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1. ABSTRACT 

 
Lung cancer is the leading cause of cancer-

related death worldwide and has frequently been associated 
with over-activated protein kinase B (PKB)/Akt. Akt is a 
serine/threonine protein kinase that plays an important role 
in cell growth, proliferation, and survival. Many lines of 
evidence point to the contribution of deregulated Akt in 
development or progression of lung cancer. In addition, 
recent studies have demonstrated that cancer cells defend 
themselves from therapeutic treatment through activation of 
pro-survival signals, including the Akt pathway. In this 
review, we described the way in which the Akt pathway is 
activated in development and progression of lung cancer, 
and the way in which deregulated Akt plays a significant 
role in lung tumorigenesis and resistance to chemo- or 
radiotherapy. In this review, we also discussed the potential 
of the Akt pathway as a target of lung cancer therapy.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2. INTRODUCTION 

 
Lung cancer is currently the most frequently 

diagnosed solid tumor and is the most common cause of 
cancer mortality worldwide. In fact, lung cancer was the 
leading cause of cancer death in 2009, with 159,390 
estimated deaths in the United States (1, 2). Lung cancer 
can be divided into two major forms, non-small-cell lung 
cancer (NSCLC) (85% of all lung cancer) and small-cell 
lung cancer (SCLC) (15% of all lung cancer) (3). Despite 
advances in early detection and standard treatment, NSCLC 
is often diagnosed at an advanced stage and has a poor 
prognosis (3). In NSCLC patients, the 5-year survival rate 
is only 15% (4), and in SCLC patients the 5-year survival 
rate is less than 5% (5). 

 
PKB, also known as Akt, is a serine/threonine 

protein kinase. Akt as a central effector plays a crucial role 
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Figure 1. Overview of upstream activators and downstream mediators of the Akt pathway in lung cancer. Protein kinase B 
(PKB/Akt) was activated by PI3K through phosphoinositide-dependent kinase-1 (PDK1), and PI3K was activated by upstream 
activators, such as epithelial growth factor receptor (EGFR), nicotinic acetycholine receptors (nAChR), and K-Ras. The tumor 
suppressor PTEN opposes activity of PI3K. Activated Akt increases cell survival through phosphorylation and inactivation of the 
pro-apoptotic proteins BAD and BAX, and increases expression of the anti-apoptotic protein survivin. Activated Akt increases 
protein translation, cell cycle activity, and angiogenesis through regulation of downstream mediators, such as mammalian target 
of rapamycin (mTOR), glycogen synthase kinase (GSK), and forkhead box O (FOXO). Activated Akt also increases cancer 
metastasis related protein matrix metalloproteinases (MMPs).  

 
in diverse cellular processes, including modulation of cell 
growth, proliferation, metabolism, neo-vascularization, 
and survival (6, 7). Activated Akt stimulates protein 
translation through activation of its downstream protein, 
mammalian target of rapamycin (mTOR, 8), and 
modification of protein translation is known to affect an 
immense number of biological processes, including cell 
size and growth (9). Activated Akt also stimulates cell 
cycle processing through reduction of cell cycle 
inhibitors, and increased cell cycle activity (10-12). In 
addition, activated Akt attenuates apoptosis through 
suppression of pro-apoptotic proteins (13) and 
inactivates the cell death protease known as caspase-9 
(14). Recent studies have shown that Akt is one of the 
most frequently hyperactivated kinases in human lung 
cancer and its involvement in oncogenesis has been 
demonstrated (15, 16).   In this review, we discuss the 
way in which the Akt pathway is activated and the way 
in which the hyperactivated Akt pathway contributes to 
lung cancer development and maintenance. In addition, 
we have summarized the mechanisms of therapeutic 
resistance to activated Akt pathway-induced lung 
cancer, and discussed the potential of the Akt pathway 
as a therapeutic target in lung cancer.  

3. ROLE OF AKT SIGNALING IN LUNG 
TUMORIGENESIS  
3.1. Hyperactivation of Akt in lung cancer 

    Akt is known for its central node in a signaling 
pathway consisting of many components that implicate 
transformation, survival, proliferation, angiogenesis, and 
metastasis of cancer including lung cancer (Figure 1) (16-
18). Akt encodes a serine/threonine kinase that has an 
amino-terminal pleckstrin-homology (PH) domain, a 
central catalytic domain and a short carboxyl-terminal 
regulatory domain (16). Akt up-stream protein 
phosphatidylinositol 3-kinase (PI3K) activation recruits 
Akt by direct interaction with its PH domain, and then 
another PH domain-containing serine/threonine kinase, 3-
phosphoinositide-dependent protein kinase (PDK) 
phosphorylates Akt on Threonine 308 and Serine 473, 
thereby, causes full activation of Akt (16). Increased 
phophorylation of Akt was detected in pre-malignant 
human bronchial epithelial cells, but not in normal 
bronchial cells (19). Tobacco specific carcinogen 4-
(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) 
modulated the phenotype of normal human airway 
epithelial cells through rapid activation of Akt (20). 
Activated Akt was also detected in preneoplastic bronchial 
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lesions, and these patients were reported to exhibit an 
increased propensity for development of lung cancer (21). 
Immunohistochemical study demonstrated activation of 
Akt in bronchial dysplasia, and Akt activation is important 
in genesis of a subset of NSCLSs (22, 23).  

 
    Hyperactivation of Akt was also detected in 

most NSCLC cell lines (24-26), and in 30-75% NSCLCs 
(15). In addition, studies have demonstrated that activation 
of Akt is associated with poor prognosis in patients with 
early-stage NSCLCs (27). High levels (70%) of phosphor-
Akt have also been detected in tumor tissues from SCLC 
patients by immunohistochemical analysis, and have 
implicated the activated Akt pathway in cancer progression 
(28). 
 
3.2. Akt activated via mutation or upstream signals in 
lung cancer 

Recent studies discovered Akt1 somatic mutation 
(E17K) in the PH domain, and these studies also 
demonstrated that somatic mutation of Akt1 caused 
constitutive activation of Akt1  in human cancer patients 
including lung cancer (29, 30).  Akt1 is one isoform of 
Akt1, 2, 3 and plays important role in the lung cancer 
progression (31). Malanga et al. found Akt1 E17 mutation 
in squamous cell carcinoma of the lung and they reported 
E17K point mutation induced hyperactivation of Akt1 and 
such mutation of Akt1 may contribute to the development 
of these tumors (29).  

 
Eighty-five to ninety percent of lung cancer cases 

are associated with tobacco use (32). Tobacco components 
promote lung tumorigenesis through genotoxic effects and 
biochemical modulation of signaling pathways, including 
the Akt pathway (33). PI3K is an important upstream 
protein of Akt that contributes to Akt activation in the lung 
cancer (34), and tobacco carcinogen induces PI3K-
dependent activation of Akt in lung epithelial cells (20, 35). 
PIK3CA encodes the PI3K catalytic subunit and its 
mutation has been observed in human cancers including 
lung cancer, and such changes in PIK3CA are associated 
with increased PI3K activity and p-Akt activation (36). 
Many lines of evidence show that tobacco components 
activate the PI3K/Akt pathway via activated multiple 
upstream signals of PI3K, including growth factor tyrosine 
kinase receptor, Ras, and phosphatase tensin homologue 
deleted on chromosome ten  (PTEN). PI3K is composed of 
a regulatory subunit (p85) and a catalytic subunit (p110) 
that contains Src-homology 2 domains (37). Interaction of 
these domains with phosphotyrosine residues occurs on 
growth factor tyrosine kinase receptors, such as ErbB (33). 
Epidermal growth factor receptor (EGFR) is a member of 
the ErbB family and the ErbB signal is a major upstream 
signal of PI3K. Overexpressed EGFR was detected in 
bronchial epithelial cells of smokers (38) and in vitro 
studies have shown that tobacco-specific carcinogen NNK 
induces transformation of bronchial epithelial cells via 
increased EGFR expression (39). Overexpressed EGFR has 
also been detected in approximately 40-80% of NSCLC 
patients (40). EGFR mutations also caused constant 
activation of EGFR (41) and higher activation of Akt was 
detected in NSCLC patients with EGFR mutations (42). 

These mutations of EGFR included extracellular and 
intracytoplasmic domain mutation. Extracellular mutation 
of EGFR is deletion mutation, and EGFR mutation gene 
product does not have ligand binding site, however, such 
EGFR can be constantly activated without any ligand 
binding, thus, stimulates cell proliferation in SLCs (43, 44). 
Intracytoplasmic domain mutation can be divided into 4 
major types: point mutation in exon 18, insertion in exon 
20, deletion in exon 19, and point mutation in exon 21. The 
last two mutations are the most frequent mutations of 
EGFR (45). These two intracytoplasmic domain mutations 
of EGFR cause conformational change of the ATP-binding 
domain, which results in constant activation of EGFR 
without ligand binding (45).  The PI3K/Akt pathway was 
also activated by direct interaction with Ras (33, 46). 
Activating mutations of K-ras were detected in 25% of 
smoking-associated human lung adenocarcinomas (47). In 
addition, tobacco-specific carcinogen NNK induced K-ras 
mutation (48) and K-ras gene mutation enhanced motility 
of lung adenocarcinoma cells via Akt activation (46). 
Nicotine is another tobacco-specific carcinogen that also 
activates the Akt pathway, and such activated Akt 
pathways were blocked by inhibitors of nicotinic 
acetylcholine receptors (nAChR) (20). Although nAChR 
has the ability to activate Akt, it is dependent on PI3K (33), 
meaning that activation of PI3K/Akt via stimulation of 
nAChR is also one of the mechanisms of tobacco 
component activation of the PI3K/Akt pathway. Lipid 
phosphatase PTEN is another PI3K upstream protein that 
negatively regulates the PI3K/Akt pathway through 
dephosphorylation of PIP3 at the plasma membrane, while 
mutated PTEN does not (37). Studies have shown that loss 
of PTEN occurs in ~70% of NSCLC through inactivating 
mutations (49), and such inactivation of PTEN causes 
constitutively activated PI3K/Akt signaling, which 
contributes to lung carcinogenesis (50). Overexpressed 
microRNAs also downregulate PTEN expression in lung 
cancer. microRNAs represent a class of small RNAs 
frequently deregulated in human malignancies, and, some 
miRNAs are overexpressed in NSCLC like miR-21, miR-
221 and miR-222 (51, 52). Moreover, such overexpressed 
miRNAs downregulate PTEN gene expression, thereby, 
promote NSCLC invasion (51, 52). The homogenous 
deletion of PTEN gene and methylation of PTEN promoter 
are other important mechanism of lack of PTEN activity in 
lung cancer (53). Noro et al. analyzed PTEN levels in 25 
lung cancer cell lines and demonstrated that 6 out of 25 cell 
lines displayed low expression of PTEN protein (54). In 
addition, they demonstrated that genomic analysis of 2 of 
the 6 cell lines revealed homozygous deletions of the PTEN 
gene and another 2 of the 6 cell lines showed 
hypermethylation of  PTEN gene promoter. Taken together, 
hyperactivation of Akt in lung cancer was caused by 
somatic mutation of Akt or deregulation of several 
upstream signals, including EGFR activation, Ras 
activation, PI3K activation, and PTEN inactivation (15). 

 
3.3. Activated Akt stimulates lung tumorigenesis 
through regulation of many cellular processes 

Deregulated Akt stimulates lung tumorigenesis 
through enhancement of cancer cell growth, survival, and 
proliferation. Such effects of Akt in lung tumorigenesis 
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were presented via regulation of multiple downstream 
signaling pathways (Figure 1), such as mTOR, forkhead 
box class O (FOXO), and glycogen synthase kinase 3 
(GSK3) (15).  

 
3.3. 1. Activated Akt stimulates lung cancer cell growth 
and proliferation 

mTOR is one of the most important downstream 
proteins of Akt, and the activated Akt/mTOR pathway 
contributes to development and maintenance of lung cancer 
(35, 55). Like Akt, mTOR drives tumorigenesis through 
regulation of cell growth, proliferation, protein synthesis, 
and metabolism (56). In fact, frequent Akt activation and 
mTOR phosphorylation were found in 51% of NSCLC 
patient samples and in 74% of NSCLC cell lines (21). 
mTOR is present in two distinct complexes, mTOR 
complex 1 (mTORC1, mTOR/Raptor) and mTOR complex 
2 (mTORC2, mTOR/Rictor) (57). mTORC1 increases protein 
synthesis by activation of p70 ribosomal protein S6 kinase 
(S6K1) and inactivation the eIF4E binding protein (4E-BP1), 
which increases the level of many proteins needed for cell 
cycle progression, proliferation, angiogenesis, and survival 
pathways (57). Akt activates mTORC1 through inhibition of 
the mTORC1 inhibitor PRAS40 (58, 59) and phosphorylation 
of tuberous sclerosis complex 2 (TSC2) because 
phosphorylated TSC2 can inhibit Rheb of the mTORC1 
activator (60-62). Studies have shown that tobacco 
components stimulate NSCLC growth and proliferation 
through activation of mTORC1 and increase phosphorylation 
of S6K and 4E-BP1; such events were inhibited by treatment 
with Akt siRNA or the mTOR inhibitor (63, 64).  

 
Akt activation stimulates cell cycle progression 

through increases of cell cycle promoter cyclin D1 and 
inactivation of cell cycle inhibitors p21 and p27 (15). Cyclin 
D1 is one of the G1 cyclins, which control cell cycle 
progression by allowing transition of G1 to S. Previous studies 
have demonstrated that cyclin D1 was overexpressed in lung 
cancer, and that cyclin D1 overexpression is involved in 
tumorigenesis of NSCLCs from the early stage, which could 
be a molecular marker for poorer outcome of cancer (65, 66). 
Activated Akt can increase cyclin D1 through two different 
mechanisms, which include control of synthesis and stability 
of cyclin D1 (67, 68). GSK3beta, an Akt substrate as well 
as a negative regulator of cyclin D1, can degrade cyclin D1 
(69), however, activated Akt can phosphorylate and 
inactivate GSK3beta to prevent cyclin D1 degradation in 
lung adenocarcinoma (70). Activated Akt can also directly 
increase cyclin D1 expression through activation of 
Akt/mTOR-dependent protein translation signals (71). In 
addition, Akt also controls other important cell cycle 
regulators, such as p21 and p27 (69). Previous studies have 
demonstrated that p27 was decreased in cancerous lung 
tissues compared to non-neoplastic lung tissue (72), and 
low levels of p21, p27 are significantly correlated with 
survival in NSCLC patients (73-75). Activated Akt directly 
antagonizes the action of p21 and p27 by phosphorylation 
of a site located near the nuclear localization signal to 
induce cytoplasmic retention of these cell cycle inhibitors 
(15, 76). Recent studies have suggested that the PI3K/Akt 
pathway regulates p27 protein stability through 
upregulation of S-phase kinase-associated protein-2 (SKP2) 

(69). SKP2 is a key component of the SCFSKP2 ubiquitin 
ligase complex that mediates degradation of p27 (77). Akt 
regulates abundance of p27 mRNA by phosphorylation and 
inactivation of the FOXO transcription factors (78). Recent 
lung cancer studies using animal models showed that PI3K 
inhibitor treatment rapidly decreased phosphorylated Akt 
and phosphorylated p27, concomitant with an increase in 
nuclear p27; such events inhibited tumor growth (79). 
 
3.3.2. Activated Akt attenuates apoptosis in lung cancer 

   Apoptosis is a highly regulated natural process, 
and maintains the health of organisms through removal of 
unwanted, redundant, or damaged cells (80, 81); therefore, 
dysregulation of apoptosis often results in development of 
human disease, including cancer (82). Cancer is often 
characterized by too little apoptosis; such defects of 
apoptosis are known to be caused by several deregulated 
pathways and by tumorigenesis (83). During development 
of lung cancer, the activation of Akt pathway leads to 
survival of cancer cells through inhibition of pro-apoptotic 
protein and increases anti-apoptotic proteins. Increased 
survivin by activated Akt is one of the anti-apoptotic 
mechanisms. Survivin is one anti-apoptotic protein, and 
overexpressed survivin has been detected in lung cancer 
(84, 85). Furthermore, survivin has been identified as a 
negative prognostic factor in NSCLCs (86). In SCLCs, 
constitutively active Akt can attenuate apoptosis through 
increased survivin expression, whereas negative 
modulation of Akt decreased survivin expression (87). 
BAD is a pro-apoptotic protein, and is suppressed by 
activation of the PI3K/Akt pathway in response to 
nicotine exposure, leading to a cell growth advantage 
(40). Nicotine-dependent Akt activation also effectively 
leads to increased phosphorylation of Bax, another 
member of the Bcl-2 protein family, thereby, abrogating 
its pro-apoptotic function (88). 

 
Akt also controls apoptosis through regulation of 

the major substrate FOXO transcription factors. FOXO 
protein promotes apoptosis by translocating to the nucleus 
and upegulation of several pro-apoptotic target genes 
including Fas-L, TRADD and Bim (89, 90). However, such 
effect of FOXO in apoptosis can be blocked by Akt 
activation. Activated Akt phosphorylates FOXO and such 
phosphorylated FOXO proteins are relocalized to 
cytoplasm from nucleus, so sequestering them from their 
gene targets (91). In addition, activated Akt induces the 
degradation of FOXO through phosphorylation of FOXO 
(92, 93). Skp2 induces ubiquitin-dependent proteasome 
degradation of FOXO1 and this effect of Skp2 requires 
Akt-specific phosphorylation of FOXO1 at Ser256 (94). 
Moreover, Akt activation upregulates Skp2 (95). Several 
lines of researches showed that phosphorylated Akt and 
FOXO proteins were increased in lung tumors (79) and 
inhibition of Akt using RNA interference led to FOXO1 
translocation to the nucleus and initiation of apoptosis in 
NSCLC cells (96).  
 
3.3.3. Activated Akt increases angiogenesis in lung 
cancer 

Angiogenesis is required for tumor growth and 
metastasis, and vascular endothelial growth factor (VEGF) 
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is crucial in cancer induced endothelial cell proliferation 
and vascular permeability, leading to neo-angiogenesis 
(97). VEGF levels in bronchial epithelial cells of smokers 
were increased in association with progression of bronchial 
dysplasia (98), and high vascularization was detected in 
SCLCs (99). In addition, high levels of VEGF in plasma of 
SCLC patients were associated with poor prognosis (100, 
101). Hypoxia, an important phenomenon in solid tumors 
(102), increases hypoxia-inducible factor-1 (HIF-1) through 
Akt pathway (103-106). HIF-1, a key transcription factor, 
increases VEGF expression (103-105). These findings 
suggest a close association between Akt activation and 
VEGF-induced angiogenesis in lung cancer. In fact, natural 
dietary flavonoid apigenin inhibits tumor angiogenesis 
through decreasing VEGF and HIF-1 expression via 
PI3K/Akt/p70S6K1 pathway in many cancers including 
lung cancer (107, 108). 

 
3.3.4. Activated Akt stimulates lung cancer metastasis 

   Cancer metastasis is the primary cause of 
morbidity and mortality for patients with cancer (109), and 
matrix metalloproteinases (MMPs) play an important role 
in cancer metastasis (110). In lung cancer patients with 
clinically evident metastasis, serum levels of MMP-2 were 
significantly elevated compared to those without metastasis 
(111). Compared to healthy volunteers, MMP-9 was also 
increased in patients with lung cancer (112). Tumors with 
lymph node metastasis showed a tendency toward higher 
levels of expression of MMP-7 mRNA compared to those 
without lymph node metastasis (113). Studies of Akt 
pathway activation in lung cancer have demonstrated 
partial regulation of MMPs gene expression by the 
PI3K/Akt pathway (114, 115). These results suggest that 
Akt may play an important role in lung cancer metastasis 
through control of MMP expression. In fact, findings from 
several studies have demonstrated that inhibition of MMP-
2, MMP-9, and MMP-7 via down-regulation the PI3K/Akt 
signaling pathway can suppress lung cancer invasion and 
migration (116-118).  
 
4. ROLE OF AKT PATHWAY IN CHEMO- AND 
RADIOTHERAPY RESISTANCE OF LUNG 
CANCER 
 

Therapeutic resistance is a major obstacle to 
successful cancer therapy, and the Akt/mTOR pathway 
may play an important role in therapeutic resistance of 
cancer cells. Radiation induces activation of multiple 
intracellular signaling pathways and in general, this 
radiation-induced signaling will lead to radioprotective 
signals, including the Akt pathway (37, 119). In addition, 
the activated Akt pathway was also closely associated with 
chemotherapy resistance in lung cancer (120).  

 
Cancer cells can acquire resistance to apoptosis 

through various mechanisms that interfere at different 
levels of apoptosis signaling (121). Anti-apoptotic protein 
overexpression or pro-apoptotic protein decrease is one of 
the therapeutic resistance mechanisms. Activated Akt has 
been detected in chemotherapy resistant lung cancers and 
Akt is known to regulate cancer cell survival through 
control of anti- and pro-apoptotic proteins. In fact, 

transfection of constitutively active Akt into NSCLC cells 
with low Akt activity increased Akt activity and attenuated 
chemotherapy and radiation-induced apoptosis (25). In 
addition, inhibition of Akt activity in these cell lines using 
a pharmacological or genetic approach resulted in enhanced 
cellular responsiveness to chemo- or irradiation therapy 
(25). Findings from these studies suggest that resistance to 
the apoptosis mechanism in lung cancer is related to the 
activated Akt pathway. Mcl-1 and cellular FLICE-like 
inhibitory protein (c-FLIP) are anti-apoptotic proteins, and 
tumor necrosis factor-related apoptosis-inducing ligand 
(TRAIL) is a potential anticancer agent. Recent studies 
have shown that lung cancer cells can acquire resistance to 
potential anticancer agents, TRAIL-induced cytotoxicity 
through Akt-mediated eminent expression of c-FLIP and 
Mcl-1 (122). Findings from this study demonstrated 
increased expression of c-FLIP, and Mcl-1 expression was 
dramatically decreased by Akt siRNA treatment. In 
addition, Chen et al. (101) demonstrated that increased 
Mcl-1 was dependent on the Akt-COX-2 pathway in this 
TRAIL-resistant lung cancer. BAD is an important pro-
apoptotic protein associated with chemo- and radiation 
therapy resistance. In SCLC cells, constitutively activated 
Akt increased chemo- and radio-resistance through 
phosphorylation and inactivation of BAD (123). Cisplatin 
is an anticancer agent that stimulates cancer cell apoptosis. 
However, cisplatin treatment increased Akt pathway-
dependent pro-survival protein survivin expression in 
SCLC, so that partially protected cancer cells were 
produced from drug-induced apoptosis (87). 

 
mTOR is an major target downstream of Akt, 

therefore, many inhibitors of mTOR,  such as rapamycin 
and RAD001, have been developed as antitumor drugs. In 
fact, several rapamycin analogues are now in clinical trials 
in oncology. However, clinical studies have shown that 
some cancers including lung cancer occur due to resistance 
to inhibitors of mTOR through rapamycin feedback 
activation of Akt (124).  

 
    Autophagy is a lysosome-dependent 

degradative pathway that is frequently activated in cancer 
cells treated with chemo- or radiotherapy (125).  
Autophagy was negatively regulated by mTOR (126), so 
that inhibition of the Akt/mTOR pathway results in 
increased autophagy in lung cancer (120). Autophagy has 
recently been demonstrated as important for conferring 
resistance to chemotherapy, radiation therapy, and 
immunotherapy (127) because autophagy constitutes a 
stress adaptation for avoidance of cell death and 
suppression of apoptosis (128). In fact, combination 
treatment of the Akt inhibitor perifosine with autophagy 
inhibitors enhanced apoptosis and tumor growth in lung 
cancer (129).  

 
5.  AKT PATHWAY AS A THERAPEUTIC TARGET 
OF LUNG CANCER  
 

    As described above, activation of Akt pathway 
is closely associated with lung tumorigenesis. 
Overeactivation of Akt pathway strongly contributes cell 
proliferation, survival as well as angiogenesis, which are 
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Figure 2. Targeting of EGFR/PI3K/Akt/mTOR signal transduction pathways in lung cancer therapy. Potential sites of action of 
small molecular weight inhibitors are indicated. EGFR: epidermal growth factor receptor; mTOR: mammalian target of 
rapamycin; PDK:  phosphoinositide-dependent kinase; PI3K: phosphoinositide 3-kinases; PTEN: phosphatase and tensin 
homolog.  

 
responsible for the important aspects of lung tumorigenesis. 
Therefore, Akt pathway can be an important therapeutic 
target for treatment of lung cancer. In fact, many clinical 
studies have demonstrated that inhibition of Akt pathway 
by a pharmacological or genetic approach can significantly 
reduce lung cancer progression (31, 63, 129). Therefore, 
many research groups are actively developing Akt 
inhibitors as an anti-cancer drug.  

 
Perifosine is a lipid-based phosphatidylinositol 

analogue that inhibits Akt activation through preventing 
Akt with PtdIns(3,4,5)P3 and undergoing membrane 
translocation (130). Studies have shown that perifosine 
presents anti-cancer effects through inhibiting Akt/mTOR 
signaling and inducing apoptosis in human lung cancer 
cells (129, 131). Natural plant product deguelin is also an 
Akt inhibitor and recent studies have demonstrated that 
deguelin has chemopreventive effects on tobacco-induced 
lung tumorigenesis (132). Deguelin also exhibits 
therapeutic activities through inducing apoptosis in 
premalignant and malignant human bronchial epithelial 
cells (133).  

 
As we have discussed above, Akt was activated 

by several upstream receptor tyrosine kinases and plays a 
significant role through control of several downstream 
signals during development and progression of lung cancer. 
Therefore, selective inhibition of these upstream or 
downstream signals of Akt may also be an important 
strategy in lung cancer therapy. In fact, many inhibitors of 

the Akt pathway have now been developed as anti-cancer 
drugs (Figure 2), and studies have shown that use of these 
inhibitors for inactivation of EGFR (gefitinib and erlotinib), 
PI3K (LY294002, wortmannin, and NVP-BEZ235), PDK 
(dichloroacetate and celecoxib), and mTOR (rapamycin 
and RAD001) or delivery of wild PTEN to increase PTEN 
expression can significantly inhibit lung tumor progression 
through Akt pathway-dependent increase of apoptosis or 
inhibition of proliferation and growth (134-137). Recently, 
a new orally available dual PI3K/mTOR inhibitor, NVP-
BEZ-235 was developed as an anti-cancer drug which 
exhibited more anti-proliferative effect than mTOR 
inhibitor treatment (138). 

 
However, prolonged treatment with a single 

inhibitor of the PI3K/Akt pathway induces resistance 
through reactivation of the PI3K/Akt pathway, so that 
multi-target approaches may be a good strategy for better 
efficacy in lung cancer therapeutics and for reduced risk 
for development of secondary resistance. For example, 
treatment with LY294002, a PI3K/Akt inhibitor, did not 
induce apoptosis in lung adenocarcinoma cells, 
however, simultaneous inhibition of the PI3K/Akt 
pathway by LY294002 and Bcl-xL function by Bcl-xL 
siRNA greatly enhanced the apoptotic response (139). 
Sun et al. (115) also reported that rapamycin induced 
Akt activation attenuates rapamycin`s growth-inhibitory 
effects and combined treatment of rapamycin with PI3K 
inhibitor can induce enhanced inhibitory effects on the 
growth of lung cancer.  
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In lung cancer progression, the Akt pathway can be 
often activated by multiple upstream activators, so that 
inactivation of one upstream activator of Akt may not result in 
significant therapeutic efficacy. Even though EGFR is an 
upstream activator of the Akt pathway, some lung cancer 
resistancy may be associated with EGFR inhibitor treatment. 
In fact, the Akt pathway can be activated EGFR-independent 
signals such as Ras activation or PTEN loss (37, 140). In this 
case, inhibition of the Akt pathway with PI3K/Akt inhibitor led 
to sensitization of lung cancer to EGFR inhibitor 
chemotherapy (141). Akt is not the sole gene activated in lung 
cancer. Rather, many other activated oncogene pathways 
cooperate with the Akt pathway in the promotion of lung 
cancer cell proliferation and growth. Therefore, inactivation of 
these pathways with the Akt pathway together may enhance 
Akt pathway targeted lung cancer therapeutic efficacy. In fact, 
Lee et al. (118) have reported that the PI3K/Akt and MAPK 
pathways cooperate in the promotion of NSCLC cell 
proliferation through maintenance of cell survival, and 
concurrent inhibition of both pathways have showed enhanced 
anti-proliferative effects by increasing apoptosis.       
 

As described above, radiotherapy resistance is also 
partly associated with the reactivated Akt pathway in lung 
cancer, so that combination treatment that includes radiation 
along with Akt pathway targeted therapy can enhance the 
efficacy of the radiation therapy effect in lung cancer 
development and progression. Konstantinidou et al. (119) 
reported that PI3K/mTOR inhibitor treatment can increase 
radiation-induced apoptosis in NSCLC. Park et al. (120) also 
reported on combination of PTEN and radiation enhanced cell 
death and G2/M arrest through inactivation of Akt activity and 
p21 induction in NSCLC cells. 
 
6. SUMMARY 
 

The Akt pathway plays a significant role in cell 
growth, proliferation, and survival. During development and 
progression of lung cancer, the Akt pathway is often activated 
by carcinogens or various genetic mutations of upstream 
regulators; such a deregulated Akt pathway is clearly a central 
pathway in critical aspects of malignant transformation. 
Consequently, this pathway plays a key role in radio- and 
chemotherapy resistance in patients with lung cancer. 
Therefore, combination treatment of Akt pathway targeted 
inhibitors with other chemo- or radiotherapy can enhance 
therapeutic efficacy in treatment of lung cancer by reducing the 
risk for development of secondary resistance. 
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