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1. ABSTRACT 

 
Oxidative stress is a key factor driving the aging 

of cells and arteries. Studies suggest that white blood cell 
(WBC) telomere length is an index of systemic aging. We, 
therefore, investigated the association between WBC 
telomere length and oxidized-LDL, and vascular aging, 
expressed by the distensibility of the carotid artery. We 
studied a random population sample of 216 non-smokers 
and 89, smokers. In all subjects, age and gender- adjusted 
telomere length was inversely correlated with plasma 
oxidized-LDL (regression coefficient = -0.656 kb/mg/dL; 
p=0.0006).  Independent of gender, age and mean blood 
pressure, carotid distensibility increased with telomere 
length (2.33±1.18 10-3/kPa/kb; p=0.05) but decreased with 
higher plasma levels of oxidized LDL (-10.7±3.91 10-

3/kPa/ mg/dL; p=0.006).  Adjusted for gender and age, 
smokers’ telomere length was shorter (6.72 vs 6.91 kb; 
p=0.014) and plasma oxidized-LDL level higher (0.52 vs 
0.46 mg/dL; p=0.03) than in non-smokers. Higher level of 
oxidized-LDL, is associated with shorter WBC telomeres 
and increased stiffness of the carotid artery. Smoking is 
marked by increased oxidative stress in concert with 
shortened WBC telomere length. 

 
 
 
 
 
 
2.  INTRODUCTION 
 
 The aging of the vasculature is a complex process 
that in large measure reflects the overall aging of the 
individual.  Oxidative stress is somehow involved in this 
process. (1).  We explored the proposition that systemic 
oxidative stress, expressed in oxidized-LDL, might be a 
factor that is common to both systemic and vascular aging. 
To this end, we used white blood cell (WBC) telomere 
length as an index of systemic aging (2) and the common 
carotid artery distensibility as a measure of vascular aging. 
As aging reflects the input of both genetic and 
environmental factors, we examined the effect of cigarette 
smoking― an important environmental source of free 
radicals (3) that might accelerate aging (4) ― on WBC 
telomere length, oxidized-LDL and carotid distensibility. 
 
3.  MATERIALS AND METHODS 

 
3.1 The cohort 

We studied 305 subjects (55.8% women), who 
were randomly recruited from the population of a 
geographically defined area within the framework of the 
Flemish Study on Environment, Genes and Health 
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Outcomes (FLEMENGHO).   Each volunteer donated a 
fasting blood sample and underwent a physical examination 
and carotid artery distensibility measurements.  Using a 
standardized questionnaire, we collected information about 
personal and familial medical history, smoking and 
drinking habits, and the use of medications. The study was 
performed in accordance with the Helsinki Declaration.  
The Ethics Committee of the University of Leuven 
approved the protocol.   
 
3.2. White blood cell telomere length measurements 

WBC telomere length was measured from the 
mean of the terminal restriction fragment length, as 
described before (5).  Briefly, DNA samples were digested 
with HinfI and RsaI (Roche Diagnostics Corporation, 
Indianapolis, US) and resolved on 0.5% agarose gels.  
DNA was transferred to a positively charged nylon 
membrane and telomeric DNA detected by Southern 
hybridisation to a digoxigenin 3’-end labeled 5’-
(CCCTAA)3 after overnight incubation at 65º C.  The 
labelled DNA was visualised using a digoxigenin 
luminescent detection procedure and exposure on X-ray 
hyperfilm (Amersham Biosciences, UK).  Telomere length 
of each sample was the average of duplicate measurements.  
If the duplicate for a sample varied by 5% or more, we 
repeated the measurement and took the mean of the two 
that were less than 5% apart. This occurred in less than 5% 
of the samples. To control for possible variation between 
batches, we ran internal standards on each gel.  The 
coefficient of variation averaged 1.7%. The laboratory 
conducting the telomere length measurements was blinded 
to all characteristics of the WBC donors. Results of 
telomere measurements, identified only by coded ID 
numbers, were electronically transmitted and merged with 
the covariate data at the Study Coordinating Centre, 
Laboratory of Hypertension, Department of Molecular and 
Cardiovascular Research, University of Leuven. 
 
3.3. Oxidized-LDL measurements 

Venous blood (5mL) was collected into 100 µL 
buffer containing 0.1 mgm/L citrate, 1 mmol/L EDTA, 20 
µmol/L vitamin E, 10 µmol/L butylated hydroxytoluene, 20 
µmol/L dipyridamole, and 15 mmol/L theophylline.  The 
blood sample was spun at 3000g for 15 minutes at room 
temperature.  Within 25 minutes, the supernatant was 
stored at -80°C until assayed.  We used a monoclonal 
antibody 4E6–based competition ELISA for measuring the 
plasma levels of oxidized LDL(6,7).  The coefficient of 
variation of oxidized LDL was 12%. LDL cholesterol, HDL 
cholesterol and triglycerides were measured by automated 
enzymatic methods (Boehringer, Mannheim, Germany).  
We calculated LDL cholesterol from LDL cholesterol and 
triglycerides by means of Friedewald’s formula.   
 
3.4. Distensibility of the common carotid artery 

Vascular measurements were performed after the 
individual had rested in the supine position for 15 minutes.  
An experienced researcher (TN) performed the 
measurements using a pulsed ultrasound wall tracking 
system (Wall Track System, Pie Medical, Maastricht, The 
Netherlands), which has been validatedl (8).  
Measurements were taken at the common carotid artery 2 

cm proximal of the carotid bulb.  We used applanation 
tonometry with a pencil-shaped probe (Millar Instruments, 
Houston, TX) to calibrate the carotid pulse wave to the 
diastolic and mean arterial pressure at the level of the 
brachial artery, which were measured with a 
semiautomated device (Omron HEM 705CP, Kyoto, 
Japan).  If tonometry was impossible due to obesity or the 
presence of arterial plaque in the common carotid artery, 
the vessel wall movement contour was used as a surrogate 
for the tonometrically derived pulse pressure contour with 
calibration as described above (9). The distensibility 
coefficient (DC) was derived from the diastolic cross-
sectional area (A), the systolic increase in cross-sectional 
area (∆Α) and the local pulse pressure (∆P) according to 
the formula: DC= (∆A/A)/∆P. A and ∆A were calculated as 
A= π x (D/2)2 and ∆Α= π x [(D+∆D) /2]2 – π x (D/2)2. 
 
3.5. Statistical Analysis 

We used SAS software version 8.1 (SAS Institute 
Inc, Cary, NC) for database management and statistical 
analysis.  For comparison of means and proportions, we 
applied Student’s t-test and the chi-statistic, respectively.  
We searched for possible covariates of the phenotypes 
under study by stepwise regression with the p values for 
independent variables to enter and stay in the model set at 
0.05.  In multiple means tests, we applied Bonferroni’s 
correction to adjust the significance levels. 
 
4.  RESULTS 
 
4.1. Characteristics of the cohort 

Mean age of the 142 men and 163 women was 
similar and averaged 42.5 (SD: 16.5, range 12-81) years.  
Median daily smoking amounted to 15 cigarettes (inter-
quartile range, 10-25) in 45 male smokers and 44 female 
smokers. Smokers and non-smokers had similar sex ratio, 
age, and carotid distensibility (table 1). Compared with 
non-smokers, smokers reported more frequently alcohol 
intake and displayed higher levels of serum LDL 
cholesterol and plasma oxidized-LDL (table 1). 

4.2. WBC telomere profile 
  WBC telomere length decreased with age (-0.024 
±0.003 kb per year; p<0·0001).  Age-adjusted telomere 
length was shorter in men than women (6.77±0.05 kb vs 
6.92±0.05 kb; p=0.028).  In stepwise regression analysis, 
telomere length was independently and negatively 
correlated with age and was shorter in males than females 
and in smokers than non-smokers.  These three covariates 
respectively explained 26.5% (p<0.0001), 1.2% (p=0.036) 
and 1.7% (p=0.011) of the variance in telomere length.  
After gender and age adjustments, telomere length was 
significantly shorter in smokers than non-smokers 
(6.72±0.06 vs 6.91±0.04 kb; p=0.014) and decreased with 
the number of pack years (figure 1). 

4.3. Oxidized-LDL 
  Plasma oxidized LDL increased with age 
(regression coefficient ±SE, 0.0016±0.0006 mg/dL/year; 
p=0.008).  Adjusted for age, men and women had the same 
level of oxidized-LDL (0.48±0.02 vs. 0.47±0.02 mg/dL; 
p=0.11), while smokers had higher levels of oxidized-LDL
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Table 1.  Characteristics of smokers and non-smokers 
 Non-smokers (n=216)  Smokers (n=89)  p 
Clinical features    
Women, No. (%)  119·0 (55·1)  45.0 (49.5)  0.37  
       On oral contraceptives, No. (%)  20·0 (16·8)  11.0 (24.4)  0.49  
Age, years 42.1 (17.9) 46.1 (12.7) 0.51  
Body mass index, kg/m2  25.0 (4.6) 24.4 (3.2) 0.21 
Systolic blood pressure, mmHg  122.9 (16.1) 125.0 (13.1) 0.27 
Diastolic blood pressure, mmHg 76.6 (11·7 )  77.7 (10.4)  0.44 
Alcohol use, No. (%) 63.0 (29·2)  44.0 (48.4)  0.0013  
Serum total cholesterol, mg/dL  208.0 (45.6) 219.0 (45.6) 0.06 
Serum LDL cholesterol, mg/dL 112.0 (39.3) 118.0 (40.2)  0.07 
Serum HDL cholesterol, mg/dL 52.2 (54·6)  52.5 (56.0)   0.87 
Serum triglycerides, mg/dL 223.6 (125.0) 225.9 (129.3)  0.88 
Phenotypes1       
Telomere length, kb 6.91 (0.67)  6.75 (0.67)   0.04  
Plasma oxidized-LDL, mg/dL 0.46 (0.17) 0.52 (0.19)  0.02 
Carotid distensibility, 10-3/kPa 27.6 (15.8)  27.1 (11.9)  0.73  

p comparison between smokers and non-smokers, Values are arithmetic (SD) or geometric (95% CI) means or numbering 
subjects (%),1Values are unadjusted for age P=0.03 
 
 

 
 
Figure 1. The relations between age-adjusted telomere length, cigarette smoking (pack-years), with oxidized –LD and carotid 
distensibility. *Telomere length was age-adjusted. 
 
than non-smokers (0.52±0.01 vs. 0.46±0.02 mg/dL; 
p=0.03) and plasma oxidized-LDL increased with the 
number of pack years (0.0030±0.0009 mg/dL/year; 
p=0.0002). 
 
4.4. Carotid artery distensibility 

In stepwise multiple regression, carotid distensibility 
was lower in men  (-3.71±1.41 10-3/kPa; p=0.009) and 
decreased with age (-0.412±0.11 10-3/kPa/years; p=0.0002) 
and mean arterial pressure (-0.463±0·18 10-3/kPa/mmHg; 
p=0.012).  These three covariates explained 1.5% 
(p=0.0094), 32.6% (p<0.0001) and 2.8% (p=0.0005) of the 
variance in carotid distensibility.  

4.5. Associations of WBC, telomere length, oxidized-
LDL and carotid distensibility 

After adjustment for gender and age, a 0.11±0.03 
kb shorter telomere length was associated with a 1-SD 
increase (0.17 mg/dL) in plasma oxidized-LDL (p=0.0006) 
(Figure 1). Additional adjustment for smoking did not alter 
this relation.  Adjusted for gender, age and mean blood 
pressure, carotid distensibility increased with telomere 
length (2.33±1.18 10-3/kPa/kb; p=0.05), but decreased with 
higher plasma levels of oxidized-LDL (-10.7±3.91 10-

3/kPa/mg/dL; p=0.006) (figure 2). Neither age-adjusted 
telomere length nor carotid distensibility were associated 
with lipid parameters other than oxidized- LDL. 

5. DISCUSSION 

Telomere attrition results from somatic cell 
replication and oxidative stress may further accelerates this 
process (10). Thus, telomere length represents a record of 
the replicative history of cells and in vivo it might also 
reflect the cumulative oxidative stress burden over the 
lifetime of the individual.  A body of research supports the 
idea that WBC telomere length is an index of biological age 
(aging) in that  individuals with a host of aging-related 
disease, marked by increased oxidative stress and 
inflammation, are more likely to have shortened WBC 
telomere length (11-17). This is particularly the case for 
age-related vascular disease (18,19).   

 
Our key finding is that telomere length inversely 

correlates with the plasma level of oxidized-LDL, a 
biomolecular marker of systemic oxidative stress.  In 
addition, age-adjusted, telomere length was 190 bp shorter 
in smokers than in non-smokers in agreement with previous
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Figure 2. Association between carotid distensibility and 
oxidized-LDL 

 
finding in another cohort (20).  In telomeric year equivalence 
(based on telomere attrition rate of 0.024 kb/year), smokers 
were biologically older than non-smokers by roughly 8 years.  
This effect of smoking on telomere length corresponds with 
Doll’s observations on mortality and smoking showing that 
smokers on average die about 10 years earlier than lifelong 
non-smokers (210) and it further supports the concept that 
smoking accelerates systemic aging (4).  

 
Epidemiological studies demonstrated that tobacco 

smoke is a major cause of both cancer and vascular diseases 
(21).  More than 3800 chemicals are present in tobacco smoke, 
which may cause oxidative stress via biotransformation, or by 
macrophage activation (22,23).  Tobacco smoke also increases 
LDL oxidation and may enhance the production of small-
dense LDL, which is more readily oxidized (24,25).   
 

Arterial stiffness is an index of vascular aging and 
an important risk factor that independently predicts 
cardiovascular death and death related to other factors (26).   A 
number of studies have examined the relations between WBC 
telomere length and indicators of vascular aging and 
cardiovascular risks in humans (14,27,28).. Given that 
cardiovascular risks increase with age, biologically, the age of 
individuals with relatively short telomeres may be more 
advanced than their chronological age would indicate.  Support 
for such a concept has emerged from the finding that telomere 
length, as expressed in WBC, is shorter in subjects with 
atherosclerosis than in their age-matched peers (14,29).  The 
unifying thread for short WBC telomere length and vascular 
lesions may well be oxidative stress.   

 
Statins promote potent systemic antioxidant effects 

in vivo through suppression of different oxidation pathways, 
including the generation of myeloperoxidase-derived and nitric 
oxide–derived oxidants (30).  Recently, a  beneficial effect of 
statins on telomere biology has been described.  In all subjects, 
the sex and age adjusted telomere length was independently 
and inversely correlated with plasma oxidized-LDL.  
Oxidative stress is central to the aging process (30,31) and it 
may accelerate the rate of telomeric erosion per replicative 
cycle (10). While, epidemiologic studies cannot elucidate such 
mechanistic connections, as observed in our population-based 
cohort, WBC telomere length was inversely associated with 
plasma levels of oxidized-LDL― a finding in agreement with 
previous observations, which estimated oxidative stress by 
urinary isoprostanes (13,17).  In our study, oxidative stress was 
reflected by oxidized-LDL.  Increased LDL oxidation is 
associated with coronary artery disease.  Circulating oxidized 
LDL does not originate from extensive metal ion-induced 

oxidation in the blood but from mild oxidation in the arterial 
wall by cell-associated lipoxygenase and/or myeloperoxidase 
(32).   

 
We showed for the first time that in the population 

at large telomere length is inversely associated with plasma 
levels of oxidized-LDL.  Thus oxidative stress and 
inflammation, as exemplified by oxidized LDL, likely play an 
important role in biological ageing, a process which may be 
accelerated in smokers. 
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