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1. ABSTRACT 
 

The purpose of this study was to identify and 
validate novel prognostic biomarkers in human 
hepatocellular carcinoma (HCC). We analyzed gene 
expression profiles not only between 33 HCCs and their 
corresponding noncancerous liver tissues, but also between 
25 HCCs and pooled normal liver tissues using cDNA 
microarrays containing 12800 genes. Functional analysis of 
differentially expressed genes involved in HCC 
carcinogenesis and tumor progression revealed that up-
regulated and down-regulated genes are mainly associated 
with cell cycle and immune response, respectively. We 
detected two regions of cytogenetic changes only in poorly-
differentiated HCCs using the expression data. We 
identified a 9-gene expression signature, which was able to 
predict differentiation degree and survival of HCC samples. 
Among the 9 most discriminatory genes, minichromosome 
maintenance protein 2 (MCM2), a significantly up-
regulated gene involved in cell cycle pathway, was selected 
for further analysis. Overexpression of MCM2 protein 
related to poor-differentiation in HCC was validated using 
tissue microarray-based immunohistochemistry containing 
96 HCCs. Our studies show that the 9-gene expression 
signature may serve as promising prognostic biomarkers 
involved in hepatocarcinogenesis and tumor progression. 

 
 
 
 
 
 
2. INTRODUCTION 
 

Human hepatocellular carcinoma (HCC) is one of 
the most common cancers and a leading cause of death 
worldwide. Currently, there is no effective therapy for most 
HCC patients. It is critical to identify and validate novel 
anticancer targets in HCC. Multiple factors have been 
reported to be involved in hepatocarcinogenesis (1-3), 
including exposure to aflatoxin B1 (AFB1), chronic viral 
hepatitis and cirrhosis. Progress in basic scientific research 
has led to a better understanding of molecular mechanism 
responsible for HCC (1-4). For example, genomic 
alterations (1, 2) (5, 6) and many deregulated genes such as 
HBx, TP53, IGF2, CDKN2A (p16INK4A), RB1, PTEN, 
DLC1, MMP, APC, CTNNB1, and AXIN1 (1-4, 7) may play 
roles in development of HCC. Biological pathways such as 
MAPK/ERK, ras/raf/MAPK, NFκ-B, ERBB2/NEU, 
JAK/STAT, and Wnt/β-catenin signal transduction 
pathways (1) have been found to be altered in HCC. 
However, these genetic changes do not precisely reflect 
biological nature of cancer. 

 
It is generally accepted that DNA microarrays 

and tissue microarray (TMA) are useful tools for 
identification and validation of biomarkers in disease 
research. In recent years, DNA microarrays have been used 
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to identify genes involved in various diseases including 
HCC (8-32). To apply microarray data to clinical use, it is 
necessary to identify a small set of genes which can be used 
as clinical biomarkers. It is useful to combine DNA 
microarrays with TMA for cancer profiling. TMA has 
gained increased popularity in identifying proteins involved 
in disease diagnosis and therapy (13, 16, 22, 33-42). 

 
In this study, we systematically combined cDNA 

microarrays and TMA analyses to identify and validate 
novel prognostic biomarkers involved in HCC 
carcinogenesis and tumor progression. Our findings may 
help further discover genetic mechanism of HCC, and 
provide clues for identifying novel prognostic, diagnostic 
and therapeutic targets. 

 
3. MATERIALS AND METHODS 
 
3.1. Tissue samples and RNA isolation 

All the 58 primary HCC samples and 
noncancerous liver tissues used in cDNA microarray 
analysis were obtained with informed consent from patients 
who underwent curative resection at different Chinese 
hospitals in Guangxi and Shanghai, with full institutional 
review board approval. They are predominantly male and 
hepatitis B surface antigen (HBsAg)-positive. All liver 
tissues were verified by pathological examination. HCC 
samples were histopathologically diagnosed following 
Edmonson’s classification (43). Normal liver tissues were 
obtained from 5 healthy individuals who died from 
accidents. Total RNA was extracted from each sample 
using TRIzol (GibcoBRL, Grand Island, NY) following 
manufacturer’s instructions. 

 
3.2. cDNA microarrays 

Fabrication of cDNA microarray containing 
12800 genes, probe preparation, microarray hybridization, 
image detection and data normalization were carried out as 
previously described (10, 11). 

 
For convenience of comparison, ratios of Cy5 

(tumor) to Cy3 (nontumor) were log2-transformed and then 
converted back to fold change. Differentially expressed 
(DE) genes in HCC were selected according to criteria of 
P<0.05 by one-way analysis of variance (ANOVA) test 
(44), false discovery rate (FDR)≤5% (45), and fold 
change≥1.5. Among these genes, we identified 
discriminatory genes in poorly-differentiated HCCs (HCCs 
of grade III and IV) relative to well-differentiated HCCs 
(HCCs of grade I and II) according to criteria of P<0.05 by 
one-way ANOVA F test and FDR≤5% (44-47), which 
might be used to discriminate poorly-differentiated HCCs 
from well-differentiated HCCs. To perform Fisher 
discriminant analysis (FDA) classification (46-48), we 
selected the most discriminatory genes which were 
significantly up-regulated in poorly-differentiated HCCs 
relative to well-differentiated HCCs, which were selected 
based on criteria of P<0.01 by one-way ANOVA F test, 
FDR≤1%, fold change≥1.75, and misclassification rate by 
leave-one-out cross-validation (LOOCV) (44-48). We used 
permutation test (10000 permutations) to assess 
significance of our LOOCV misclassification rate, and 

P<0.05 was considered significant (49, 50). Further details 
of selection of most discriminatory genes based on 
ANOVA and LOOCV, and FDA classification were 
described in previous reports (44-50). Hierarchical 
clustering analysis was performed using Cluster and 
TreeView softwares (51). 

 
We used EASE software (available at 

http://david.abcc.ncifcrf.gov/ease/ease.jsp) to assign DE 
genes to “Gene Ontology (GO) Biological Process” 
categories and test statistically (EASE Score, modified 
Fisher’s exact test) for significant overrepresentation of 
identified genes within each category (52, 53). EASE 
Score<0.05 was considered significant. 

 
Pathway analysis was performed using 

GenMAPP 2.0 software (available at 
http://www.genmapp.org) (54). P<0.05 calculated by 
MAPPFinder was considered significant. 

 
To identify regions of frequent cytogenetic 

aberrations in HCCs using gene-expression microarray 
data, locally un-weighted smoothing cytogenetic 
aberrations prediction (LS-CAP) analysis was performed 
according to our previous report (55). Statistically 
significant standard was set up as Z=1.96 (P=0.05), and 
regions with Z≥1.96 are identified as regional gene 
expression biases. 

 
Full cDNA microarray data followed MIAME 

guidelines and will be available in NCBI’s Gene 
Expression Omnibus (GEO) database 
(http://www.ncbi.nlm.nih.gov/geo/. Accession number: 
GSE4108). 

 
3.3. Tissue microarray-based immunohistochemistry 

MCM2 protein expression in HCC was analyzed 
using TMA from Cybrdi (Gaithersburg, MD) containing 96 
HCCs, 23 cirrhosis liver tissues and 24 normal liver tissues, 
which were spotted in two separate arrays. All liver tissues 
were verified by pathological examination. 
Immunohistochemistry analysis was performed using the 
Elivision plus two-step System (Dako, Carpinteria, CA) 
following manufacturer’s instructions. Slides were 
incubated with primary anti-human MCM2 mouse 
monoclonal antibody (1:25, Abcam, Cambridge, UK). 
Diaminobenzidine and hematoxylin were used as 
chromogen and counterstain, respectively. Dark brown 
granules in nuclei were taken as positive reaction. 

 
3.4. Statistical analysis 

In cDNA microarray, Kaplan-Meier survival 
analysis was used to compare patient survival. Statistical P 
value was generated by log-rank test. Survival time was 
constructed from diagnosis date until death date or last 
follow-up. Patients known to be alive at their last follow-up 
were censored. 

 
In TMA, chi-square test was used to assess 

significance of differences of MCM2 protein expression 
among HCCs with different clinicopathologic 
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characteristics, and among HCCs, cirrhosis liver tissues, 
and normal liver tissues. 

 
All analyses were performed using SPSS 12.0 

software (Chicago, IL). Ps<0.05 were considered 
significant. 

 
4. RESULTS 
 
4.1. Reproducibility of cDNA microarray 

To evaluate reproducibility of cDNA microarray, 
duplicate microarray experiments were conducted. 
Correlation coefficient of Cy5/Cy3 ratios between two 
replicates was 0.94, indicating that our experiments are 
highly consistent as proved by our previous reports (11, 
56). 

 
4.2. Identification and validation of differentially 
expressed genes in HCC 

To minimize bias from different reference 
controls, two sets of patients were analyzed using cDNA 
microarrays. Set one: we compared gene expression 
profiles between 33 HCCs and their corresponding 
noncancerous liver tissues; set two: we compared gene 
expression profiles between 25 HCCs and pooled normal 
liver tissues. We identified 642 and 1848 DE genes (P<0.05 
by ANOVA; FDR≤5%; ≥1.5-fold) in two sets of patients, 
respectively, and intersection between two sets was 416 DE 
genes in HCC, in which 145 genes were up-regulated and 
271 genes were down-regulated. Among 416 DE genes, 
226 genes have not been reported in HCC before. 

 
To confirm microarray result, we randomly 

selected two up-regulated genes (SPP1 and DAP3) and two 
down-regulated genes (ALDH2 and ADH4) to examine 
their expression levels using slot blot with 24 pairs of 
HCCs among 33 HCCs used for microarray analysis. 
Results of slot blot showed changes in gene expression 
consistent with microarray data. 

 
4.3. Identification of a gene expression signature 
predicting differentiation degree and survival of HCC 
samples 

Hierarchical clustering was performed using 416 
DE genes to evaluate relationships of gene expression 
patterns and clinical phenotypes, such as sex, age, hepatitis 
virus infection, tumor stage, tumor size, tumor number, 
venous invasion, encapsulation, metastasis and 
differentiation degree. Except for differentiation degree, 
patients dendrograms obtained by this evaluation showed 
no placing related to any of the other clinical phenotypes. 

 
To discriminate poorly-differentiated HCCs from 

well-differentiated HCCs, we identified 231 and 248 
discriminatory genes in poorly-differentiated HCCs relative 
to well-differentiated HCCs in 33 HCCs and 25 HCCs sets, 
respectively (P<0.05 by one-way ANOVA F test; 
FDR≤5%), and 160 intersection genes were found in both 
sets, in which 65 genes were up-regulated and 95 genes 
were down-regulated. Among 160 discriminatory genes, 
149 genes have not been reported in poorly-differentiated 
HCC before. 

To decrease complexity, we selected 9 most 
discriminatory genes (MCM2, CCNB1, SPP1, CDC7, 
SMC4L1, BIRC5, ASNS, CCT6A, and KNTC1) which were 
significantly up-regulated in poorly-differentiated HCCs 
relative to well-differentiated HCCs (≥1.75-fold; P<0.01 by 
one-way ANOVA F test; FDR≤1%; misclassification rate 
calculated by LOOCV) to perform FDA. Gene expression 
signature based on less than the 9 discriminatory genes 
decreased discriminatory accuracy, and addition of more 
genes to the 9-gene signature provided no additional 
discriminated value. HCC samples were found to be 
divided into two distinct groups related to differentiation 
degree using hierarchical clustering analysis with 160 
discriminatory genes (Figure 1A) and 9 most 
discriminatory genes (Figure 1B), respectively. 

 
LOOCV was used to comfirm and evaluate 

effectiveness of the 9-gene expression signature, and class 
prediction accuracy resulted in 88% and 94% correct 
assignments in 25 HCCs and 33 HCCs sets, respectively 
(P<0.0005 and P<0.01 as measured by permutation testing 
in 25 HCCs and 33 HCCs sets, respectively). To further 
validate predictive performance, we used FDA 
classification with the 9-gene expression signature to 
reciprocally predict differentiation degree of 33 HCCs and 
25 HCCs, in which poorly-differentiated HCCs and well-
differentiated HCCs were separated in the FDA projection 
defined discriminant axes of the 9 most discriminatory 
genes (Figure 1C and D). Using the 9-gene expression 
signature in 25 HCCs to predict 33 HCCs, 12 of 17 patients 
were correctly classified as poorly-differentiated HCCs 
(71%), and 16 of 16 patients were correctly classified as 
well-differentiated HCCs (100%), with overall accuracy of 
85% (Figure 1C). Using the 9-gene expression signature in 
33 HCCs to predict 25 HCCs, 14 of 15 patients were 
correctly classified as poorly-differentiated HCCs (93%) 
and 8 of 10 patients were correctly classified as well-
differentiated HCCs (80%), with overall accuracy of 88% 
(Figure 1D). These results indicated that the 9-gene 
expression signature was able to predict differentiation 
degree of HCC samples. 

 
Kaplan–Meier curves suggested significantly 

shorter survival among poorly-differentiated HCC patients 
than among well-differentiated HCC patients (Figure 1E-
G). Notably, the difference could be more significant in 
subdivision based on the 9-gene expression signature 
(P<0.01, Figure 1F and G) than subdivision based on 
clinical and histopathological criteria (P=0.0205, Figure 
1E). 

 
4.4. Functional analysis of Gene Ontology biological 
process categories and pathways involved in HCC 
carcinogenesis and tumor progression 

Using EASE analysis, we identified 
overrepresented GO biological process categories (EASE 
score<0.05) with 416 DE genes in HCCs relative to 
nontumor liver tissues and 160 discriminatory genes in 
poorly-differentiated HCCs relative to well-differentiated 
HCCs, respectively (Table 1). Among these themes, we 
identified some important categories which have not been 
reported before, such as category of response to external 
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Figure 1. Identification of a gene expression signature predicting differentiation degree and survival of HCC samples. (A), 
hierachical clustering analysis using the common 160 discriminatory genes in poorly-differentiated HCCs relative to well-
differentiated HCCs (P<0.05 with threshold (F0.05(1,31)=4.17 in 33 HCCs and F0.05(1,23)=4.28 in 25 HCCs, respectively) by 
one-way ANOVA F test; FDR≤5%). Columns represent tumor samples; rows represent genes. Changes in relative expression are 
presented in color patterns. Red, overexpression; green, underexpression; black, unchanged expression. (B), hierachical clustering 
analysis using the 9 most discriminatory genes which were significantly up-regulated in poorly-differentiated HCCs relative to 
well-differentiated HCCs (≥1.75-fold; P<0.01 with threshold (F0.01(1,31)=7.56 in 33 HCCs and F0.01(1,23)=7.88 in 25 HCCs, 
respectively) by one-way ANOVA F test; FDR≤1%; misclassification rate of 6% and 12% calculated by leave-one-out cross-
validation (LOOCV) in 33 HCCs and 25 HCCs sets, respectively (P<0.01 and P<0.0005 as measured by permutation testing in 
33 HCCs and 25 HCCs sets, respectively)). Columns represent tumor samples; rows represent genes. Changes in relative 
expression are presented in color patterns. Red, overexpression; green, underexpression; black, unchanged expression. (C-D), 
validation of predictive performance using Fisher discriminant analysis (FDA) classification with the 9-gene expression signature 
to reciprocally predict the differentiation degree of 33 HCCs and 25 HCCs. Poorly-differentiated HCCs and well-differentiated 
HCCs were separated in the FDA projection defined discriminant axes of the 9 most discriminatory genes. Each point represents 
a HCC sample. Poorly-differentiated samples yielded positive values; well-differentiated samples yielded negative values. (C), 
prediction of 33 HCCs using the 9-gene expression signature in 25 HCCs. 12 of 17 poorly-differentiated HCCs (71%) and 16 of 
16 well-differentiated HCCs (100%) were classified correctly. (D), prediction of 25 HCCs using the 9-gene expression signature 
in 33 HCCs. 14 of 15 poorly-differentiated HCCs (93%) and 8 of 10 well-differentiated HCCs (80%) were classified correctly. 
(E-G), Kaplan-Meier survival curves in all the 58 HCC patients after subdivision into two subgroups (well-differentiated HCCs 
and poorly-differentiated HCCs) based on clinical and histopathological criteria(E), the 9-gene expression signature in 25 
HCCs(F), and the 9-gene expression signature in 33 HCCs(G), respectively. P values were calculated by log-rank test and the 
differences between groups were significant (P<0.05). +, time of censorship. 
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Table 1. GO biological process categories overrepresented by differentially expressed genes involved in HCC carcinogenesis and 
tumor progression (EASE score<0.05) 

Gene category EASE score No. of up-regulated genes Gene category EASE score No. of down-regulated 
genes 

In HCCs relative to nontumor liver tissues 
cell cycle 0.0000 19 complement activation 0.0000 10 
cell proliferation 0.0002 22 blood coagulation 0.0000 12 
DNA replication and chromosome 
cycle 

0.0002 9 cell ion homeostasis 0.0011 8 

cell growth and death 0.0033 8 immune response 0.0019 26 
DNA metabolism 0.0067 12 response to external stimulus 0.0020 42 
cell growth and/or maintenance 0.0073 45 regulation of blood pressure 0.0022 5 
cell-matrix adhesion 0.0160 3 metabolism 0.0044 150 
pathogenic Invasion 0.0309 4 signal transduction 0.0350 6 
protein metabolism 0.0351 30    
In poorly-differentiated HCCs relative to well-differentiated HCCs 
cell cycle 0.0000 14 complement activation 0.0000 6 
cell proliferation 0.0000 16 blood coagulation 0.0000 7 
cell growth and/or maintenance 0.0016 25 immune response 0.0003 15 
DNA replication and chromosome 
cycle 

0.0054 5 response to external stimulus 0.0046 19 

protein metabolism 0.0136 17 metabolism 0.0377 56 
DNA metabolism 0.0154 7    
cell growth and death 0.0160 5    

 
stimulus involved in HCC development, and categories 
of DNA replication and chromosome cycle, complement 
activation, blood coagulation, and response to external 
stimulus involved in poorly-differentiated HCC 
progression. The categories in poorly-differentiated 
HCCs relative to well-differentiated HCCs were of 
particular interest because they reflect groups of genes 
correlated with tumor progression and poor prognosis. 

 
GenMAPP 2.0 software was used to identify 

biological pathways with 416 DE genes and 160 
discriminatory genes, respectively. Genes in three major 
pathways (Cell_cycle, 
Complement_and_Coagulation_Cascades, and 
Fatty_Acid_Degradation) were significantly altered in 
HCCs relative to nontumor liver tissues (P<0.05) 
(Figure 2A). Genes in two major pathways (Cell_cycle, 
and Complement_and_Coagulation_Cascades) were 
significantly altered in poorly-differentiated HCCs 
relative to well-differentiated HCCs (P<0.05) (Figure 
2B). Notably, seven cell cycle-related genes up-
regulated in HCC (MCM2, CCNB1, CCNB2, CDC7, 
CDC25C, BUB1B, and MAD2L1) were more 
significantly up-regulated in poorly-differentiated 
HCCs. They play important roles in regulating different 
phase progression of cell cycle -- MCM2 and CDC7 in S 
phase; CCNB1, CCNB2 and CDC25C in G2 phase; 
BUB1B and MAD2L1 in M phase. MCM2 is 
phosphorylated, and regulated by CDC7 (57). CDC25C 
directs dephosphorylation of CCNB-bound CDC2 and 
triggers entry into mitosis. BUB1B and MAD2L1 act 
cooperatively to prevent premature sister chromatids 
separation by directly inhibiting anaphase-promoting 
complex. 

 
GO and pathway analysis of DE genes 

involved in both HCC carcinogenesis and tumor 
progression revealed that up-regulated genes are mainly 
associated with cell cycle and cell proliferation, while 
down-regulated genes are mainly associated with 
immune response. 

4.5. Cytogenetic aberrations analysis 
Cytogenetic aberrations, such as amplification 

and deletion, could be identified precisely using locally 
un-weighted smoothing cytogenetic aberrations 
prediction (LS-CAP) with gene-expression microarray 
data (55). With span being 250 genes and fold change 
being 1.5, 12 regions of frequent cytogenetic changes 
were identified in HCCs (Z≥1.96), including 7 gains 
(1q, 6p, 7p, 7q, 8q, 17q and 20q) and 5 losses (3p, 4q, 
6p, 11p and 11q). The Z statistic for cytogenetic 
changes and precise localizations of cytogenetic 
aberrations are shown in Figure 3. Notably, gains of 
chromosome 7p11.1-p22.3 and 8q24.1-q24.3 were 
identified only in poorly-differentiated HCCs, but not in 
well-differentiated HCCs. In addition, cytogenetic 
aberrations and candidate genes were analyzed with the 
same dataset using LS-CAP. 

 
4.6. Validation of MCM2 protein overexpression related 
to poor-differentiation in HCC 

Among the 9 most discriminatory genes, two up-
regulated genes involved in cell cycle pathway (MCM2 and 
CCNB1) were significantly up-regulated in at least 50% 
HCCs in cDNA microarray. Validation of CCNB1 protein 
overexpression in HCC using TMA has been reported (33), 
whereas analysis of MCM2 protein in HCC has not been 
demonstrated before. Here, we analyzed MCM2 protein 
expression in HCC with TMA-based 
immunohistochemistry for further investigation (Figure 
4A). MCM2 protein expression levels were significantly 
higher in HCCs (57% positive, 55 of 96 HCCs, P<0.001) 
(Figure 4B) than in cirrhosis liver tissues (35% positive, 8 
of 23 tissues) and normal liver tissues (13% positive, 3 of 
24 tissues) (Figure 4C). Moreover, MCM2 protein 
expression levels, which showed a significant positive 
association with histopathological grade, were significantly 
higher in poorly-differentiated HCCs (HCCs of grade III) 
(68% positive, 32 of 47 cases, P=0.036) than in well-
differentiated HCCs (HCCs of grade I and II) (47% 
positive, 23 of 49 cases). These results indicated that 
overexpression of MCM2 protein related to poor-
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Figure 2. GenMAPP analysis of pathways involved in HCC carcinogenesis and tumor progression. Our expression data are 
integrated into GenMAPP pathways. Color-coding of genes is as follows: Red, overexpression; green, underexpression; Gray, 
neither of the above criteria met; White, gene not found on the array. (A), three major pathways significantly altered in HCCs 
relative to nontumor liver tissues: Cell_cycle, Complement_and_Coagulation_Cascades, and Fatty_Acid_Degradation (P<0.05). 
(B), two major pathways significantly altered in poorly-differentiated HCCs relative to well-differentiated HCCs: Cell_cycle, and 
Complement_and_Coagulation_Cascades (P<0.05). 
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Figure 3. Frequent cytogenetic aberrations identified using LS-CAP analysis (Z≥1.96). 12 regions of cytogenetic aberrations 
identified HCCs. (A), Z statistic for frequent gain of chromosomes. (B), Z statistic for frequent loss of chromosomes. (C), precise 
localizations of cytogenetic aberrations. Red indicates gain of chromosomes; green indicates loss of chromosomes. 

 
differentiation might be involved in HCC carcinogenesis 
and tumor progression. 

 
5. DISCUSSION 
 

We analyzed gene expression profiles in HCC 
using cDNA microarrays. Selection of appropriate control 
is very important for microarray study (58). The debatable 
issue is whether corresponding noncancerous liver tissues 
(18) or pooled normal liver tissues (11) should be used. 
Influence of individual variations can be excluded using 
corresponding noncancerous liver tissues; however, 
noncancerous tissues may be genetically altered. Clustering 
analysis among multiple samples can be facilitated using 
pooled normal liver tissues; yet influence of individual 
variations can’t be completely excluded with limited 
normal tissues. Thus, combination of the two strategies can 
help minimize disadvantages of control selection. Here, we 
analyzed gene expression profiles not only between 33 
HCCs and their corresponding noncancerous liver tissues, 
but also between 25 HCCs and pooled normal liver tissues. 
416 common DE genes in HCC were identified in both data 
sets, indicating consistent results from the two references. 

 
We used slot blot to validate four DE genes in 

HCC, two up-regulated genes (SPP1 and DAP3) and two 

down-regulated genes (ALDH2 and ADH4). Osteopontin 
(SPP1) was up-regulated in HCC, especially in poorly-
differentiated HCC. SPP1 is a potential diagnostic marker 
because it can be found in all bodily fluids and it plays a 
role in anti-apoptosis, cell adhesion and migration. It has 
been reported that SPP1 may support metastasis in HCC 
(9). Interestingly, we found that death associated protein 3 
(DAP3) was up-regulated in HCC. DAP3 overexpression 
has been reported in invasive glioblastoma (59), which has 
not been reported in HCC before. Although function of full-
length DAP3 protein has been described as induction of 
apoptosis, NH(2)-terminal fragment can act in a negative 
way resulting in protection from apoptosis. Thus, DAP3 
may confer apoptosis-resistance in HCC. Moreover, reason 
for DAP3 overexpression may be that it maps to frequent 
cytogenetic gain of 1q21-q22 in HCC. Both down-
regulated genes, aldehyde dehydrogenase 2 (ALDH2) and 
alcohol dehydrogenase 4 (ADH4), are associated with 
alcohol metabolism, which are consistent with previous 
reports that detoxification related genes are always down-
regulated in HCC (18). 

 
We identified a gene expression signature based 

on 9 most discriminatory genes (MCM2, CCNB1, SPP1, 
CDC7, SMC4L1, BIRC5, ASNS, CCT6A, and KNTC1), 
which was able to predict differentiation degree of HCC 
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Figure 4. Expression of MCM2 protein in HCC using tissue microarray-based immunohistochemistry analysis. (A), 
photomicrograph of HCC tissue microarray illustrating the array containing numerous small 1.5-mm cores of tissues. (B), 
representative HCC tissue showing strong nuclear staining of MCM2 in cancer cells (arrows). (C), representative normal liver 
tissue, where MCM2 staining is undetectable. (B and C: magnification, х200) 

 
samples. MCM2, CCNB1, CDC7, SMC4L1, BIRC5, and 
KNTC1 play roles in cell proliferation and cell cycle; while 
SPP1 and BIRC5 play roles in cell proliferation and anti-
apoptosis. For validation of predictive performance, we 
successfully used the 9-gene expression signature to 
reciprocally predict the differentiation degree of 33 HCCs 
and 25 HCCs. The 9-gene expression signature could be 
used to help classification and prognosis of HCCs 
associated with differentiation degree. Furthermore, gene 
expression profiles of corresponding noncancerous liver 
tissues and pooled normal liver tissues are similar in some 
degree. Both of them can be used as appropriate references. 
Kaplan-Meier survival data indicated that poorly-
differentiated HCC patients had substantially shorter 
survival than well-differentiated HCC patients. Notably, the 
9-gene expression signature was a more powerful predictor 
of survival of HCC patients than standard systems based on 
clinical and histopathological criteria. 

 
GO biological process and pathway analysis of 

DE genes involved in HCC carcinogenesis and tumor 
progression revealed that up-regulated genes are mainly 
associated with cell cycle, while down-regulated genes are 
mainly associated with immune response, which is 
consistent with previous report (18). Cell cycle-related 
genes were important because they might be directly bound 
up with tumor development. Furthermore, groups of DE 
genes in poorly-differentiated HCCs relative to well-
differentiated HCCs were more important because they 
correlated with tumor progression and poor prognosis, 
which was insufficiently studied before. Some of these 
genes might be effective anticancer targets, such as seven 
up-regulated genes associated with cell cycle pathway. 
Except for CCNB1 (33), our work is the first report of the 
association of the other six genes (MCM2, CCNB2, CDC7, 
CDC25C, BUB1B, and MAD2L1) with poorly-
differentiated HCC. Overexpression of these genes might 
contribute to activation of cell cycle pathway and play 
critical roles in HCC carcinogenesis and tumor progression. 

 
Interestingly, among the seven up-regulated cell 

cycle-related genes, three genes (MCM2, CCNB1 and 
CDC7) also appeared in the 9 most discriminatory genes. 
MCM2 and CCNB1 were chosen for further analysis. 
Reason for overexpression of MCM2 and CCNB1 may be 

that they map to frequent cytogenetic gains of 3q21 and 5q12 
in HCC (5, 6), respectively; while their overexpression may 
drive selection for the chromosomal gains. Moreover, as both 
MCM2 and CCNB1 are cell cycle regulated (60), their 
overexpression are likely to be due to increased cell 
proliferation and cycling in cancer cells; while their 
overexpression may induce cell proliferation. MCM2 is one 
of the MCM proteins which are essential for initiating and 
elongating replication forks during S-phase (61). Moreover, 
MCM proteins affect chromosome structure, which is 
consistent with the evidence that most MCM proteins don’t 
colocalize with DNA synthesis sites (62). CCNB1 
complexes with CDC2 to form M-phase promoting factor 
(MPF), which is essential for G2/M phase transitions of cell 
cycle (63). Because MCM2 and CCNB1 have a direct 
effect on mitosis, their overexpression in HCC may lead to 
uncontrolled cell proliferation and tumorigenesis. 

 
Recent studies have shown that MCM2 and 

CCNB1 are overexpressed in various tumors but present at 
low levels in normal tissues, indicating that they may be 
specific anticancer targets (34, 64). In HCC research, 
increased MCM2 mRNA levels have been reported (65). 
Here, we used for the first time TMAs to validate MCM2 
protein overexpression in HCC, especially in poorly-
differentiated HCC. We did not validate CCNB1 since its 
protein overexpression related to poor-differentiation in 
HCC has been reported (33). Therefore, MCM2 and 
CCNB1 may be potential diagnostic and therapeutic targets 
involved in HCC carcinogenesis and tumor progression. 

 
In addition, we used gene-expression microarray 

data to predict cytogenetic changes that frequently occur in 
HCCs, especially in poorly-differentiated HCCs using LS-
CAP approach previously reported (55). Previous CGH 
studies about genomic aberrations in HCCs showed that 
gains were prevalent on chromosome regions 1q, 3q, 5q, 
6p, 7p, 7q, 8q, 17q and 20q, while the most frequent losses 
occurred on lp, 3p, 4q, 6q, 8p, 11p, 11q, 13q, 14q, 16q and 
17p (5, 66, 67). In this study, we successfully identified the 
regions of frequent gains of 1q, 6p, 7p, 7q, 8q, 17q and 20q, 
and the regions of frequent losses of 3p, 4q, 11p and 11q as 
previously reported. We also detected loss of chromosome 
6p11.2-p21.1 that has not been implicated by previous 
reports. Interestingly, 6p21.2-p25.2 and 6p11.2-p21.1 were 
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identified to be regions of frequent gains and losses, 
respectively. Furthermore, cytogenetic changes in poorly-
differentiated HCCs were also identified using the same 
approach. Notably, gains of chromosome 7p11.1-p22.3 and 
8q24.1-q24.3 were identified in poorly-differentiated 
HCCs, but not in well-differentiated HCCs, which might be 
associated with degree of differentiation and tumor 
progression. Some oncogenes and anti-oncogenes, which 
expressed differentially in this study, locate on the regions 
identified by LS-CAP. For instance, oncogenes DEK, 
RAC1, BIRC5 and STK6 which were up-regulated 
respectively map to frequent cytogenetic gains of 6p23, 
7p22, 17q25 and 20q13.2-q13.3; and tumor suppressor 
HYAL2 which was down-regulated maps to frequent 
cytogenetic loss of 3p21.3. Therefore, we assumed that the 
altered expression of these tumor-related genes might result 
from the frequent chromosomal aberrations. 

 
In conclusion, we have identified a 9-gene 

expression signature, which was able to predict 
differentiation degree of HCC samples and was a more 
powerful predictor of survival of HCC patients than 
standard systems based on clinical and histopathological 
criteria. We detected two regions of cytogenetic changes 
only in poorly-differentiated HCCs using the expression 
data. Our studies also show that MCM2 and CCNB1 may 
be potential biomarkers involved in HCC carcinogenesis 
and tumor progression.  
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