discrepancy combined with the 
observation of extremely large confidence regions 
suggests that the unbalanced experimental design results 
in large variations in the interaction index surface 
estimations. 

 
This observation is consistent with the model 

defined in equation (4) The fitted surface is smoothed out 
by a kernel function applied to the Euclidean distances 
between the design points (d1,i, d2,i) and the dose 
combination (d1, d2) If there are some design points lying 
far away from the others, the spline estimates around 
these outliers will be completely dominated by the 
closest design point. The errors (variations) in this 
observation will be inherited by all the points in the 
neighborhood of the outlier and never be diminished with 
the increasing sample size. In this case the interaction 
between very large doses is not very interesting since 
they are so sparsely deployed. Figure 6 thus shows the 
amplified version of Figure 5 in the smaller dose region 
of interest. 

 
 The data generated according to the fixed-ratio 

experimental design manifested a significant negative 
effect on the estimation of interaction index surface. If 
we drop those doses with c = 2.8 as defined in equation 
(2), the fitted interaction index surface from the 600 
remaining observations is very different, as shown in 
Figure 7. The maximal absolute difference between the 
two fitted surfaces shown in Figure 6 and Figure 7 is 
0.2456, while the biggest index value in Figure 6 is 
0.6165. Even further, dropping two lines of large doses 
with c = 2.8 and c = 0.34, the index surface generated 
from the 540 remaining observations is shown in Figure 
8. The maximal absolute difference between the surface 
from the complete data set (660 observations) and that 
from 540 observations is 0.3461. Dropping those highly 
scattered design points of high doses, we have a more accurate 
nonparametric estimation of the interaction index surface. 
Hence we can proceed to have a posterior investigation on the 
validity of the original experimental design. 

 
In Faessel et al. (1), it was assumed that the 

interaction index values are constants along the straight 
lines with fixed ratios. Without this assumption, the design 
along very few straight lines is groundless. If the fitted 
response surface is a good approximate to the unknown 
true model, a test can be readily derived to assess if this 
assumption is valid. Figure 9 shows the nonparametric 
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Figure 7. The nonparametric interaction index surface 
estimated based on 600 observations. 
 

 
Figure 8. The nonparametric interaction index surface 
estimated based on 540 observations. 
 
interaction index values along certain fixed dose ratios 
d1:d2 versus the corresponding TMQ doses. 
 

It is easy to see from these plots that the 
interaction indices are far away from constant functions. 
An anonymous referee also brought to the authors' attention 
that the index is supposedly close to one when virtually 
only one of the two drugs is administered (i.e. when the 
ratio d1:d2 is extremely large or small and the dose effect is 
virtually contributed by one drug only) However, the thin 
plate splines model is highly affected by the unbalanced 
deployment of the design points. When we are only 
focusing on reanalyzing the original data and no new 
experiments can be carried out, we can simply point out 
that the experiment results does not support the assumption  
needed for the fixed ratio design. New data is needed to 
control the effect of the variations in each observation if 

one wishes to have the fitted response surface as a better 
approximate to the true shape of the underlying model. This 
observation makes the design of fixed ratios open to 
questions. We may ask obviously, if there is a more 
efficient design that does not depend on the assumption of 
fixed ratio effects. 
 
4. PERFORMANCE OF THE MAXIMAL POWER 
DESIGN 
 

We pointed out in section 3 that the experimental 
design used in the original paper is not only very inefficient 
but also resulted in unstable model estimation. In this 
section, we propose a new experimental design based on 
uniform measures. Based on the dose-responses of the 
single drugs, Tan et al. (16) and Fang et al. (14) proposed 
the maximal power design for combination studies. 
Recently, Shiozawa et al. (17) utilized the methodology 
and computer program to identify synergistic combinations 
of suberoylanilide hydroxamic acid combined with cytosine 
arabinoside and etoposide for treating acute leukemias. 
This design has been shown to maximize the minimum 
power of the statistical test (14, 16) to detect departures 
from additive action, and at the same time minimize the 
maximum bias due to lack of fit among all potential 
departures of a given meaningful magnitude.  

 
Given that the ultimate goal of a preclinical 

combination study is to translate its results to the clinic, we 
focus on studying those doses yielding certain levels of 
effect (e.g., 20% -80% treatment effects) Based on the 
estimated dose-response model for single drugs, equation 
(1), the dose ranges are:  from 7.043e−4 to 3.709e−3 (µM) 
for TMQ and from 3.916e−3 to 1.294e−2 (µM) for 
AG2034. In these dose ranges, the single dose-responses 
can be fitted by the log-linear models 
 

)log(806.39704.207 1DE −−=      and     
)log(07.5747.237 2DE −−=           (7) 

 
for TMQ and AG2034, respectively, where E is 100 × 
viability (% of control), and D1 and D2 are the doses of 
TMQ and AG2034 respectively. The potency of AG2034 
relative to TMQ is 4337.0

22 11255.2)( DD =ρ , which is non-
constant and depends on doses. The predicted additive 
model at the combination (d1, d2) is 
 

)),(log(806.39704.207),( 221121 ddddddE ψ+−−= , (8)                                      

 
where ψ (d1, d2) is determined by 

4337.0
2121

1
21 )),((11255.2),( dddddd += −ψψ . 

 
To obtain the maximal power design for testing 

the joint action of TMQ and AG2034, the dose range is 
chosen such that the dose effect (the viability) is from 20% 
to 80% for TMQ. Then, the total dose ranges from 
7.043e−4 to 3.709e−3 (µM) in TMQ. The pooled variance 
from the two single drug experiments is 1577.806. For a 
meaningful difference η of 20% (the viability) and 5 
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Figure 9.  Estimated nonparametric interaction index curves along the lines of fixed ratios. 
 
replications for each mixture, with type I error rate 0.05 and 
power 0.80, we need to study 19 combinations in the 
experiment in order to detect synergy/antagonism in the 
combination of TMQ and AG2034. Figure 10 shows the 19 
combinations following the algorithms provided in (14) 
Here the red crosses are the proposed new design points 
(concentrations) and the blue circles are those used in the 
original experiment. 

Although the power to detect synergism is 
maximized and proved statistically, we further demonstrate 
the efficiency of the proposed design by a simulation 
experiment. Since the dose effects from 20% to 80% are of 
interests, we will focus on the total dose ranges from 
7.043e−4 to 3.709e−3 (µM) in TMQ. We assume that the 
``true'' model in this dose range is given by the 
nonparametric thin plate spline estimation (Figure 4). With  
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Figure 10. The plot of 19 combination design points based 
on the maximal power design. 
 

 
Figure 11. The nonparametric interaction index surface 
estimated based on the maximal power design. 
 

 
Figure 12. The nonparametric interaction index surface 
estimated based on 160 observations by the ray design. 
 

the estimated response surface and standard deviations, we 
generate 5 response values at each combination and a set of 
95 response values. Using the method proposed by Fang et 
al. (14), we obtain a new estimation of the interaction index 
surface and the corresponding contour plot of this index 
surface is shown in Figure  11.  Within the experimental 
domain that consists of the polygon with the vertices (0, 
3.916e−3), (0, 1.294e−2), (7.043e−4, 0) and (3.709e−3, 0), 
there are only 160 observations, about 24% of the original 
design, falling into this region of practical importance. 
Figure 12 shows the contour plot of the estimated 
interaction index surface based on those 160 observations. 
The maximal absolute difference between the two surfaces 
in Figures 11 and 12 is 0.008675. The maximal power 
design with only 95 observations captures almost all the 
information contained in the experiment of 160 
observations in the original design. Thus, the maximal 
power design is much (40%) more efficient than the fixed-
ratio design, which is based on the assumption of constant 
interaction index values along straight lines of fixed ratios. 
  
5. DISCUSSION 
 
                The study of the joint action of drugs has become 
important in drug development due to its potential to 
increase therapeutic index. The goal is to find which 
combinations are additive, synergistic or antagonistic. To 
assess drug interaction, an efficient and effective design for 
combination experiments is very important to obtain more 
information on the dose-response surface.   Through the re-
analysis of the trimetrexate (TMQ) and the GARFT 
inhibitor AG2034 combination, we found that data obtained 
based on the original experimental design resulted in 
unstable analysis of the interaction and reduced 
reproducibility.  
 

We took advantages of recent developments in 
the design of combination studies, in particular, the 
maximal power design which is derived by means of 
uniform measures based on a general nonparametric 
statistical framework where the joint effect model does not 
depend on knowing the true parametric form. This design 
maximizes the minimum power of the statistical test to 
detect any departures from additive action, and at the same 
time minimizes the maximum bias due to lack of fit among 
all potential departures of a given meaningful magnitude. 
We generated the design and obtained the data from the 
best fitted dose-response surface. Since the join effect 
model used in the design is nonparametric, the design does 
not depend on knowing the true parameters describing the 
interaction in the model. Subsequent data analysis of the 
data generated by the maximal power design demonstrates 
the necessity of the design in estimating the dose-response 
adequately and the power to detect synergism. The 
simulation study based on Faessel's dataset further verifies 
the optimality of the proposed design. 
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