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1. ABSTRACT 
 

To characterize endogenous molecules regulating 
nociception, various groups have focused on 
dehydroepiandrosterone (DHEA). Indeed, DHEA 
modulates NMDA and P2X receptors which control 
neurobiological activities including nociception. Thus, 
various results were published on DHEA ability to regulate 
nociception but the data were interpreted separately. To 
provide an overview, we analyzed here the current 
knowledge on DHEA regulatory action on the spinal cord 
(SC) which is pivotal for nociception. DHEA endogenously 
synthesized in the SC appears as a key factor regulating 
nociception. However, DHEA effects on nociceptive 
mechanisms are complex. Acute DHEA treatment exerts a 
biphasic effects on nociception (a rapid pro-nociceptive 
action and a delayed anti-nociceptive effect). Chronic 
DHEA treatment increased basal nociceptive thresholds in 
neuropathic and control rats, suggesting that androgenic 
metabolites of DHEA exerted analgesic effects while 
DHEA itself caused a rapid pro-nociceptive action. To get 
more insights into DHEA effects on nociception, we 
provided a hypothetical scheme recapitulating cellular 
mechanisms of action of DHEA in the control of 
nociception. Perspective is opened for the development of 
DHEA-based strategies against pathological pain.   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2. INTRODUCTION 
 

The anatomical nociceptive circuit implies 
peripheral nociceptors which are essential for the 
perception of pain. These terminals belong to primary 
sensory neurons whose cell bodies are located in dorsal 
root ganglia. Central axons of primary afferents terminate 
in the spinal cord (SC) dorsal horn (DH) and second-order 
spinal neurons projecting to the brain often have 
convergent inputs from different sensory fibers and tissues. 
Therefore, the SC appears as a pivotal structure in 
nociception and pain transmission. While the spinal 
anatomical circuit involved in nociception is well 
identified, molecular and neurochemical components of 
pain modulation deserve further clarification even though 
substantial progress has been made over the two last 
decades (1-11). It is most probable that nociception and 
pain, especially pathological pains, are characterized by 
multiple or sophisticated cellular mechanisms so that the 
identification of all of the endogenous factors involved 
appears extremely important for the development of 
efficient therapeutic strategies (12-17). Most of nociceptive 
and pain processes already identified seem as subjected to 
an expression of neural plasticity or to the capacity of 
neurons to change their function, chemical profile and 
structure or to trigger apoptotic processes, particularly in
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Figure 1. Biochemical pathways leading to DHEA 
biosynthesis. P450scc, cytochrome P450side-chain-
cleavage; P450c17, cytochrome P450c17 or 17α-
hydroxylase/17,20lyase; HST, Hydroxysteroid 
sulfotransferase.       

 
chronic pain states (18). Thus, preventing these 

neural modifications responsible for chronic pain is a real 
challenge for biomedical research. To take up this 
challenge, various neurotransmitters and endogenous 
compounds modulating neural activity and plasticity have 
been investigated to determine their effective role in the 
regulation of nociceptive mechanisms (4, 5). Because 
dehydroepiandrosterone (DHEA) is an endogenous 
molecule generally considered as a crucial modulator of 
several biological functions (for review, 19), DHEA has 
raised a particular interest for the regulation of nociception. 
Indeed, DHEA and its sulfate derivative (DHEAS) are the 
most abundant steroids secreted by the human adrenal 
gland and decreased DHEA blood levels are correlated with 
various age-related physiological deficiencies (19, 20). It 
has been demonstrated that, within nanomolar and micromolar 
concentration ranges, synthetic DHEA controls various 
mechanisms in the central nervous system (CNS) of rodents 
(21, 22). DHEA induces prominent increases in the numbers of 
neurons and astrocytes with extensions of the processes of both 
cell types (23). In particular, DHEA promotes axonal growth 
and morphological indices of synaptic contacts whereas 
DHEAS stimulates dendritic growth and branching in cultured 
embryonic neuronal cells (24). In addition, DHEA has been 
reported to increase neuronal excitability when directly applied 
to septal-preoptic neurons (25). Moreover, several studies have 
also indicated that DHEA and DHEAS modulate NMDA and 
P2X receptors which are involved in numerous activities of the 
nervous system including nociception and pain transmission 
(21, 22, 26). Consequently, various research groups have 
focused their efforts on DHEA in order to determine its ability 
or potential to regulate nociceptive and pain mechanisms (26-
31). These groups published a variety of results that were 
interpreted separately so that an integrated or complete view of 
the situation is not available. Therefore, we have decided to 
recapitulate, to discuss and to highlight in the present paper the 
current knowledge on the regulatory action exerted by DHEA 
on the SC which plays a pivotal role in nociception and pain. 

3. BIOSYNTHESIS OF DHEA IN THE SC 
 
The biosynthesis of DHEA requires catalytic 

actions of two different cytochromes: P450 side-chain-
cleavage (P450scc) which converts cholesterol into 
pregnenolone (PREG) that is transformed successively into 
17-hydroxy-PREG and DHEA by a single microsomal 
enzyme, cytochrome P450c17 (P450c17) (Figure 1). Unlike 
in humans, plasma concentrations of DHEA/DHEAS are 
extremely low or undetectable in adult rodents (32, 33). 
Concurrently, P450c17 gene is expressed in human 
adrenals and gonads while in rodents, the enzyme is present 
in gonads but not in adrenals (34-38). By using synthetic 
DHEA and the rodent brain as model, pharmacological and 
behavioral studies suggested that DHEA may be a potent 
endogenous modulator of several neurobiological 
mechanisms and its decrease during ageing is correlated to 
various physiological deficits (19-21). However, the 
validity of such hypothesis remains speculative because the 
adult rodent endocrine glands do not secrete significant 
amounts of DHEA (32, 33). Thus, it appears that in adult 
rodents, DHEA could be a potent endogenous modulator of 
the CNS activity only if this steroid is synthesized within 
the nervous tissue. Consequently, the first step for the 
demonstration of a possible role of endogenous DHEA in 
the modulation of the SC nociceptive function was the 
investigation of local production of DHEA in spinal neural 
pathways. 
 
3.1. Evidence for the expression of cytochrome P450c17 
in the SC 

Real time polymerase chain reaction after reverse 
transcription made it possible to detect significant amounts 
of specific mRNA encoding P450c17 in all segments of 
adult rat SC (29). In particular, the specificity of PCR 
products was confirmed by analyses based on melting 
temperature in the same closed capillary used for 
amplification, an approach which avoided the risk of 
contamination and enabled easy differentiation of specific 
fragments from non-specific products (39, 40). The 
normalisation of P450c17 product to GAPDH revealed that 
the concentrations of P450c17 mRNA present in the adult 
rat SC were sufficient to justify a substantial expression of 
the enzymatic protein in spinal tissue (29). 

 
The availability of a specific antiserum against 

P450c17 allowed the assessment by western blot of the 
occurrence of P450c17 protein in the SC and testis. A 
specific P450 c17 protein was detected in total 
homogenates and microsomal fractions from the SC and 
testis using P450c17 antiserum which has also been utilized 
successfully to localize P450c17 in Leydig cells (29, 41, 
42). The anti-P450c17 made it also possible to determine 
the anatomical and cellular distribution of P450c17-like 
immunoreactivity in the white and gray matters of the SC 
(29, 31). Double-labelling experiments with specific 
markers for neurons, astrocytes and oligodendrocytes (43-
46) revealed that P450c17-immunostaining was expressed 
in both neurons and glial cells throughout the adult rat SC 
(29). However, in the white matter, P450c17 was mainly 
localized in astrocytes while the enzyme was detected in 
neurons and oligodendrocytes of the gray matter. In 
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particular, an important population of neurons of the DH 
expressed P450c17-immunoreactivity suggesting that the 
enzyme may be involved in the modulation of sensory 
activity (4, 5, 47). Numerous neurons of the ventral horn 
also contained P450c17 indicating a possible correlation of 
the enzyme activity with motor function (48). Surprisingly, 
the P450c17-immunoreactive material was detected in the 
nucleoplasm of certain nerve cell bodies even though the 
enzyme is well known to be a microsomal protein in 
classical steroidogenic tissues (29, 42). It is possible that 
this apparent nuclear labelling corresponds to a localization 
of P450c17 in the endoplasmic reticulum associated to the 
nuclear membrane. Nevertheless, it is noteworthy that 
previous studies have also mentioned the nuclear 
localization of steroidogenic enzymes such as 17beta-
hydroxysteroid dehydrogenase and 5alpha-reductase 
isozymes in nuclear and cytoplasmic compartments of 
human and rat prostatic cells (49-52). 
 
3.2. Biological activity of P450c17 in the SC 

To demonstrate that P450c17-like 
immunoreactivity detected in the SC corresponds to an 
active form of the enzyme, pulse-chase experiments were 
performed to study the conversion of tritiated pregnenolone 
([3H]PREG) into radioactive metabolites by SC slices (29, 
30). The results showed that [3H]DHEA was synthesized de 
novo from [3H]PREG in SC slices and the newly-produced 
steroid was characterized by the HPLC/Flo-One method 
(40, 53-56). In addition, among the newly-synthesized 
radioactive steroids from [3H]PREG, two corresponded to 
[3H]PROG and [3H]17-OH-PROG indicating that the 
precursor ([3H]PREG) was converted by 3beta-
hydroxysteroid dehydrogenase (3beta-HSD) into 
[3H]PROG which was in turn transformed into [3H]17-OH-
PROG by P450c17. In agreement with this observation, 3 
beta-HSD gene expression and activity have been shown in 
adult rat SC (57). Furthermore, the conversion of 
[3H]PREG into [3H]DHEA or [3H]-17-OH-PROG was 
significantly reduced when the pulse-chase experiments 
were performed in the presence of  ketoconazole, a 
selective inhibitor of P450c17 (58, 59). Moreover, kinetics 
studies showed that the absolute amount of [3H]DHEA 
synthesized from [3H]PREG reached a maximum within 3 
h but declined slowly as only a 20% decrease was observed 
during the next 9 h (29). This result suggests that 
endogenous DHEA produced in the SC may be 
accumulated and reach sufficient or required concentrations 
to induce various neuroactive actions. The 20% decrease 
may correspond to the percentage of DHEA converted into 
DHEAS or into endogenous estradiol as observed in 
hippocampal neurons (60). DHEA can also be re-obtained 
from DHEAS by the activity of steroid sulfatase the 
presence of which has been shown in human and rodent 
nervous systems (61, 62). 
 
3.3. Hypothetic significance of DHEA production in the 
SC 

It has been demonstrated that DHEA promotes 
recovery of motor behavior after contusive SC injury in 
adult rodent (63). This observation was made by treating 
the injured SC with synthetic DHEA. Therefore, it is 
possible that local production of DHEA in the SC may 

belong to endogenous mechanisms activated in the spinal 
neural tissue to cope with aggressive or traumatic 
situations. In support of this suggestion, in the white matter, 
P450c17-immunoreactivity was mainly expressed in 
astrocytes, a cell-type strongly involved in reactive 
gliosis characterizing the spinal neural tissue under 
traumatic states (64). It has also been reported that 
DHEA, PREG and sex steroids may affect brain 
repair by down-regulating gliotic tissue (65). 
Moreover, implication of DHEA was evidenced in the 
regulation of astroglia reaction to denervation of 
olfactory glomeruli (66). Collectively, these data 
indicate that DHEA endogenously synthesized in the 
CNS may be important for the control of neural 
plasticity. Various pharmacological studies have also 
suggested the involvement of synthetic 
DHEA/DHEAS in the modulation of sensory 
processes. A pro-nociceptive effect of DHEAS has 
been described in mice using peripheral flexor 
response test (27, 28). Electrophysiological data also 
revealed that DHEA potentiates native ionotropic 
ATP receptors containing the P2X2 subunit in rat 
sensory neurons (26). A competitive inhibition of the 
capsaicin receptor-mediated current by DHEA has 
recently been shown on dorsal root sensory neurons 
(67). Altogether, these studies suggest a potentially 
pivotal role for endogenous DHEA in the control of 
nociceptive transmission. This hypothesis is strongly 
supported by the localisation of P450c17 in numerous 
neurons of the DH [an important structure involved in 
nociception (4, 5)] and also by the local synthesis of 
DHEA in spinal neuronal networks. However, these 
data which were generally obtained in naive animals 
were not sufficient to prove that endogenous DHEA 
effectively modulate the SC nociceptive function and 
pain sensation. Therefore, additional series of 
investigations using the rat experimental model of 
neuropathic pain (68) were required to definitively confirm 
the regulatory role of endogenous DHEA on nociception.    
 
4. MODIFICATION OF DHEA PRODUCTION IN 
THE SC DURING NEUROPATHIC PAIN 
SITUATION 
 

Molecular experiments using quantitative real 
time polymerase chain reaction after reverse transcription 
revealed that the transcripts encoding P450c17 were down-
regulated in the SC dorsal horn of rats subjected to 
peripheral neuropathic pain (30, 31). The down-regulation 
of P450c17 gene expression was accompanied by a marked 
decrease in P450c17 enzymatic activity in the SC as 
revealed by in vitro and in vivo biochemical experiments. 
Therefore, it appeared that the local synthesis of DHEA by 
sensory neural networks of the SC (29) was dramatically 
reduced under a chronic pain situation. To understand the 
reason why DHEA synthesis decreased in the SC of 
neuropathic pain rats, various series of behavioral and 
pharmacological studies were performed using exogenous 
DHEA and ketoconazole, a pharmacological P450c17 
inhibitor that blocks DHEA formation allowing therefore 
the identification of the role played by DHEA 
endogenously produced by spinal nerve cells (69, 70). 
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5. BEHAVIORAL EVIDENCE FOR A 
REGULATORY EFFECT OF DHEA ON SPINAL 
NOCICEPTIVE PATHWAYS 
 

A first series of behavioral experiments 
investigated the effects of acute subcutaneous 
administration of DHEA on nociceptive thresholds of naive 
rats (30). Injected concentrations in rats were determined 
on the basis of DHEA doses generally used in humans (26, 
71-74). All behavioral measurements within 1.5 h interval 
following acute subcutaneous administration revealed that 
each tested dose of DHEA was capable of decreasing 
both thermal and mechanical nociceptive thresholds 
(30). These observations indicate that the rapid action of 
DHEA on nociception is a pro-nociceptive effect. In 
support of this suggestion, additional series of 
behavioral studies after acute intrathecal injections also 
showed that DHEA produced a rapid pro-nociceptive 
effect in naive rats and transiently potentiated the 
thermal hyperalgesia and mechanical allodynia 
characterizing neuropathic animals (30, 31). The pro-
nociceptive effect of acute DHEA treatment was very 
strong when DHEA was directly applied to the lumbar 
SC. Indeed, acute intrathecal injection of 10 mg/kg of 
DHEA (a dose 7.5- or 15-fold lower than those used for 
subcutaneous administration) was capable of producing 
a nociceptive threshold decrease similar to that obtained 
with acute s.c. injections of DHEA at 75 mg/kg or 150 
mg/kg (30). This result indicates that the SC sensory 
networks are strongly involved in the mediation of 
DHEA action on nociception. In addition, inhibition of 
the local synthesis of DHEA in spinal neural pathways 
by intrathecal administration of ketoconazole, a 
pharmacological P450c17 blocker (69, 70), produced 
analgesia in neuropathic rats and a potent anti-
nociceptive effect in controls, demonstrating that DHEA 
produced by the SC (29) is an endogenous pro-
nociceptive steroid (30). Therefore, it is possible to 
speculate that the down-regulation of P450c17 gene 
expression and DHEA formation in the SC may be an 
endogenous mechanism triggered by these animals to 
cope with the chronic pain condition. In support of this 
suggestion, suppression of DHEA synthesis in the SC by 
intrathecal injection of ketoconazole resulted in a 
significant analgesic effect that completely abolished in 
neuropathic rats the thermal hyperalgesia and 
mechanical allodynia evoked by sciatic nerve ligature 
(30, 31). Interestingly, previous studies showed that 
neuropathic painful state also produced in SC an up-
regulation of the biosynthetic pathway of neurosteroid 
allopregnanolone, a potent allosteric activator of 
GABAA receptors (40). Thus, the process of 
neurosteroid biosynthesis appears to be a mechanism 
selectively regulated in SC sensory networks during 
neuropathic pain to increase, on the one hand, the 
production of anti-nociceptive neurosteroids such as 
allopregnanolone and tetrahydrodeoxycorticosterone 
(75, 76) and to reduce, on the other hand, the formation 
of pro-nociceptive neurosteroids such as DHEA. 
Investigations of interactions between major 
neurotransmitters involved in pain transmission and 
P450c17 activity in the SC may certainly help to 

elucidate in the future the mechanisms underlying the 
inhibitory impact of neuropathic pain on DHEA 
biosynthesis in the SC. The data also revealed that, 
contrary to the rapid pro-nociceptive effect exerted by 
DHEA itself (before being metabolized), androgenic 
metabolites deriving from DHEA may induce a delayed 
analgesic or anti-nociceptive action in neuropathic pain 
or control rats, respectively (29-31). Indeed, the pro-
nociceptive effect of acute DHEA treatment was 
followed by a delayed increase of the thermal and 
mechanical thresholds (30). In addition, chronic 
administration of DHEA, which is well-known to 
generate a permanently high level of androgens in the 
blood, significantly increased and maintained elevated 
the basal nociceptive thresholds in neuropathic and 
control rats. In particular, after one week of chronic 
DHEA treatment, the rapid pro-nociceptive effect 
evoked by DHEA became undetectable when time-
course behavioral analyses were performed within the 4 h 
interval following the injection while the delayed anti-
nociceptive action persisted (30). Moreover, intrathecal 
administration of testosterone, one of the major androgens 
deriving from DHEA (77), induced a significant analgesic 
effect in neuropathic rats by increasing nociceptive 
thresholds on the ipsilateral and contralateral paws (30, 
31). In agreement with these results, previous 
investigations have reported androgen-induced analgesic 
effects and discussed the possible mechanisms of action 
of testosterone and its 5alpha-reduced metabolites in 
pain modulation (78, 79). However, the rapid pro-
nociceptive action exerted by DHEA itself before being 
metabolized, as well as the occurrence of a biphasic 
effect of acute DHEA treatment had never been 
described. Therefore, in order to clarify as much as 
possible these findings, pharmacological analyses were 
performed to provide valuable clues on the mechanism 
of action underlying the rapid pro-nociceptive effect of 
acute DHEA treatment (30). In fact, until now, a 
specific receptor for DHEA has not been characterized. 
DHEA acts as an allosteric modulator of NMDA and 
P2X receptors that play a pivotal role in the control of 
nociceptive transmission (4, 26, 80, 81). Thus, the pro-
nociceptive effect of DHEA may be explained by DHEA 
action on NMDA or P2X receptors localized in the SC 
dorsal horn (82-84). In particular, it has been 
demonstrated that DHEA activates the glutamatergic 
transmission by potentiating NMDA responses via 
sigma type 1 receptor or S1-R (85). Indeed, several 
studies which identified functional interactions between 
S1-R and NMDA receptors revealed that DHEA triggers 
through S1-R intracellular cascades leading to 
phosphorylation of NMDA receptors (85-88). Therefore, 
based on the crucial role played by the glutamatergic 
system in nociception (4), it has been determined 
whether the mechanism of action of DHEA on pain 
modulation involves the process of S1-R-evoked NMDA 
receptor activation (30). The data clearly demonstrated that 
BD1047, a selective antagonist of S1-R (89), completely 
blocks the rapid pro-nociceptive effect of DHEA on 
thermal and mechanical pain thresholds (30). Since the 
presence of S1-R has been well-established in SC sensory 
networks where DHEA is locally synthesized by P450c17-
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Figure 2. Hypothetical scheme recapitulating cellular mechanisms of action of DHEA in the regulation of nociception. Acting 
through an allosteric site, endogenous or exogenous DHEA may directly modulate the action of glutamate (released by primary 
afferents) on NMDA receptors (rNMDA) expressed by SC dorsal horn neurons. DHEA may also interact indirectly with rNMDA 
by triggering from sigma-1 receptor (S1-R) a phospholipase C (PLC)-dependent signalling leading to rNMDA modulation. 
Another possibility is the conversion of DHEA into DHEAS which is able to modulate in a dose-dependent manner GABAA 
receptors (r GABAA). ER, endoplasmic reticulum.  

 
positive cells (29, 90), its appears that endogenous DHEA 
may control spinal nociceptive mechanisms through 
paracrine or autocrine modulation of the process of S1-R-
induced NMDA receptor activation.  
 
6. SUMMARY AND PERSPECTIVE 
 

The present review shows that endogenous DHEA is 
a key factor involved in the regulation of SC nociceptive 
function. The paper also highlighted the fact that DHEA effects 
on nociceptive mechanisms are complex. Acute treatment with 
exogenous DHEA exerts a biphasic effects on nociception, that 
is, a rapid pro-nociceptive action and a delayed anti-nociceptive 
effect. Chronic DHEA treatment increased and maintained 
elevated basal nociceptive thresholds in neuropathic and 
control rats, suggesting that androgenic metabolites generated 
from daily administered DHEA exerted analgesic effects while 
DHEA itself caused a rapid pro-nociceptive action. To shed 
more light on the current knowledge on DHEA effects on 
nociception, we provide a hypothetical scheme recapitulating 
cellular mechanisms of action of DHEA in the regulation of 
nociception and pain (Figure 2). Taken together, these data 

open interesting perspective for the development of efficient 
DHEA-based strategies against pathological pain.   
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