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1. ABSTRACT   
 

Currently, serum biomarkers might usually be 
thought not to be used for early detection of lung cancer by 
some researchers. In this study, we used a highly optimized 
ClinProt-matrix-assisted laser desorption/ionization time-of 
flight mass spectrometer (MALDI-TOF-MS) to screen non-
small cell lung carcinoma (NSCLC) markers in serum.  A 
training set of spectra derived from 45 NSCLC patients, 24 
patients with benign lung diseases (BLDs) and 21 healthy 
individuals, was used to develop a proteomic pattern that 
discriminated cancer from non-cancer effectively. A test 
set, including 74 cases (29 NSCLC patients and 45 
controls), was used to validate this pattern. After cross-
validation, the classifier showed sensitivity and specificity, 
86.20% and 80.00%, respectively. Remarkably, 100% of 
early stage serum samples could be correctly classified as 
lung cancer. Furthermore, the differential peptides of 
1865Da and 4209Da were identified as element of 
component 3 and eukaryotic peptide chain release factor 
GTP-binding subunit ERF, respectively. The patterns we 
described and peptides we identified may have clinical 
utility as surrogate markers for detection and classification 
of NSCLC.  

 
 
 
 
 
 
 
 
 
2. INTRODUCTION 
 

Recent scientific progress of sequencing of the 
genome (1) and new approaches to modeling complex 
biological systems (2), may ultimately lead to improved 
anticancer therapy. However, prior to these findings, the 
best anticancer strategies still rely on early detection 
followed by close monitoring for early relapse so that 
therapies can be appropriately adjusted (3). Proteomic 
expression profiles generated from sera have been 
suggested as potential tools for the early diagnosis of 
cancer and other diseases. Appropriate biomarker based 
screens should be minimally invasive and reproducible. A 
simple blood test that detects molecules specific to a tumor 
would be ideal. In addition, screening technology must be 
sufficiently sensitive to detect early cancers and specific 
enough to classify individuals without cancer as being free 
of disease. 

 
Up to now, lung cancer has been the leading 

cause of malignancy-related deaths in China, and the five-
year survival rate of patients is about 15.2%, despite 
diagnostic imaging and therapeutic improvements over the 
past decade (4). Some tumor markers, including CEA, p53, 
Cyfra21-1, and CA19-9, have been investigated and are 
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commonly used as lung cancer biomarkers (5). However, 
few biomarkers have been accepted as indicators of clinical 
diagnosis, progression and/or prognosis, either because of 
lacking specificity or because of conflicting reports. 
Therefore, the discovery of specific or novel biomarkers of 
lung cancer is urgently needed. Recently, new strategies 
that facilitate proteomic analysis by magnetic beads 
dramatically simplifying the preanalytical sample 
separation and coupling with MS have been introduced for 
biomarker discovery research. One such MALDI profiling 
has been successfully used to differentiate breast (6), and 
bladder cancer from controls. Similar studies of lung cancer 
have not been reported yet. Although additional research 
may identify a single highly predictive marker of NSCLC, 
a comprehensive list of potential tumor markers will greatly 
facilitate the development of an assay with high predictive 
value.   

 
In this study, we compared serum proteomic 

profiles between untreated NSCLC patients and the non-
cancer population to discover NSCLC-specific protein 
markers and establish the pattern for diagnosis of NSCLC. 
The patterns we described may have clinical utility as 
surrogate markers for detection and classification of 
NSCLC, and meanwhile, two peptides (1865Da and 
4209Da) were identified as element of component 3 and 
eukaryotic peptide chain release factor GTP-binding 
subunit ERF, respectively. These findings may have 
important implications for future peptide biomarker 
discovery efforts. 
 
3. MATERIALS AND METHODS 
 
3.1. Patients Serum Samples 

Serum samples from each group were collected 
simultaneously dependent on the patient’s availability in 
the Department of Respiratory Medicine, Second Affiliated 
Hospital of Medical School of Xi’an Jiaotong University 
between September 2003 and May 2008. The samples of 
NSCLC patients were characterized according to the 
International Union Against Cancer (UICC, 2002) staging 
system of lung cancer. Diagnoses were pathologically 
confirmed, and specimens were obtained before treatment. 
The control group was collected from 46 benign lung 
diseases (BLDs) and 44 healthy individuals. NSCLC 
patients and controls were further divided into profiling 
(training set) and validation (test set) groups.  
 
3.2. Sample preparation and treatment with magnetic 
beads  

All serum samples were collected early in the 
morning before breakfast. The sera were left at 4~6 degrees 
C for 2h, centrifuged at 10000 rpm, 4 degrees C for 10 min, 
and then aliquoted, and stored at -80 degrees C. 10µL MB-
WCX binding solution and 5µL serum sample were added 
to the beads and mixed completely, which was then placed 
on the magnetic beads separation device (MPC-auto96, 
Dynal, Oslo, Norway). The beads were pulled to the side 
by magnetic force, and the supernatant was removed and 
discarded. The magnetic beads were washed three times 
with MB-WCX washing solution by shaking the beads up 
and down as needed. The supernatant was removed and the 

beads remained in place. 5µL elution solvent was added to 
the bead pellet and mixed by pipeting up/down, and the 
beads were pulled to the side and a fraction of the elution 
was transferred to another tube. 10µL a-cyano-4-
hydroxycinnamic acid (0.3 g/l in ethanol: acetone 2:1) was 
added to the 1µL elution in a 348-well microliter plate and 
mixed carefully. A 1µL mixture was spotted in 
quadruplicate on a MALDI AnchorChipTM (Bruker 
Daltonics, Bremen, Germany). 

 
3.3. Samples analyzed by MALDI-TOF 

Samples were assayed randomly and blinded to 
the operator. The protein fingerprint data were analyzed by 
FlexAnalysis 3.0 (Bruker Daltonics, Bremen, Germany). 
Profile spectra were acquired from an average of 400 laser 
shots. ClinProt software version 2.0 was employed to 
subtract baseline, normalize spectra (using total ion 
current), and determine protein peaks with the m/z value 
and peak intensities in the mass range (500-10000Da). The 
peaks were filtered to maintain an S/N of more than 3. To 
establish new diagnostic models for NSCLC, A genetic 
algorithm (GA) contained in this software suite was used to 
identify statistically significantly differential protein peaks 
in the analyzed training set. The peaks input to the model 
with highest accuracy were selected as the set of potential 
biomarkers. 
 
3.4. Differential peptides identification 

Peptide extracts were dried and resuspended in 
15–20 mL 5% formic acid for further MS/MS analysis by 
an LTQ Orbitrap mass spectrometer (ThermoFisher, USA) 
and typically 5µL of peptide extracts were actually injected 
for analysis. Analysis steps by LTQ-Orbitrap were as 
follows: The peptide extracts were loaded at 15 mL.min-1 

for 6 min on a nanoAcquity™Column, followed by eluting 
and separating on a nanoAcquity™UPLC™Column, using 
90-min gradients with 95% water, 5% acetonitrile (ACN), 
0.1% formic acid (solvent A); and 95% ACN, 5% water, 
0.1% formic acid (solvent B) at a flow rate of 300 nL/min. 
The samples were run in data-dependent mode, where each 
full MS scanning was followed by three consecutive 
MS/MS scans of the 3 most abundant peptide molecular 
ions (typically doubly and triply charged ions), which were 
selected consecutively for CID. The MS survey scans (300-
2,000Da) were carried out and the acquisition cycle 
consisted of a survey scan at the highest resolving power 
(100,000). Dynamic exclusion was used with a series of 
parameters and the acquired MS/MS data were processed 
using BioworksBrowser 3.3.1. A sequence database search 
was performed with the International Protein Index (IPI 
Human3.45) (4).  
 
3.5. Statistical Analysis 
We imported these data to Clinprotools software and 
employed several statistical ways, including ANOVA, 
clustering, KNN, Algorithm and genetic algorithm to get 
the differential proteins. We used the Wilcoxon non-
parametric test to analyze between the two groups, the 
Kruskal-Wallis test among the three groups to find 
differential proteins, and the Benjamini-Hochberg method 
for correction of P values, with a threshold of P <0.05. 
Then, we used Matlab to apply 164*95 unsupervised 
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Table 1. Characteristics of serum samples 
Characteristics  No. of samples 
Lung cancer group 68 

Male 46 
Female 22 
Mean age in years (range) 58 (31 to78) 
Disease stage  
I/II 20 
III/IV 48 
Tumor Histology  
Squamous cell carcinoma 34 
Adenocarcinoma 34 

Benign lung disease 46 
Male 28 
Female 18 
Mean age in years (range) 60 (31 to76)  

  penumonia 21 
pulmonary tuberculosis 25 

Healthy individuals 44 
Male 26 
Female 18 
Mean age in years (range) 59 ( 44 to76) 

 
Table 2. The M/Z and CV of the reference selected peaks 
between samples 

M/Z (Da) CV (%) M/Z (Da) CV (%) 
2461 0.239559 4126 0.241348 
2981 0.245415 5019 0.187579 
3066 0.176466 5571 0.287579 
3363 0.158828 5738 0.304054 
3613 0.162182 6646 0.174836 
4061 0.261492 7148 0.247252 

 
Table 3. Specificity and sensitivity for each model 

  NNet Tree KNN GA+KN
N 

Accuracy 83/90 80/90 83/90 86/90 
Sensitivity 41/45 42/45 40/45 43/45 
Specificity 42/45 38/45 43/45 43/45 
cross 
validation 
(k-fold)  
mean±SD 

80.0%±0.11 85.6%±0.129 78.9%±0
.097 

86.67%±
0.11 

 
clustering, with the horizontal labeled as samples and 
vertical as protein peaks. We used genetic algorithms (GA) 
of Clinprotools software combined with a k neighbors 
(KNN) classification algorithm for the establishment of 
Category Forecast. We set the K value as 3 in the KNN.  
 
4. RESULTS  
 
4.1. System reproducibility   

The mass accuracy was achieved by external 
calibration. The reproducibility of mass spectrum 
generation was determined with respect to the relative peak 
intensities. Visual comparison of 13 reference 
samples/spectra was described. The CV of the selected 
peaks’ mass was always less than 30% and did not differ 
statistically between the different sample and laser settings 
(Table 2). 
 
4.2. Unsupervised analysis of peptide ion signals from 
MS-based serum profiling differentiates NSCLC from 
controls.  

We analyzed the serum peptide profiles of 68 
patients with NSCLC, as well as 90 control sera from 
healthy volunteers and BLDs using new high-resolution 

MALDI-TOF MS coupled with bead fractionation. 
Samples from patients with NSCLC and from control 
individuals were then randomly distributed during 
processing and analysis. A total of 100 distinct m/z values 
were resolved in the 800–10000Da range. A spreadsheet 
(peak list) containing the normalized intensities (i.e., signal 
intensities, after baseline subtraction, were divided by the 
total ion current of the corresponding spectrum and 
multiplied by a scaling factor of 107) of all 100 peaks for 
each of the 164 samples was then taken for unsupervised, 
average-linkage hierarchical clustering using a standard 
correlation (Figure 1). This resulted in clear, distinct 
patterns that differentiate disease from control in binary 
comparisons. 20 peptides (4209, 4054, 4172, 4072, 1865, 
1778, 4090, 1691, 2104, 3954, 3935, 4963, 4123, 4267, 
6632 only 15 here) were detected out, which were different 
in expression of the sera of NSCLC and health control. 
They also have significant confidence (P<10-6) in the 
identity of the above proteins by a Wilcoxon validation, 
and they were shown in Figure 2. Within them, the top two 
discriminating peaks of 4209Da and 4054Da got an 
accuracy of 73.9% (34/46), 69.2% (27/39) and 81% (64/79) 
respectively, when using an algorithm method of KNN. 
Therefore, they could separate cancer sera from normal and 
benign groups (Figure 3A).  

 
As can be seen, the classification was achieved 

primarily through a contrast in peak intensities. This can be 
seen from the scatter plot shown in Figure3A. Both of the 
peaks intensities decreased in the sera of NSCLC compared 
to the health and benign controls. Using the 4209Da mass 
peak as an example, illustrates the analysis of proteins in 
the molecular weight range of 4200–4220Da with the 
ClinProt. As illustrated by Fig.2, there is an increase in the 
quantity of proteins in the range of 4200–4220Da in the 
serum among controls when compared with cancer patients, 
especially at the molecular weight of approximately 
4209Da. To analyze the actual discriminative power of the 
two markers, we produced an ROC-curve visualizing the 
performance of the two-class classifier in Figure 3B; the 
AUC of the classifier was 0.911 and 0.889, respectively.  
 
4.3. Feature selection and model establishment 

In this approach, we randomly selected 90 
samples (including 45 cancers, 21 normal and 24 benign 
sera) as the training set and the remaining samples as the 
test set. In the first test, we applied the KNN (k-nearest 
neighbor) method, single-hidden-layer neural network 
(NNet) and Decision Tree algorithm with all detected 
peaks, and each model got a specificity and sensitivity 
(Table 3, Figure 4A). In order to evaluate the generalization 
ability of the classifier, the method of cross validation 
named k-fold was used. In the method, the data set was 
divided into k equal parts of data points. Then k models 
were generated where each time a different one of the k 
parts was omitted. The omitted part was classified against 
the model calculated from the remaining k-1 parts. The 
procedure was repeated for k times and the average 
classification result was returned as the prediction 
capability. KNN had shown better classified results than 
NNet and Tree, but the cross-validation rate was less than 
the two algorithms. Secondly, all detected peaks were used
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Figure 1. Un-supervised hierarchical clustering analysis of MS-based serum peptide profiling data derived from 2 groups of 
cancer patients and healthy controls. Serum samples from healthy volunteers and patients with NSCLC were prepared following 
the standard protocol. The 2 groups were randomized before automated solid-phase peptide extraction and MALDI-TOF MS. 
Spectra were processed and aligned using the Qcealign script. 
 

 
 
Figure 2.  MALDI-TOF mass spectral overlays of selected peaks derived from serum peptide profiling of 3 groups of cancer 
patients and healthy controls. Spectra were obtained, aligned, and normalized as described in Methods and were displayed using 
the mass spectra viewer. The 15 overlays are arrayed so that an identical mass range window is shown for each of the 3 binary 
comparisons in which spectral intensities have been normalized and scaled to the same size. The monoisotopic mass (m/z). 
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Figure 3.  The character of the two differential peaks, 4209 Da and 4054 Da, in cancer and other control sera (A) Scatter plots of 
the top two peaks on the basis of which the classification patient-control group was made�The x-axis represented 4054Da and 
the y-axis represented 4209Da in order to observe their ability of samples distribution (□ for normal control, for benign control 
and × for cancer) (B) The ROC of peak 4054 (left) and 4209Da (right), with an AUC value of 0.911 and 0.889, respectively.  
 
with a KNN genetic algorithm to generate classification 
model. The genetic algorithm can search for peaks from the 
peak space to get a highly accurate classification rate 
automatically. A model consisting of 7 peptides (1865, 
2951, 2932, 4090, 4643, 3262 and 3191Da) was generated. 
Classification rate of the optimal model was 95.56% 
(control) and 95.56% (NSCLC) on the training data and 
was 80.00% (controls) and 86.20% (NSCLC) on the test 
set. Specifically, the cross validation rate of the method 
was 86.67% (Table 3). Other algorithms also had a result 
on the dataset with the 7 peptides (Table 4, Figure 4B).                                                       
 
4.4. Identification of peaks of proteins by MS/MS 

As we know, identification of a biomarker which 
is closely related with a given cancer is not only helpful for 
investigation of carcinogenesis and prognosis, but also 
useful for therapy of cancer and drug development. In 
addition, if the markers could be identified and specific 

high affinity antibodies would be generated to them, then 
more direct and potentially less expensive methods for 
analysis could be developed. So, we employed LTQ-
Orbitrap analysis to identify 3 out of the above 15 peptides, 
which were differently expressed between NSCLC and 
health control groups. MS/MS analysis of 1865Da detected 
most b and y ions (Figure 5A). 2 ions (peptides 1778 and 
1865Da) detected from a sample of No.41 serum, were 
counted as one identification because they were described 
by the similar set of peptides. Both peptides gave 
consistently higher MS ion signals in the cancer patient 
sera than in the matched controls. These two peptides were 
SKITHRIHWESASLL and SSKITHRIHWESASLL, 
corresponded to complement C3 or complement C3 
precursor. Peptide 4209Da was analyzed by MS/MS and 
identified here for the first time from No.204 expressing 
serum. Its sequence was identified as 
EQSDFCPWYTGLPFIPYLDNLPNFNRSIDGPIRLPI 
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Figure 4. A.  ROC-curve for the three algorithms of Decision Tree, KNN and NNet. The true positive recognition rate 
(sensitivity) is demonstrated on the y-axis against the false negative recognition rate (1-sepecificity) on the x-axis.  
ROC_KNN=0.922, ROC_Tree=0.889, ROC_NNet=0.867; 4B.  ROC-curve for the three algorithms of Decision Tree, GA&KNN 
and NNet on the dataset with 7 peptides. The true positive recognition rate (sensitivity) is demonstrated on the y-axis against the 
false negative recognition rate (1-sepecificity) on the x-axis.  ROC_KNN=0.967, ROC_NNet=0.933,  ROC_Tree=0.867.  

 
which was unique to a eukaryotic peptide chain release 
factor GTP-binding subunit ERF3b (Figure 5B).  
 
5. DISCUSSION 
 

Lung cancer accounts for the most cancer deaths 
in all malignancy tumors. As lung cancer is a 
heterogeneous, multistage and multifactor disease, 
combinations of markers that cover a broad clinical 
phenotype for enhancing diagnostic value and therapeutical 
applications are necessary. Due to the heterogeneity of lung 
cancer and the lack of sensitivity and specificity of 
individual markers, the current positive rate is as low as 
14% for lung cancer early detection, so there is a growing 
consensus that panels of markers can improve screening, 
diagnosis, prognosis, or monitoring responses to therapy 
(8). Thus, we predict that a combination of tumor-
expressed and host response proteins can be used to 

develop a profile of cancer for clinical screening. So in this 
study, we first tried to construct a combination model of 
biomarkers for discriminating lung cancer from a control, 
and then we used LTQ-Orbitrap to identify some of the 
markers. Our further work will try to explore multiplex 
immunoassay for this markers’ clinical application. 

 
Human biological fluids contain various types of 

markers and these biomarkers are useful for diagnosis, 
prognosis and drug development for many diseases. Blood 
is a human fluid that can be easily obtained clinically. The 
easily accessible serum proteome consists of only a lot 
number of abundant proteins such as albumin and 
immunoglobulin, which complicates the detection of the 
many low-abundance proteins. Many methods were 
employed to remove the abundant proteins such as 
albumin, a-amylase, and antibody fragments from serum to 
further reveal low-abundance proteins, which may take
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Table 4. The results on the dataset with the 7 peptides 
  Nnet Tree 
Accuracy 86/90 78/90 
Sensitivity 42/45 45/45 
Specificity 44/45 33/45 
cross validation(k-fold)  
mean±SD 

83.3%±0.08 83.3%±0.14 

 
many useful low-abundance proteins and low-mass 
peptides away as a consequence, however.  Furthermore, 
even if one possesses these proteins, traditional techniques 
such as 2-DE couldn't separate low-abundance proteins and 
low-mass peptides effectively. 

 
Here, we describe a new technology platform 

ClinProt (9) for the simultaneous measurement of large 
numbers of serum polypeptides by using magnetic bead-
based, sample processing, and MALDI-TOF MS. The 
technology is automated on a liquid handling robot for high 
throughput and reproducibility. It was reported that the use 
of porous particles for sample pretreatment is more 
sensitive than surface capture on chips because spherical 
particles have larger combined surface areas than small-
diameter spots. The application of magnetic bead 
fractionation in combination with MALDI-TOF is 
appropriate for the detection of low concentrations of 
proteins and peptides in serum (10). High sensitivity and 
resolution allow detection, within a molecular mass range 
of 800-15,000Da, of over 400 polypeptides in a single 
droplet of serum (11). Sven et al (12) found that protein 
profiling by MALDI-TOF MS after proteome fractionation 
with magnetic beads is a robust, precise, and rapid method 
for the investigation of such complex samples as blood. 

 
The high sensitivity and reproducibility of the 

novel platform for proteome profiling in our study is 
supported by the recent studies. Villanueva et al (6) stated 
that a limited subset of serum peptides (a signature) 
provides accurate class discrimination between patients 
with 3 types of solid tumors and controls without cancer. 
There are 14 potential biomarkers for prostate cancer, 14 
for breast cancer, and 58 for bladder cancer. They obtained 
a sensitivity of 100% (41/41) by class prediction of a 
prostate cancer validation set using a support vector 
machine (SVM). Freed et al (13) used a MALDI-TOF 
bead-based analysis in the study of 27 normal, 25 healthy 
smoker, and 24 head and neck squamous cell carcinoma 
(HNSCC) (pretreatment and matched posttreatment) serum 
samples. All detected peaks were used with a k-nearest 
neighbor genetic algorithm in ClinProt and their 
classification rates were 89% normal, 93% benign, and 
98% for HNSCC.  

 
Circulating tumor markers could impact cancer 

patient outcomes, resulting in improved screening, 
diagnosis, staging, and management. Until now, we have 
not seen any similar study of lung cancer with the sera 
peptides of NSCLC. We analyzed serum samples from 74 
NSCLC and 90 non-cancer controls using ClinProt-
MALDI-TOF-MS. A panel of serum markers consisting of 
seven peptides (1865, 2951, 2932, 4090, 4643, 3262 and 
3191Da) was established by applying a genetic algorithm. 
For the cross-validation with test set, the classifier had a 

sensitivity of 86.20%�25/29�, a specificity of 80.00 % 
(36/45), positive predictive value of 73.53%, and negative 
predictive value of 90%. The mistaken classification was 
possibly related to amalgamation with other diseases, such 
as hypertension, bronchitis, and ileus, which influenced the 
serum proteins. Moreover, all the patients of the early stage 
were accurately diagnosed, which means our study may be 
great potential ability for early detection of NSCLC at the 
clinical level. In this study, we adopted LTQ Orbitrap high-
resolution mass spectrometer for protein identification. The 
LTQ Orbitrap instrument can operate at a mass resolution 
of up to 100,000 (13), which is useful for maximizing the 
number of metabolites that can be separated. In addition, 
three confirmed biomarkers were identified. Both peptide 
ions (1778 and 1865Da) that were of higher intensity in 
NSCLC derived from complement C3 or complement C3 
precursor, were indistinguishable by MS/MS. Identification 
of the 4209Da ion confirmed its identity as a eukaryotic 
peptide chain release factor GTP-binding subunit ERF3b.  

 
It has been reported that complement-

independent pathways are critical for leukocyte recruitment 
into neoplastic tissue and leukocyte-mediated potentiation 
of tumorigenesis. There are 25 known soluble complement 
proteins. Among these complement proteins, C3 is the most 
versatile and multifunctional molecule identified to date, 
having evolved structural features that allow it to interact in 
a specific manner with at least 25 different proteins (14). 
C3 is also the most abundant complement protein in serum 
(1.2 g/L) and supports the activation of all 3 pathways of 
complement activation, the classic, alternative, and lectin 
pathways (15). The functional significance of C3 is as a 
regulator of inflammatory cell infiltration and activation 
during malignant progression. De Visser et al (16) found 
that complement-independent pathways are critical for 
leukocyte recruitment into neoplastic tissue and leukocyte-
mediated potentiation of tumorigenesis. Similar 
complement C3f peptides and kininogen peptides have also 
been reported in other cancer serum samples (6). With the 
use of ClinProt-MALDI-TOF-MS analysis, both 
Villanueva and Freed et al. identified the complement C3f 
(Da) in the 4 different types of solid tumors studies. This 
showed that the complement C3f (1865m/z) would likely 
become a potential diagnostic biomarker for malignancy. 
The precursor of the third component of human 
complement C3 (pro-C3), is a disulfide-linked two-chain 
protein. The pro-C3 is converted by limited proteolysis to 
C3. The relationship between pro-C3 and C3 was 
established with the use of HepG2, a cell line derived from 
a human hepatocellular carcinoma, which synthesizes at 
least 17 plasma proteins. Since complement C3f is unlikely 
to be released by tumor cells, the up-regulated complement 
C3f in NSCLC patients may be due to dysfunction of 
relative tissue, and such acute-phase reactants may still 
represent only epiphenomena because of the presence of 
the tumor and may not be specific to a particular type of 
cancer (17). Translation termination is regulated by a 
heterodimeric release factor consisting of eRF1 and eRF3 
(18-19). The eRF3 stimulates the termination reaction in a 
GTP-dependent manner and is essential for cell growth. It 
has been reported that eRF3 has GTP-binding and 
hydrolysis activities, which is stimulated by GTPase-
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Figure 5. MS/MS identification of serum peptides as fragment of complement C3 (A) and eukaryotic peptide chain release factor 
GTP-binding subunit ERF (B). The fragment ion spectrum shown here was taken for a MS/MS ion search of the International 
Protein Index (IPI Human3.45) database (http://www.ebi.ac.uk/IPI/IPIhelp.html). b and y fragment ion series are indicated 
together with the limited sequences. 
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activating proteins consisting of eRF1 and ribosome (20). 
The GTP-binding protein eRF3 interacts with eRF1, which 
directly recognizes the termination codons to perform 
translation termination (21). A human protein of 628 amino 
acids was identified, named eRF3b, which is highly 
homologous to the known human eRF3 henceforth named 
eRF3a. The most important difference in the nucleotide 
sequence is that eRF3b lacks a GGC repeat close to the 
initiation codon in eRF3a. Jakobsen et al (22) found that 
the protein is active in vitro as a potent stimulator of the 
release factor activity of human eRFl. Like eRF3a, eRF3b 
exhibits GTPase activity, which is ribosome-and eRFl-
dependent. In vivo assays show that the human eRF3b is 
able to enhance the release factor activity of endogenous 
and overexpressed eRFl with all three stop codons. 

 
The current study shows that the selection of a 

combination of multiple proteins resolved by MALDI may 
become a potential diagnostic approach. We are 
encouraged by the fact that the combined model 
successfully classified all 6 stage one/two NSCLCs from 
the test set, which suggest that our approach is useful for 
early NSCLC detection. However, these results are limited 
by a very few stage one/two cases in our study. Further 
research is needed to confirm our current findings by using 
larger amounts of study samples.   
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