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1. ABSTRACT   
 

Most discoveries of cancer biomarkers involve 
construction of a single model to determine predictions of 
survival.. ‘Data-mining’ techniques, such as artificial 
neural networks (ANNs), perform better than traditional 
methods, such as logistic regression.  In this study, the 
quality of multiple predictive models built on a molecular 
data set for colorectal cancer (CRC) was evaluated. 
Predictive models (logistic regressions, ANNs, and 
decision trees) were compared, and the effect of techniques 
for variable selection on the predictive quality of these 
models was investigated. The Kolmogorov-Smirnoff (KS) 
statistic was used to compare the models. Overall, the 
logistic regression and ANN methods outperformed use of 
a decision tree.  In some instances (e.g., for a model that 
included ‘all variables without tumor stage’ and use of a 
decision tree for variable selection), the ANN marginally 
outperformed logistic regression, although the difference 
between the accuracy of the KS statistic was minimal (0.80 
versus 0.82). Regardless of the variable(s) and the methods 
for variable selection, all three predictive models identified 
survivors and non-survivors with the same level of 
statistical accuracy.   

 
 
 
 
 
 
 
 
 
2. INTRODUCTION 
 

Researchers are now examining the methodology 
for predicting the survival or disease recurrence in cancer 
patients by use of data-mining techniques, such as artificial 
neural networks (ANNs), decision trees, and k-nearest 
neighbor (k-NN). In particular, this is being done to predict 
the clinical outcome for patients with colorectal cancer 
(CRC) (1-4). 

 
Most of these studies have compared the 

prediction of ANNs to other methods, such as survival 
analysis or logistic regression.  For example, Burke et al. 
(5) demonstrated that use of the TNM components of tumor 
staging variables by themselves in an ANN significantly 
increased the predictive accuracy of the variables when 
compared to a model for survival analysis with the same 
variables.  The predictive accuracy of the variables used in 
the models was measured by the area-under-the-ROC 
curve. The ANN increased the predictive accuracy of the 
model by 44-74%.  Also, ANNs were used by this group to 
build predictive models for breast cancer survival; they 
found that, compared to the TNM staging, the ANN 
provided better predictive accuracy (5, 6).  Therefore, it is 
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not clear whether the improved predictive capacity was a 
reflection of the ANN method, or whether the variables 
such as positive lymph nodes and p53 status contributed to 
improving the predictability of a model. Furthermore, the 
predictive accuracy of a model is a factor of the variables in 
the model, and the technique for variable selection 
determines the quality of a model (7).   

 
ANNs and other data mining tools are called 

‘black-box’ techniques, since the logic used to determine 
the final model is not transparent. Although “black box” 
techniques such as ANNs perform better than traditional 
methods, the results are not uniform.  In some cases, 
within the same study, the superiority of a classifier 
seems to be dependent on the variable (8). As described 
above, data-mining techniques such as ANNs provide 
higher predictive accuracy than familiar, traditional 
models, such as logistic regression (9-13).  If the same 
predictive accuracy can be obtained from logistic 
regression, which is generally understood by 
statisticians, basic researchers, and clinicians, it is 
difficult to justify the expense, in terms of computing 
time, and clarity of process for the “black-box” 
methods.  As suggested by some of the studies above, if 
the accuracy of prediction is variable-dependent, which 
in turn makes it dependent on techniques for variable 
selection (8), it is important to determine the effect of 
these techniques on the accuracy of the predictive 
model.  Therefore, this study aimed to provide answers 
to these questions: 1) Do data-mining techniques, such 
as ANNs and decision trees, provide models with higher 
predictive accuracy than logistic regression, and 2) How 
does the technique of variable selection affect the 
predictive accuracy of these models? 
 
3. PATIENT POPULATIONS, MATERIALS, AND 
METHODS   
 
3.1. Patient populations   

As described in previous publications (14, 15), 
491 patients who had undergone surgical resection for ‘first 
primary’ colorectal carcinoma between 1981 to 1993 at 
the University of Alabama at Birmingham (UAB) 
hospital were identified for this study.  These patients 
were identified from the UAB Tumor Registry, 
following the selection criteria described below. During 
the initial selection process, patients who died within a 
week of surgery, whose archival tissues were not 
available, who had surgical margin-involvement, who 
had an unspecified tumor location, who had multiple 
primaries within the colorectum, who had multiple 
malignancies (except non-melanotic lesions of the skin), 
or who had a family or personal history of CRC were 
excluded from the study population.  To control for 
treatment bias, only patients who underwent surgery as a 
therapeutic intervention were included, and patients who 
received any pre- or post-surgical therapy were 
excluded. Since adjuvant chemotherapy was not in 
widespread use during this study’s time frame (1981-
1993), a large number of Stage III and IV patients 
(n=212) who had not received adjuvant therapy were 
included.  

3.2. Pathological features   
Slides, stained with hematoxylin and eosin, were 

reviewed to determine the degree of histologic 
differentiation and categorized as well, moderate, poor, or 
undifferentiated.  Tumors that were either well or 
moderately differentiated were designated as low-grade and 
those classified as either poor or undifferentiated as high-
grade (16).  The pathologic staging was determined 
according to the criteria of the American Joint Commission 
on Cancer (17).  The codes of the International 
Classification of Diseases for Oncology (ICD-O) were used 
to specify anatomic location (colon versus rectum) of the 
tumor (18).  
 
3.3. Follow-up   

Patients were followed by the UAB Tumor 
Registries until their death or the date of the last 
documented contact within the study time frame. The 
tumor registries ascertain outcome information directly 
from patients (or living relatives) and from the physicians 
of the patients through telephone and mail contacts. This 
information was further validated against State Death Lists. 
The tumor registries update information every six months. 
Follow-up of our cohort ended in August 2008. The median 
follow-up period of the complete study population was 8.91 
years (range <1->20 years).  
 
3.4. Immunohistochemistry   

Archival tissues, formalin-fixed and paraffin-
embedded, were collected from the Surgical Pathology 
Division of the UAB Hospital. Earlier publications describe 
evaluation of immunohistochemical staining and 
immunostaining of nuclear accumulation of p53 and Bcl-2 
(14, 19, 20). The staining was evaluated semi-
quantitatively; the investigators involved were blinded to 
the patients’ clinicopathologic data and their treatment 
status. The expression of Bcl-2 was in the cell cytoplasm; 
p53 accumulated in the nucleus (p53nac). Both the 
percentage of positive cells and the staining intensity were 
taken into consideration in determining the final 
immunostaining score (ISS), as described in prior reports 
(14, 19-21). Molecular marker expression was 
dichotomized into high expressers and low expressers, 
based on the cut-off values described below. Consistent 
with findings from our prior studies (19, 20), 0.5 ISS was 
chosen as the cut-off value for Bcl-2 expression. Only 
tumor cells with distinct nuclear immunostaining for p53 
were considered as positive; the tumor was considered 
positive only if ≥ 10% of all malignant cells in a tissue 
section were positive, as described in earlier publications 
(14, 19-21). 
 
3.5. Statistical analyses   

The outcome variable for the predictive models 
was a binary variable indicating survival (or death) five 
years post-surgery for patients with CRC (disease-specific 
five-year survival).  The training data set consisted of 234 
Caucasians (80% of initial 292), and 159 (80% of 199) 
African-Americans; the remaining individuals formed the 
test set for validation (98 patients). The variables were age 
(≥ 65 and < 65 years), race (Caucasians vs. African-
Americans), tumor stage (I & II vs. III & IV), tumor 
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differentiation (low grade vs. high grade), location of tumor 
(proximal colon, distal colon and rectum), and p53nac and 
Bcl-2 expression.  All variables were dichotomized (22-
24).  
 
3.6. Variable selection   

No variable selection was used for the first type 
of analyses performed on the data set, as all available 
variables were used to build the predictive models.  In 
subsequent analyses, the two procedures for variable 
selection were decision-tree (25) and stepwise regression.  
These techniques were performed with SAS® Enterprise 
Miner, version 5.3.  The software default settings were used 
for each selection technique.   
 

The two techniques were used on the full data 
set, and then on data sets stratified by race. The race-based 
analysis was conducted because our prior studies indicated 
that p53nac was a strong predictor of poor survival, but only 
among non-Hispanic Caucasians who had tumors located in 
the proximal colon.  In contrast, p53nac was not a useful 
prognostic marker for Caucasians with distal tumors, or for 
African-Americans with tumors of any anatomic location in 
the colorectum (14). For each data set, the techniques for 
variable selection were conducted by including the tumor 
stage in the list of variables, and again after omitting the 
tumor stage from the list of variables available for 
selection. Since there was interest in judging the predictive 
value of the biomarker, Bcl-2, in the absence of the tumor 
stage variables, the analysis was conducted twice. For the 
first analysis, the list of all possible variables that could be 
included in the model had the tumor-stage variable; for the 
second, the stage variable was excluded from the variable 
list.  
 
3.7. Predictive models   

By use of all variables and the subset of variables 
identified by the decision-tree and the stepwise-regression 
methods, three predictive models were built.  These 
included logistic regression, decision trees, and ANNs.  
These models were chosen because of their value, as 
described in recent reports (1-4).  The models were built by 
use of SAS® Enterprise Miner software.  Following is a 
brief description of each model type.   
 
3.8. Logistic regression   

A logistic regression was built to model the 
probability of survival (or lack of survival) five years post-
surgery for CRC.  Logistic regression is used to model data 
when the outcome variable is binary (e.g., survive-yes/no; 
recurrence-yes/no).  The probability of an outcome is 
related to a set of predictor variables by an equation 

0 1 1log[( /(1 )] ... k kp p X Xβ β β− = + + + , where p is the probability 
of survival five years post-surgery for CRC, beta0 is an 
intercept term, beta1,…., betak are the coefficients 
associated with each variable, X1,…., Xk are the values of 
the predictor variables, and k denotes a unique subscript for 
each variable.  The standard assumption is that the 
predictor variables are related in a linear fashion to the log 
odds {log[ /(1 )]}p p− of the outcome of interest.   
 

3.9. Artificial neural networks (ANN)   
Development of the ANN was inspired by the 

mechanism through which the brain recognizes patterns 
(26).  The goal of an ANN is the same as in logistic 
regression, predicting an outcome based on the values of 
predictor variables.  The approach used in developing the 
ANN model is different from logistic regression.   

 
ANNs have the capacity to “learn” mathematical 

relationships between a series of input (predictor) variables 
and the corresponding output (outcome) variables.  This is 
achieved by “training” the network with a data set that 
consists of the predictor variables and a known outcome 
variable.  Once the ANN has been “trained,” the model can 
be used for classification of a validation data set.   

 
Figure 1 is a diagram illustrating an ANN that 

has been trained to predict the probability of a patient 
dying of CRC five years post-surgery based on only two 
predictor variables, age and race.  ANNs are often 
represented in diagrams such as this.  The circles are 
known as nodes.  A typical ANN consists of three layers 
of nodes: input, hidden, and output.  The values of the 
predictor variables reside in the input node.  The output 
node contains the predicted output of the network.  The 
hidden nodes in the diagram contain an activation 
function that allows the network to model complex 
nonlinear associations between the predictor variables 
and the outcome.  Of several activation functions 
examined, the tangent hyperbolic gave the best results; 
it was chosen for use in this study.   

 
Each input node is connected to each hidden 

node, and each hidden node is connected to the output 
node.  In this example, there are two input nodes where the 
values of age (X1) and race (X2) are input into the network, 
along with a bias weight, which is equivalent to an 
intercept term in a regression model.   

 
The input nodes are connected to the hidden 

nodes by a connection weight. (These are the lines in 
Figure 1 connecting the input and hidden nodes.)  The 
connection weights can be thought of as the ANN 
equivalent of the beta coefficients in a logistic regression 
model.  At each hidden node, the connection weights are 
passed to an activation function, most commonly the 
sigmoid function.  The activation function uses the 
connection weights to model any non-linear relationships 
among the predictor variables and the outcome variable.  
Another set of connection weights are then passed from the 
hidden node to the output node to obtain the output of the 
network, which corresponds to the predicted probability of 
the outcome variable.  

 
In the ANN analysis, there were as many 

input nodes as predictor variables. (The number of 
predictor nodes varies depending on the method used 
for variable selection.) There were three hidden 
nodes (the default setting in SAS® Enterprise Miner) 
and one output node (probability of survival five years 
after surgery for patients with CRC).
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Figure 1. Diagram of the neural network trained to predict the probability of CRC patient survival of five years post-surgery on 
the basis of age (X1) and race (X2).  Each box represents an input node in which the predictor variables are input into the network, 
and each line represents a connection weight.  Each circle in the middle of the diagram represents hidden layers, where the 
relationship between the predictor variables and the outcome are modeled.  The circle at the end of the diagram is where the 
probability of survival is output from the network. 

 
3.10. Decision trees   

The type of decision tree was CART 
(Classification and Regression Tree) (27).  The settings in 
SAS® Enterprise Miner were set to create such a tree.  
CART is an algorithm used to split the data into smaller 
segments called ‘nodes’ that are homogeneous with respect 
to the outcome variable.  At each node, the algorithm 
examines all predictor variables and all values of these 
predictors with respect to determining the best predictor 
variable and a value of that variable that will “best” 
separate the data into more homogenous subgroups with 
respect to the outcome variable.  In other words, each node 
is a classification question, and the branches of the tree are 
partitions of the data set into different classes (those 
patients who will survive/not survive five years after 
surgery).  This process repeats itself in a recursive, iterative 
manner until no further separation of the data is feasible.  
Therefore, the nodes at the end of the branches of the 
decision tree represent the different classes.   

 
The second part of the algorithm is pruning.  

Pruning is applied to the decision tree to ensure that the 
algorithm does not over-fit the training data.  At each 
subsequent node, smaller numbers of observations are 
available.  Towards the end of the splitting algorithm, 
idiosyncrasies of the training observations at a particular 
node can display a pattern that is specific only to those 
observations that become meaningless and detrimental for 
prediction when applied to larger populations.  Pruning 

removes smaller branches that fail to generalize use of the 
validation data set.  

 
3.11. Measures of performance evaluation   

The Kolmogorov-Smirnov (KS) statistic, which 
measures the difference between two different 
distributions, was used to evaluate model performance.  
The actual KS statistic is the maximum difference between 
two different distributions.  In this case, the two 
distributions of interest are the estimated probabilities of 
belonging to the survival or non-survival groups produced 
by the models.  If the two distributions are the same, the 
model does not effectively separate between survivors and 
non-survivors (implying a small KS statistic).  On the other 
hand, significantly different distributions suggest good 
separation between the two groups (implying a larger KS 
statistic).  Since the KS statistic has a probability 
distribution, a p-value is computed to determine if the two 
distributions are significantly different.   

 
 The predictive models were built on the set of 

training data, and the set of validation data was used to 
obtain the KS statistics and the corresponding p-value. 

   
4. RESULTS   
 

Table 1 displays the KS statistics for each of the 
predictive models when all variables were used.  For all 
groups of interest (model categories), the logistic-
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Table 1.  Predictive accuracy of logistic regression, ANN and decision-tree models  
Model category KS statistics1 (P value) 
 Logistic3 regression ANN3 Decision3 tree 
All variables2 (including tumor stage) 1.97 (0.0009) 1.97 (0.0009) 1.46 (0.0277) 
All variables (excluding tumor stage) 1.22 (0.1026) 0.99 (0.2848) 0.52 (0.9479) 
Caucasians (including tumor stage) 1.44 (0.0308) 1.44 (0.0308) 1.18 (0.1224) 
Caucasians (excluding tumor stage) 0.66 (0.7818) 0.92 (0.3668) 0.26 (1.0000) 
African-Americans (including tumor stage) 1.47 (0.0266) 1.59 (0.0126) 0.98 (0.2923) 
African-Americans (excluding tumor stage) 0.98 (0.2923) 0.73 (0.6527) 0.78 (0.5842) 

KS: Kolmogorov-Smirnoff; ANN: artificial neural networks, 1 KS statistics was used to measure the predictive quality of a 
model, as described in the Methods section, 2 All variables were dichotomized as described in the Methods section,  3 The 
variables age, tumor differentiation, tumor location, p53nac and Bcl-2 expression, race, and tumor stage were included according 
to the model category  
 
Table 2.  Predictive accuracy of logistic regression, ANN and decision-tree models based on the variables selected by a 
decision-tree approach  

Model category KS statistics1 (P value) Variables2 in final model 
 Logistic regression ANN Decision tree  
All variables (including tumor stage) 1.46 (0.0277) 1.46 (0.0277) 1.46 (0.0277) Tumor stage 
All variables (excluding tumor stage) 0.80 (0.5375) 0.82 (0.5109) 0.52 (0.9479) Age, tumor differentiation, and Bcl-2 
Caucasians (including tumor stage) 1.18 (0.1224) 1.18 (0.1224) 1.18 (0.1224) Tumor stage 
Caucasians (excluding tumor stage) 0.39 (0.9978) 0.39 (0.9978) 0.26 (1.0000) Age, tumor differentiation 

And bcl-2 
African-Americans (including tumor stage) 0.98 (0.2923) 0.98 (0.2923) 0.98 (0.2923) Tumor stage 
African-Americans (excluding tumor stage) 0.78 (0.5842) 0.78 (0.5842) 0.78 (0.5842) Tumor differentiation 

KS: Kolmogorov-Smirnoff; ANN: artificial neural networks, 1 KS statistics was used to measure the predictive quality of a 
model, as described in the Methods section, 2 All variables were dichotomized as described in the Methods section.  
 
Table 3.  Predictive accuracy of logistic regression, ANN and decision-tree models based on the variables selected by a stepwise 
regression approach  

Model category KS statistics1 
(P value) Variables2 in final model 

 Logistic 
regression ANN Decision 

tree  

All variables (including tumor stage) 1.81 (0.0029) 1.46 (0.0277) 1.81 (0.0029) Age, tumor stage, and tumor differentiation 
All variables (excluding tumor stage) 0.80 (0.5375) 0.82 (0.5109) 0.52 (0.9479) Age, tumor differentiation, and Bcl-2 
Caucasians (including tumor stage) 1.18 (0.1224) 1.18 (0.1224) 1.18 (0.1224) Age and tumor stage 
Caucasians (excluding tumor stage) 0.26 (1.0000) 0.26 (1.0000) 0.26 (1.0000) Tumor differentiation and Bcl-2 
African-Americans (including tumor stage) 0.98 (0.2923) 0.98 (0.2923) 0.98 (0.2923) Tumor stage 
African-Americans (excluding tumor stage) 0.78 (0.5842) 0.78 (0.5842) 0.78 (0.5842) Tumor differentiation 

KS: Kolmogorov-Smirnoff; ANN: artificial neural networks,  1 KS statistics was used to measure the predictive quality of a 
model as described in the Methods section, 2 All variables were dichotomized as described in the Methods section.    
 
regression and the ANN methods outperformed the 
decision-tree method, except for the group of African-
Americans without tumor stage.  The ANN outperformed 
the logistic regression method in the groups ‘Caucasians 
without tumor stage’ and ‘African-Americans with tumor 
stage.’   

 
Table 2 displays the KS statistics for the 

predictive models when a decision tree was used for 
variable selection.  For the three groups that included the 
tumor stage variable, the decision tree selected only tumor 
stage as a predictive variable.  For the four groups that were 
stratified by race, all three predictive models had the same KS 
statistic for each predictive model, regardless of the variable(s) 
used in building the predictive model.  The group ‘all variables 
with stage’ also had the same KS statistic for all three 
predictive models.  The only group in which there was a 
difference among the KS statistics was ‘all variables without 
stage,’ which had a slightly higher KS statistic for the ANN 
than for the logistic regression method, with both of these 
models outperforming the decision tree. 

 
Table 3 presents the KS statistics for the models 

when stepwise regression was used as a variable selection 

technique.  Once again, the groups that were stratified on 
race had the same KS statistic for all three predictive 
models.  The logistic regression and the decision tree had 
the same KS statistic for the group ‘all variables with 
stage,’ in which these models outperform the ANN.  The 
ANN model was best for the group ‘all variables without 
stage.’ 
 
5. DISCUSSION   
 

Although the focus of this manuscript is a 
comparison of the predictive quality of three statistical 
models, it is noteworthy that increased phenotypic 
expression of Bcl-2 in colorectal cancer tissues emerged as 
a strong predictor of five-year post-surgery survival, 
especially for non-Hispanic, Caucasian patients when the 
tumor stage variables were not included (Tables 2 & 3). 
Another clinically relevant finding is that the pathologic 
feature, tumor differentiation, is an important predictor of 
survival for both African-American and Caucasian patients 
when the information on tumor stage was not available. 
These findings are relevant to the treatment of colorectal 
cancer, particularly in predicting the outcome of patients 
who undergo excisional biopsies. Since information on all 
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components of TNM staging cannot be obtained from 
histologic assessment of biopsy specimens, these 
findings may be useful in assessing the aggressiveness 
of the tumor at the time of biopsy. In the analyses, 
regardless of the variable(s) and the methods for 
variable selection used in the models, all three 
prediction approaches including logistic regression, 
neural networks and decision tree-based models have 
identified survivors and non-survivors with the same 
level of statistical accuracy.   
 

In a study in which the predictor variables have 
been dichotomized, there is the potential for residual 
confounding in the prediction analysis.  The value of 
categorization of continuous predictor variables in medical 
studies has been considered.  Most of the discussion has 
focused on issues such as power, specifying the correct 
outcome and predictor variable association, or the selection 
of cut-points for the continuous predictors (28, 29).  
Placing a continuous predictor variable into two categories 
reduces the bias in the model up to 64% (30, 31).  Most of 
the confounding from a predictor variable is removed by 
placing the variable into two categories; it is rarely 
necessary to have more than five categories (32).   

 
Overall, the logistic regression and ANN 

techniques outperformed the decision-tree method.  In the 
instances where the ANN outperformed logistic regression 
(such as the group ‘all variables without stage’ by use of a 
decision tree as a variable selection technique), the 
difference between the accuracy of the KS statistic was 
minimal (0.80 versus 0.82).  In cases such as these, it is 
difficult to justify use of an ANN, which is a much more 
complex model and is not as well understood as logistic 
regression.  However, logistic regression analysis does not 
take censoring into account. The recommendation from this 
study is that, unless the ANN outperforms a simpler model 
(such as a logistic regression or a decision tree), the simpler 
model should be used.  Relative to interpretation and 
understandability, more will be gained by use of the less 
complex model, although it may not be as predictive).   

 
Thus, the techniques for variable selection had a 

significant effect on the predictive accuracy of the models.  
For example, the highest KS statistics were obtained when 
all variables were used. The models involving all the 
predictor variables outperformed the models built by use of 
the two techniques for variable selection across all model 
categories.  Yet, when the models were compared by use of 
different forms of techniques for variable selection, there 
was less consistency.   
 

For example, Table 2 shows that the logistic and 
ANN developed by use of a decision-tree approach for 
variable selection outperforms the logistic and ANN 
developed by use of an approach involving stepwise 
regression for the model category “Caucasians excluding 
tumor stage.”  Table 3 shows that the logistic and decision 
tree outperforms the logistic and decision tree developed in 
Table 2 for the model category that included all features, 
including tumor stage.  Tables 2 and 3 demonstrate that 
when variable selection procedures are used to develop 

predictive models, the results are not consistent (i.e., there 
is not one model consistently outperforming the others for 
the different model categories).   

 
In conclusion, various models can be used to 

predict survival of CRC patients five years post-surgery.  
This study used stepwise regression and decision trees to 
select the variables to be entered into the models.  The KS 
statistic was then used on a validation data set to determine 
how well the models separated between the survival and 
non-survival groups by use of predictor variables chosen by 
the techniques for selection of variables.  This proof of 
principle study demonstrates the potential of predictive 
models to assess the survival probabilities of patients with 
CRC.  These findings might be useful in cancer biomarker 
data analyses specifically to address a binary outcome with 
all binary predictive variables. We are now examining the 
capacity of these models to discover additional associations 
and patterns in the prognostic markers of CRC.  
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