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1. ABSTRACT 

 
Stroke is the second most common cause of death 

and consumes about 2-4% of total health-care costs 
worldwide. Although most studies have focused on 
neuroprotection during the past decades, current therapeutic 
options are still very limited. Recently scientists have 
intensified their work on neurorestorative therapies, 
including angiogenesis, which allow a far greater time 
window for improving neurological recovery. MicroRNAs 
have emerged as crucial players, regulating almost every 
cellular process investigated to date, and evidence of their 
role in the context of angiogenesis and stroke has been 
rapidly accumulating. The goal of this review is to 
summarize the mechanisms of microRNA-mediated 
regulation of angiogenesis and the implications for a novel 
molecular approach to enhance neurological recovery after 
stroke. 

 
 
 
 
 
 
 
2. INTRODUCTION 
 

Stroke is the second most common cause of death 
(1) and consumes 2-4% of total health-care costs 
worldwide (2, 3). On average, every 45 seconds someone in 
the United States has a stroke (4). With the population 
aging, the burden will increase greatly during the next 20 
years, especially in developing countries (5). Advances 
have occurred in stroke treatment during the past decades, 
but current therapeutic options are still very limited. 
Recently scientists have intensified their work on 
neurorestorative therapies, including angiogenesis, with the 
aim of improving stroke recovery in a longer time window 
(6). Angiogenesis, always coupled with neurogenesis, 
could be interpreted as a natural defense mechanism, 
helping to restore oxygen and nutrient supplies to the 
affected brain tissue. It has been demonstrated that 
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angiogenesis is involved in functional recovery after 
ischemic stroke and correlates with longer survival (7-12).  

 
MicroRNAs, 19-24 nucleotides, have emerged as 

key players regulating magnitude of gene expression in a 
variety of organisms (13). It is estimated that about 3% of 
human genes encode for microRNAs (14), and 
approximately 30% of mRNAs are regulated by them (14-17). 
MicroRNAs have been identified to participate in almost every 
cellular process investigated to date, and their dysregulation is 
also observed in different human pathologies involved in 
tumor, inflammation, and apoptosis (14, 18-23). Accumulated 
evidence from different laboratories suggests that microRNAs 
play a crucial role in the regulation of angiogenesis and stroke 
(22-30). Specific microRNAs have been identified in the 
angiogenic process (24, 31-64). Because of their distinct 
mechanisms of action, microRNAs represent a potential 
therapeutic target; it is possible that angiogenesis may be 
enhanced for stroke recovery by over-expressing or inhibiting 
associated microRNAs (24). Despite increasing evidence for 
the regulatory influence of microRNAs in angiogenesis, 
individual microRNAs involved in the process and the 
potential approaches of using microRNAs to enhance 
angiogenesis after stroke have not been previously 
evaluated. Therefore, this review summarizes the 
mechanisms of microRNA-mediated regulation of 
angiogenesis and implications for a novel molecular 
approach to enhance neurological recovery after stroke. 

 
3. ROLE OF ANGIOGENESIS IN STROKE AND 
THE MOLECULES AND PROTEINS INVOLVED IN 
THE PROCESS 

 
        Time is brain for patients suffering stroke. The only 
approved effective drug, recombinant tissue plasminogen 
activator, must be administered within 4.5 hours after the 
onset of stroke in very carefully selected patients (65). 
Neurorestorative processes, which allow a far greater time 
window for improving neurological recovery, include 
angiogenesis, neurogenesis and synaptic plasticity (6). 
Increasing evidence suggests that angiogenesis, always 
coupled with neurogenesis, plays a key role in neurological 
recovery after stroke. Below we will summarize the role of 
angiogenesis in stroke, associated molecules and proteins, 
and traditional approaches. 
 
3.1. Role of angiogenesis in stroke 

Angiogenesis is a physiological process during 
development; however, during some pathological events 
such as stroke, endothelial cells become activated and 
angiogenesis ensues to provide conduits for blood flow 
(66). In addition, angiogenic vessels provide neurotrophic 
support to newly generated neurons. Thus, angiogenesis 
plays a crucial role in the recovery of blood flow in affected 
brain tissues. It has been suggested that greater microvessel 
density in the ischemic border correlates with longer survival 
in stroke patients (12). In addition, increased spontaneous 
vascularization during neurological recovery in the site of 
penumbra has been described (13, 14). 

 
It has been demonstrated that endothelial cells 

surrounding the infarcted brain area start to proliferate as 

early as 12–24 hours after stroke, and active angiogenesis 
takes place in human brain at 3-4 days following ischemic 
insult (67-70). It still remains unclear how long 
angiogenesis persists. Hayashi and colleagues reported that 
vessel proliferation continues more than 21 days following 
ischemic stroke (68).  
 
3.2. Molecules and proteins involved in angiogenesis 
after stroke 

Several molecules and proteins that change after 
stroke have been identified as playing a role in the 
angiogenic process. The following is a summary of the 
literature to date on molecular mechanisms and proteins 
associated with angiogenesis after stroke. 

 
3.2.1. Endothelial progenitor cells and endothelial cells  

The increase of circulating endothelial progenitor 
cells after acute ischemic stroke leads to good functional 
outcome and reduced infarct growth (71), and a lower 
concentration contributes to severe neurological 
impairments (72). Circulating endothelial progenitor cells 
can home to sites of neovascularization and differentiate 
into endothelial cells (73, 74).  

 
Endothelial cell migration and proliferation 

involved in angiogenesis are associated with vascular 
remodeling in penumbra (75, 76). It has been demonstrated 
that endothelial cells surrounding cortical infarcted brain 
areas began to proliferate as early as 12 hours in different 
cerebral ischemic models (67, 68). Furthermore, intact and 
injured endothelial cells have different effects on 
neurogenesis (6, 8, 69, 77). 

 
3.2.2. Molecules and proteins associated with 
angiogenesis 

Increasing molecules and proteins have been shown 
to be involved in the angiogenic process following stroke, 
including vascular endothelial growth factor (VEGF), 
angiopoietins and tie receptors, hypoxia-inducible factor 1 
(HIF1), and matrix metalloproteinases (MMPs).  

 
3.2.2.1. VEGF and its receptors 

VEGF, widely expressed in the normal brain, is the 
most important mitogen in the process of angiogenesis after 
stroke. An elevated level of VEGF expression in the 
infarcted hemisphere was observed as early as 3 hours after 
ischemic insult and continued up to 3 days (69) or even as 
much as 7 days following stroke (78, 79). VEGF is capable 
of promoting cerebral angiogenesis and improving oxygen 
and nutrient delivery to the affected brain tissue. Thus, 
VEGF has been shown to be neuroprotective in different 
animal models (78-83). VEGF has been demonstrated to 
exist in microvessels in penumbra and special types of cells 
in brain after stroke (78, 79, 84-87). These data suggest that 
VEGF is produced and secreted by these cells and binds to 
its receptors on nearby vascular endothelial cells to directly 
initiate an angiogenic response (79). The binding of VEGF 
to its receptors on the surface of endothelial cells activates 
intracellular tyrosine kinases and triggers multiple 
downstream signals that promote angiogenesis (76). 
Increased levels of VEGF have been identified in human 
brain and serum (88-90).  
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VEGF binds to its receptors (VEGFR-1 or VEGFR-
2) and then leads to receptor dimerization, signal 
transduction and thus angiogenesis (76). VEGFR-1 
expressed in distinct vascular beds increases after ischemic 
stroke. This indicates its inert “decoy” effects by binding 
VEGF, subsequently regulating the availability of VEGF 
for activation of VEGFR-2 (69, 76, 79, 85, 91). VEGFR-2 
is expressed on almost all endothelial cells, and mediates 
the majority of the downstream angiogenic effects of 
VEGF, including endothelial cell proliferation, invasion, 
migration and survival (91). Up-regulation of VEGFR-2 
follows an ischemic insult (69, 78, 87) for up to 7 days 
(69). 

 
Notably, a deleterious effect of VEGF in ischemic 

stroke has been observed (92). Blood vessel growth 
initiated by VEGF alone stimulates the formation of an 
immature, leaky vasculature, which may contribute to 
edema and worsen cerebral injury. Timing, dose and route 
of administration are likely to be important in dictating the 
balance of favorable versus detrimental effects associated 
with VEGF therapy for acute stroke (93). 

 
3.2.2.2. Angiopoietins and tie receptors  

The angiopoietin family consists of four members 
(Ang-1-4). Both Ang-1and Ang-2 levels increased in 
affected brain tissue after an ischemic insult, up to 28 days 
(94-97). In concert with VEGF, Ang-2 promotes 
angiogenesis (98). It blocks the stabilization and maturation 
function of Ang-1 and induces loosening of endothelial 
cell/ pericyte contacts, thus allowing vessels to convert into 
a more plastic state (76). However, Ang-2 leads to 
endothelial death and vascular regression in the absence of 
VEGF (98). 

 
 Tie-1 and Tie-2 are two receptor tyrosine kinases 

of angiopoietins. All four angiopoietins have been 
identified as ligands for Tie-2, which is majorly expressed 
on endothelial cells. Natural ligands for the Tie-1 receptor 
have not been found (76). Tie-1 was expressed in ischemic 
lesion as early as 2 hours after ischemic insult (99). Lin and 
his colleagues described a biphasic expression pattern of 
Tie-1 and Tie-2 following an ischemia-reperfusion model. 
A few hours after the insult they observed an up-regulation 
of both receptors in capillaries inside the ischemic cortex. 
The second peak started at 3 days and continued to 7 days 
after ischemic stroke (100). 

 
3.2.2.3. Hypoxia-inducible factor 1 

Hypoxia-inducible factor 1 (HIF1), the first 
characterized member of the HIF family, is a heterodimer 
composed of subunits HIF1-alpha and HIF1-beta. 
Expression of HIF1-alpha may be induced by a number of 
pathways, and its degradation is highly sensitive to O2 
levels. Intracellular HIF1-alpha, called a master switch for 
hypoxic gene expression, is experimentally undetectable 
under normoxic conditions. However, it rapidly 
accumulates in the cell nucleus and triggers gene 
expression during hypoxia (101-103). In addition, 
microRNA profiles of cancer cells revealed that at least a 
subgroup of hypoxia-regulated microRNAs was induced by 

HIF, supporting the key role of HIF as a transcription factor 
for microRNA expression during hypoxia (104).  

 
3.2.2.4. Other factors in angiogenesis 

Increasing numbers of molecules and proteins have 
been identified as being involved in angiogenesis following 
stroke. MMPs collectively regulate the angiogenic 
processes of sprout initiation, tube formation and stability, 
and capillary regression (105, 106). Recently, Lee and his 
colleagues (107) reported that VEGF can induce MMP-9 
activities and focal angiogenesis.  

 
Neuropilins (comprised of NP-1 and NP-2) appear 

to increase binding of VEGF isoforms to VEGFR-2, but 
decrease binding to VEGFR-1 (108, 109). Both NP-1 and 
NP-2 mRNA were up-regulated after ischemic stroke (110, 
111). 

 
Placenta growth factor is a ligand of VEGFR-1 that 

specifically potentiates the angiogenic response to VEGF 
by activation of VEGFR-1. Its mRNA and protein were 
both up-regulated in vessels in affected brain tissue with a 
peak of expression at 3 days after an ischemic insult (111). 
Moreover, elevated expression of erythropoietin by 
hypoxia has been identified (112-115).  
 
3.3. Traditional approaches to improve stroke recovery 
by enhancing angiogenesis  

For patients with acute stroke, interventions of 
proven benefit include management in a stroke care unit, 
intravenous tissue plasminogen activator within 4.5 hours 
or aspirin within 48 hours of stroke onset, and 
decompressive surgery for supratentorial malignant 
hemispheric cerebral infarction (2, 65). However, time is 
brain to the patients’ functional recovery. Recently 
scientists have intensified their work on different 
approaches beyond the hyperacute phase of stroke. 
Angiogenesis, always coupled with neurogenesis and 
synaptogenesis, is one of the neurorestorative processes 
(42). The induction of angiogenesis, primarily in the 
ischemic boundary zone, enhances oxygen and nutrient 
supply to the affected tissue. Additionally, the generation of 
new blood vessels facilitates highly coupled 
neurorestorative processes which in turn lead to improved 
functional recovery (76).  

 
There are several methods to enhance angiogenesis 

for improving stroke recovery, including physical activity, 
pharmacological approaches and stem cells. Physical 
training promotes angiogenesis by up-regulating mRNA 
levels of the angiopoietin family, VEGF and increased 
phosphorylation of eNOS for improving long-term stroke 
outcome (116-118). A large variety of agents can also boost 
angiogenesis after cerebral ischemia, including VEGF, 
phosphodiesterase type-5 inhibitors, heparin-binding 
epidermal growth factor-like growth factor, hepatocyte 
growth factor, fibroblast growth factor-2, adrenomedullin, 
HMG-COA reductase inhibitors or “statins,” kallikreins, 
erythropoietin, nitric oxide donors, angiotensin 2 type 1 
receptor blockade, and granulocyte colony stimulating 
factor (76).  
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Figure 1.  MicroRNAs: biogenesis and mechanisms of action. MicroRNAs are initially transcribed as pri-microRNAs by RNA 
polymerase 2, before being processed by Drosha to generate pre-microRNAs which are exported from the nucleus into the 
cytoplasm where they are further processed by Dicer to form the mature microRNA. Mature microRNAs post-transcriptionally 
regulate target gene expression by forming hybrid complexes with target mRNAs in their 3’UTR, and subsequently repress 
translation or lead to target mRNA cleavage, depending on the degree of complementarity that exists between the microRNA and 
its targets. 

 
Recent work has focused on cell transplantation as 

a therapeutic option following ischemic stroke, and the 
observed improvement has been attributed to the release of 
trophic factors, possibly promoting endogenous repair 
mechanisms, reducing cell death and stimulating 
neurogenesis and angiogenesis (119). An increased 
understanding of the biology of stem cells offers potential 
in the treatments for ischemic stroke. Moreover, 
transplanted stem cells have been involved in the release of 
endogenous growth factors stimulating vasculogenesis 
(120). Cell replacement therapy in ischemic stroke from 
both clinical and experimental points of view presents 
considerable variability in outcome. Functional 
improvement and long-term outcome can be influenced by 
the properties of stem cell type, the route of cell 
administration, and time interval following the ischemic 
insult (119). 
 
4. MICRORNA-MEDIATED REGULATION IN 
ONCOLOGY AND NON-BRAIN ANGIOGENESIS 
 

Since the 1993 discovery of lin-4 in C. elegans 
(121,122), thousands of microRNA sequences have been 
noted in animals, plants and even viruses. As this inventory 
of known microRNAs continues to increase, it is becoming 
evident that microRNAs regulate a variety of important 
cellular functions. Accumulated data show an important 

role of microRNAs in regulating angiogenesis of different 
pathologic processes such as tumor, inflammation, and 
apoptosis (14-23). 

 
The expression of microRNAs in endothelial cells 

has been demonstrated in different labs (123, 124). The 
highly expressed microRNAs include miR-15b and -16, -
20, -21, -23a and -23b, -24, -29a and -29b, -31, -99a, -100, 
-103, -106, 125a and -125b, -126, -130a, -181a, -191, -221, 
-222, -320, let-7, let-7b and let-7c (123-125). However, 
few specific targets and functions involved in angiogenesis 
have been identified. 
 
4.1. MicroRNAs: biogenesis and mechanisms of action 

Mature microRNA is part of a 60-80-nucleotide 
stem-loop structure contained within the pri-microRNA. 
The first step in microRNA biogenesis occurs in the 
nucleus and requires the excision of this hairpin structure 
by a complex called Microprocessor (Figure 1). This 
complex contains the RNase 3-like Drosha enzyme and the 
RNA binding protein DGCR8/Pasha (126). The excised 
hairpin, now called pre-microRNA, is exported to the 
cytoplasm by a protein heterodimer consisting of the 
transport factor Exportin-5 and its cofactor Ran (127). In 
the cytoplasm, Dicer, an RNase 3 enzyme, excises the pre-
microRNA to a 19- to 24-base-pair product. The product is 
able to be incorporated into the RNA-induced silencing 
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complex (RISC) (128-134). The RISC, in turn, is capable 
of using the “seed sequence” of the microRNA to 
recognize complementary messenger RNA (mRNA) 
transcripts for degradation or translational silencing (15, 
130, 135).  

 
The microRNA is now ready to direct its 

activities on target mRNA by binding microRNA 
responsive elements usually located in the 3’UTR of the 
transcript (Figure 1). This association may result in either 
cleavage or translational repression of the target mRNA, 
depending on the degree of base-pairing between the 
microRNA and the responsive element. Perfect 
complementarity generally results in target mRNA 
cleavage, whereas imperfect base-pairing leads to 
translational repression (136). The interaction between the 
microRNA and its target mRNA occurs between the 
5’UTR of the microRNA to the 3' UTR region of the 
mRNA by a matching seed element in the microRNA. 
Utilizing these data, one microRNA can regulate hundreds 
of genes (137) and, at the same time, one mRNA can be 
regulated by a number of microRNAs.  
 
4.2. Dicer, Drosha and angiogenesis 

Because Dicer and Drosha are essential for 
microRNA processing, blocking Dicer or Drosha 
expression might be expected to cause the down-regulation 
of most microRNAs (138). Studies have shown that Dicer 
plays a crucial role in angiogenesis in vivo and in vitro. 
Reduction of microRNA levels via Dicer silencing strongly 
impacts the functions of endothelial cells in vitro, which 
suggests a key role for microRNAs in angiogenesis (123, 
124). Reduction of endothelial microRNAs by cell-specific 
inactivation of Dicer attenuates postnatal angiogenic 
responses to a variety of stimuli, including exogenous 
VEGF, tumors, limb ischemia and wound healing (42). 
Depletion of Dicer was found to impair the development of 
capillary-like structures and to show an anti-proliferative 
effect (139, 140). Furthermore, knockdown of Dicer 
expression has been shown to cause profound 
dysregulation of angiogenesis-related genes (140, 141). 

 
In contrast to Dicer, genetic silencing of Drosha 

expression in endothelial cells with siRNA resulted in a 
significant reduction in capillary sprouting and tube 
formation in vitro, although the reduction was much 
smaller than that resulting from genetic silencing of Dicer. 
Drosha siRNA did not block angiogenesis in vivo. The 
difference between the effects of siRNA-mediated 
knockdown of Dicer and those of Drosha on capillary 
sprouting, migration, proliferation and in vivo angiogenesis 
might be due to the involvement of Dicer in other cellular 
processes, such as regulation of heterochromatin formation, 
or an alternative Drosha-independent microRNA 
processing pathway that could compensate for the loss of 
Drosha (123, 124, 142). 
 
4.3. Individual microRNAs involved in oncology and 
non-brain angiogenesis 

Although a number of studies have emphasized 
the importance of the microRNA pathway in several 
aspects of the angiogenic process, the majority do not 

provide information regarding the functions of specific 
microRNAs. Studies aimed at elucidating the role of 
individual microRNAs in the regulation of angiogenesis in 
oncology and non-brain angiogenesis are increasingly 
being performed, and most of the examples that illustrate 
principles of microRNA function in angiogenesis are 
presented here. 
 
4.3.1. MiR-15b and -16 

An association between microRNAs and human 
cancer was first reported in 2002 when it was shown that 
miR-15a and miR-16a map to chromosome 13q14, a region 
deleted at high frequency in chronic lymphocytic leukemia 
(CLL) (143). MiR-15 and -16 enhance tumor angiogenesis, 
tumor cell survival, and growth by targeting tumor 
suppressors (123, 144). Both microRNAs have been shown 
to induce apoptosis of leukemic cells by targeting the anti-
apoptotic protein Bcl-2, to block cell cycle progression and 
to be frequently down-regulated in chronic lymphocytic 
leukemia (145, 146). 

 
Although the direct effects of miR-15b and -16 

on endothelial cells have not been determined, both 
microRNAs are down-regulated by hypoxia and regulate 
the expression of VEGF in a carcinoma cell line (123, 138, 
144). In addition, miR-15b and -16 have been shown to 
control the expression of VEGF, a key pro-angiogenic 
factor (87). These data indicate that hypoxia-induced 
reduction of miR-15b and -16 contributes to an increase in 
VEGF (138). 
 
4.3.2. MiR-17-92 cluster 

A potent angiogenesis-promoting activity has 
been attributed to the miR-17-92 cluster (42, 64, 147, 148-
153). In the human genome, the miR-17-92 cluster encodes 
six microRNAs (miR-17, miR-18a, miR-19a, miR-20a, 
miR-19b-1, and miR-92-1) which are tightly grouped 
within an 800-base-pair region of human chromosome 13.  

 
The levels of miR-17, -18a, and -20a in quiescent 

endothelial cells were very low, and VEGF induction of 
these microRNAs suggests that they may regulate the 
proliferative actions of VEGF. Over-expression of these 
microRNAs in Dicer-knockdown endothelial cells rescues the 
defect in cell proliferation and cord formation (42), suggesting 
that VEGF-induced proliferation and morphogenesis are 
mediated in part by miR-17-92 cluster activation. MiR-17-92 
cluster knockdown partly restores Tsp1 and CTGF expression. 
Furthermore, transduction of Ras-only cells with a miR-17-92-
encoding retrovirus attenuated Tsp1 and CTGF levels. Cells 
transduced with miR-17-92 cluster, also known as Oncomir-1, 
formed larger, better-perfused tumors. These findings establish 
a role for the miR-17-92 cluster in non-cell-autonomous Myc-
induced tumor vascular biology (46, 64, 154). When 
components of this cluster are over-expressed in tumor cells, 
they specifically target anti-angiogenic proteins containing 
thrombospondin type 1 repeats such as Tsp1, connective tissue 
growth factor, and SPARC (64).  

 
4.3.3. MiR-126 

The best-characterized endothelial cell-specific 
microRNA is miR-126 (43, 44, 155). In mammals, it is 
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encoded by intron 7 of the EGF-like domain 7 (Egfl7) gene 
also known as VE-statin (156, 157). Indeed, the expression 
of Egfl7 and miR-126 largely matched that of endothelial 
cell markers during embryoid body formation, being highly 
enriched in Flk1-positive vascular progenitors at embryonic 
day 4 and in mature CD31- expressing endothelial cells at 
embryonic day 7 (43).  

 
MiR-126 has been identified as enriched in tissues 

with a high vascular component in both mouse and 
zebrafish (158, 159). In vitro, miR-126 regulates many 
aspects of endothelial cell biology, including cell 
migration, organization of the cytoskeleton, capillary 
network stability and cell survival (43). MiR-126 has an 
increased expression in endothelial cells, where it sustains 
pro-angiogenic factor signals through SPRED1 and PI3K 
regulatory subunit 2 (PI3KR2) repression (43), and its 
down-regulation in tumor cells contributes to abnormal 
proliferation (160). 

 
MiR-126 regulates the response of endothelial cells 

to VEGF (43) and FGF (44), and developmental 
angiogenesis in vivo (44). It was shown that knockdown of 
miR-126 in zebrafish resulted in a loss of vascular integrity 
and hemorrhage during embryonic development (43). A 
targeted deletion of miR-126 (miR-126-/-) in mice results in 
similar effects, including leaky vessels, hemorrhaging, and 
partial (~40%) embryonic lethality. MiR-126-/- mice that 
survived to adulthood appeared normal, indicating the 
important effect of miR-126 in vascular integrity during 
embryogenesis (44). MiR-126-targeted deletion reduces 
survival after myocardial infarction, since 
neovascularization is essential for cardiac repair (44). 
These findings illustrate that a single microRNA can 
regulate vascular integrity and angiogenesis, providing a 
new target for either pro- or anti-angiogenic therapies 
(161). 
 
4.3.4. MiR-130a 

The pro-angiogenic miR-130a is expressed at low 
levels in quiescent HUVEC and is up-regulated in response 
to fetal bovine serum (162). MiR-130a is a regulator of the 
angiogenic phenotype of endothelial cells through its 
ability to modulate the expression of the anti-angiogenic 
homeobox proteins GAX (growth arrest homeobox) and 
HoxA5. MiR-130a antagonizes the inhibitory effect of 
GAX on endothelial cell proliferation, migration, and tube 
formation and the inhibitory effects of HoxA5 on tube 
formation (162). The regulation of angiogenesis by hypoxia 
is an important component of homeostatic mechanisms that 
link vascular oxygen supply to metabolic demand (163). 
 
4.3.5. MiR-210 

MiR-210 is induced by hypoxia in endothelial 
cells (164). Over-expression of miR-210 in normoxic 
endothelial cells stimulates the formation of capillary-like 
structures and VEGF-driven migration, whereas its 
blockade inhibits the formation of capillary-like structures 
and decreases the migration in response to VEGF. The 
modulation of endothelial cell responses to hypoxia is 
mediated via the regulation of the receptor tyrosine-kinase 
ligand Ephrin-A3 (164). Although the importance of Eph-

A2 in the regulation of angiogenesis and VEGF signaling 
has been reported, little is known yet about the specific role 
of Eph-A3. However, these data suggest that down-
regulation of Eph-A3 is necessary for the miR-210-
mediated stimulation of capillary-like formation and 
endothelial cell chemotaxis in response to VEGF and may 
contribute to modulating the angiogenic response to 
ischemia (165).  
 
4.3.6. MiR-221 and -222 

MiR-221/-222 over-expression in Dicer-
knockdown endothelial cells restored the elevated eNOS 
protein levels eNOS induced by after Dicer silencing (125). 
NO synthesized by eNOS is necessary for endothelial cell 
survival, migration and angiogenesis (166). However, 
prediction sites for these microRNA were not found in 
eNOS 3’UTR, suggesting that the regulation of eNOS 
protein levels by miR-221/222 is likely to be indirect. 
Collectively, these reports suggest an anti-angiogenic 
action for these microRNAs, making them possibly a 
potential tool to block angiogenesis (167). In addition, loss 
of miR-221 and miR-222 in endothelial cells sustains the 
proliferative and angiogenic properties of KIT, and 
regulates CKI p27 (167), increasing cell proliferation and 
enhancing their metastatic potential (168,169). 
 
4.3.7. Let-7f 

Members of the let-7 family are enriched in 
endothelial cells and are also highly expressed in normal 
rat carotid arteries (123-125, 154), suggesting that these 
microRNAs indeed belong to the specific microRNA 
signature of the vasculature. With regard to angiogenesis, 
the highly expressed let-7f exert pro-angiogenic effects as 
evidenced by the blockade of in vitro angiogenesis with 2'-
O-methyl oligonucleotide inhibitors (123). Additional pro-
angiogenic microRNAs include let-7f, as assessed by the 
blockade of in vitro angiogenesis by 2′-O-methyl 
oligonucleotide inhibitors (123, 139). 

 
Other microRNAs that were implicated in 

promoting angiogenesis include miR-378 (170), miR-27b, 
and let-7f (123), while microRNAs may also act via 
interconnected complex networks. 
 
5. POTENTIAL THERAPEUTIC OPTIONS VIA 
MEDIATING ASSOCIATED MICRORNAS AFTER 
STROKE 
 

To date, there is no direct evidence to show that 
microRNA-mediated angiogenesis could reduce the infract 
volume or improve functional outcomes after stroke. 
However, microRNAs represent an attractive potential 
therapeutic target since enhancement of angiogenesis has 
been identified as an effective therapeutic strategy and 
microRNAs are involved in the angiogenic process. Thus, 
selective regulation of particular microRNAs targeting 
angiogenesis is a promising prospect for stroke. The 
synthesis, maturation and activity of microRNAs can be 
manipulated with various oligonucleotides that encode the 
sequences complementary to mature microRNAs (171). 
Over-expression of microRNAs can be induced by using 
either synthetic microRNA mimics or chemically modified 
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oligonucleotides (130). Conversely, microRNAs can be 
silenced by antisense sequences (synthetic analogues of 
microRNAs) (172, 173). Such manipulation may control 
angiogenesis and have potential as a new therapy for 
ischemic stroke. It is important to seek routes to interfere 
with microRNAs and to develop these as novel cerebral 
ischemia therapies. 

 
5.1. Inhibition of associated microRNAs  

MicroRNA antisense oligonucleotides provide an 
effective way to inhibit the activity of a microRNA 
involved in angiogenesis. The fact that microRNAs bind to 
their mRNA targets by Watson-Crick base-pairing indicates 
that a potential effective method of inactivating 
pathological microRNAs is to use an oligonucleotide 
complementary to the microRNA that effectively competes 
with the mRNA target. This method could avoid down-
regulation of important targets that promote the stimulation 
of gene expression (172, 174, 175). A number of groups 
have shown that vectors expressing microRNA target sites 
can be used to saturate an endogenous microRNA and 
prevent it from regulating its natural targets. This 
technology, which has been described using the terms 
decoy, sponge, eraser, antagomir, anti-miRs and 
knockdown (176-180), has utilized a variety of gene 
delivery systems, including plasmids as well as vectors 
based on adenoviruses, retroviruses and lentiviruses. 

 
The use of antisense sequences in cultured cells has 

been successful; however, the key development was 
chemical modification of microRNA inhibitors for in vivo 
utility. The large body of research undertaken during the 
development of antisense therapeutics has led to effective 
strategies for the pharmacological delivery of nucleic acids, 
facilitating the development of microRNA therapeutics 
(181). Three different chemical modifications have been 
carried out to fulfill the inhibition of microRNA function in 
vivo. One class of antisense is conjugated to cholesterol 
(antagomiR) to facilitate cellular uptake. Other classes use 
oligonucleotides with locked nucleotide acid (LNA anti-
miRs) or 2-O-methoxyethyl phosphorothioate (2- MOE) 
modification (172,174,175). Studies have revealed that 
inhibition of miR-17-92 cluster activity is associated with 
angiogenesis (64, 182).  

 
5.1.2. Over-expression of associated microRNAs  

Alternatively, microRNA mimics (double-stranded 
oligonucleotides designed to simulate the function of 
endogenous mature microRNAs) may induce target mRNA 
down-regulation and thereby diminish gene expression 
(183). For example, over-expression of miR-15 and -16 
might be an attractive anti-tumor strategy that could target 
tumor cell survival and proliferation and block VEGF-
mediated angiogenesis (138). 

 
Despite the advantages of microRNA technology, 

this new therapeutic approach has limitations. A high 
vector copy number or strong expression of the target-
bearing transcript is needed, and this can be difficult to 
achieve in some cell and tissue types for the cell/tissue 
specificity (167). In addition, modifying a viral protein can 
have a negative impact on both the stability of the virus and 

its ability to infect and replicate in the desired tissue, and 
some bystander infection of other tissues is difficult to 
avoid (183). Furthermore, the regulatory actions mediated 
by microRNAs are complex, and the same microRNA can 
cause the opposite biological effect depending on the 
context. Thus, despite the promise of the early studies, we 
must recognize that our still-limited understanding of 
microRNA biology and function caution us to move 
carefully towards a clinical translation of these new 
strategies. 
 
6. SUMMARY 
 

Time is brain for patients suffering stroke. 
Angiogenesis, always coupled with neurogenesis and 
synaptogenesis, leads to improved functional recovery after 
acute injury, and microRNAs have been suggested to be 
involved in the regulation of angiogenesis and stroke. In the 
present review, we have summarized the role of 
microRNAs in the regulation of angiogenesis and their 
potential therapeutic function after stroke. Although 
experimental microRNA therapy results look promising, 
they must be validated through studies involving different 
cohorts of patients before they can be introduced into 
clinical practice. 
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