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1. ABSTRACT 
 

Rodents provide an excellent experimental model 
to study human placental development. In this review, our 
aim was to explain major events that underlie the placental 
development in mammals in general, and specifically in 
rodent. Those events include trophoblast cell proliferation, 
decidual reaction and contact between the mesenchyme of 
the allantois with ectoplacental cone, all orchestrated by 
activation of a series of genes. We also aimed to compare 
molecular and genetic events of rodent and human 
placentation. Employing the rodent placenta development 
model will yield better understanding of these processes in 
other mammals, especially in humans.  

 
 
 
 
 
 
 
 
 
 
 
 
2. INTRODUCTION 
 

The purpose of this paper is to give an overview 
of rodent placenta development as model for normal human 
embryonic development. After fertilization, the zygote 
starts the process of cleavage, consisting of a number of 
mitotic divisions, giving rise to the blastocyst. In the 
blastocyst, the separation into embryoblast and trophoblast 
tissues represents the first differentiation and appears very 
early in development (1). The prospective trophoblast 
becomes polarized in the outer layer of the embryo as early 
as at 16-cell stage, when genes responsible for its 
differentiation start to be expressed (2). The marker of the 
future trophoblast cells is Cdx-2 gene (caudal type 
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homeobox 2) (3); and its expression in the embryonal stem 
cells is sufficient for their differentiation into trophoblast 
(4,5), whereas Cdx-2 knockouts, although capable of 
initiating cell cleavage, cannot support the development of 
the trophoblast to completion (6,7). Its protein product is 
homeodomainic transcriptional factor which acts as 
repressor for Oct4 (Octamer 4; POU class 5 homeobox 1) 
and Nanog2 (Nanog homeobox) genes, markers of 
embryoblast and embryonal stem cells that are 
indispensable for their differentiation (8). In embryoblast 
cells, Oct4 is hypomethylated and acetylated, whereas in 
the trophoblast cells is hypermethylated and deacetylated 
and inhibits its differentiation (9).  

 
The blastocyst has to implant to form placenta 

and thus enable successful progress of pregnancy. The 
relative importance of throphoblast cells for implantation is 
apparent from the fact that, e.g. in the mouse 
preimplantation embryo, composed of 64 blastomeres, only 
13 cells represent the future cells of the embryoblast, 
whereas  all the other cells future trophoblast (10). Unlike 
humans, where implantation and placentation occured on 
the same side, in rodents, the implantation takes place at the 
antimesomethral wall of the uterus during the fifth day of 
embryonic development, and the final placenta is formed 
on the mesomethral wall of uterus (11). Placenta is of 
chorioallantoic type because the blood vessels which 
supply chorion originate from the mesenchyme of the 
allantois (12). In rats, before formation of the 
chorioallantoic placenta takes place, the placental functions 
are performed by the yolk sac, which represents the only 
place for metabolic exchanges and the main nutritive organ 
until the 11th day of gestation. After that period the yolk sac 
functions jointly with the chorioallantoic placenta (13). In 
humans, these features are similar but not so pronounced 
while still retaining its haematopoetic task (14). 

 
3. GENES INVOLVED IN THE PLACENTA 
DEVELOPMENT 
 

The ectoplacenta emerges on the eighth day of 
gestation from the trophoblast cells which form the 
ectoplacental cone, and during the ninth day maternal 
lacunas without the endothelium arise within this 
ectoplacenta (Figure 1) (15,16). At the beginning of the 11th 
day of gestation, the mesenchyme of the allantois 
establishes the contact with the ectoplacenta, and due to its 
ability of angiogenesis, it differentiates into fetal 
mesenchyme and bloodvessel channels supplied with 
endothelium (17). This mesenchyme penetrates deeply into 
ectoplacental trophoblast, among the already formed 
maternal lacunas, thus creating labyrinth, i.e. the region 
where maternal and fetal blood circulation coexist and 
where the exchange of metabolites takes place (18). This is 
a very sensitive period during development of placenta, 
when the coordination between trophoblast and maternal 
lacunas is crucial for development of the labyrinth. There is 
no successful continuation of gestation without a well 
developed labyrinth. Therefore, it is not surprising to find a 
large number of the already known genes to be involved in 
this process. Myriam Hemberger and James C. Cross have 
classified these genes into four groups, responsible for 

particular phase of placental development: 1) genes 
responsible for differentiation of the trophoblast giant cells, 
(TGC), 2) genes important for chorioallantoic fusion, 3) 
genes responsible for the initiation of villous branching and 
vascularisation of trophoblast, and 4) genes for the 
transport of matter through the labyrinth (19). We will 
briefly summarize each of these groups as to have a more 
detailed view into events taking place in each one of the 
aforementioned phases. 

 
Differentiation of the trophoblast giant cells 

(considered here are the secondary giant cells only, not the 
primary ones, which surround the embryo at the very 
beginning of gestation, immediately upon the implantation) 
that are responsible for the endovascular invasion of the 
trophoblast into the endothelium of maternal spiral arteries, 
is determined by the interaction of two genes. The first is 
Mash 2, which stimulates throphoblast proliferation and 
prevents its differentiation and is, thus, responsible for the 
maintenance of its cells (20). In contrast, Hand 1 stimulates 
the diferentiation of trophoblast cells into giant cells; thus 
by blocking its expression in the mouse. Riely has obtained 
mutant animals that can reach, at most, the seventh and a 
half day of embryonic development (21,22). The Hand1 
null mice do not form trophoblast giant cells (TGC) and 
display an exceedingly small ectoplacental cone (23,24). 
Products of both of these genes are basic „helix-loop-helix„ 
proteins (acting as transcription factors), which are 
localized in the ectoplacental cone and in the basal layer 
(spongiotrophobast). These areas represent the layers of 
future placenta which contain the precursors of trophoblast 
giant cells indicating that the antagonistic activities of 
Mash2 and Hand1 have to be coordinated (25,26). 

 
To make the further discussion on genes required 

for successful placentation more comprehensible it is 
necessary to remind that placenta is composed of three 
completely different tissue types: epithelial cells derived 
from the trophoblast, and stromal and blood vessel cells 
derived from the extraembryonic mesoderm (in rodents 
they are derived from the mesoderm of allantois). Thus, 
one could say that placenta is the product of fusion of two 
extraembryonic structures, chorion and allantois (27). 

 
For this fusion to take place, two proteins seem 

important: the vascular cell adhesion molecule 1 (VCAM-
1) (the transmembrane glycoprotein, a member of the group 
of adhesive molecules of the immunoglobulin gene 
superfamily) present on the surface of allantois, and its 
ligand, alpha4 integrin, present on the basal surface of 
chorion (28). Cells that lack functional expression of both 
of these genes, develop seemingly normal allantois and 
chorion, but are unable to establish stable contact between 
these two types of tissues (29). 

 
Once the chorio-allantoic fusion is succesfully 

established, the next phase in development of placenta 
takes place, which is characterized by initiation of villous 
branching and vascularization of trophoblast. The main 
actor during initiation of villous branching is the 
mammalian homologue of the Gcm1 (glial cell missing 1) 
gene, originally discovered in Drosophila (30). Studies of
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Figure 1. Deciduoma containing 9th day old rat embryo ( 
vaginal plug designated day 0 of gestation). D - decidua, E 
- embryo, Ex - extraembrional part, EPC- ectoplacental 
cone (Fisher rat strain).  
 

 
 
Figure 2. Development of rat placenta; A 12th day, B 14th 
day, C 15th day, D - F 17 th day, G and H 18 th day, I 20 th 
day of geatation, l – labyrint, b – basal plate, d – decidua, 
white arrow – TGC (trophoblast giant cell), black arrow – 
glycogen cells (Fisher rat strain) 

 
its distribution in mammals have shown that Gcm1 is 
highly expressed specifically in placenta (31). In the phase 
immediately prior to chorio-allantoic fusion, Gcm1 mRNA 
was detected in rare trophoblast cells of chorion (32). Its 
protein product, however, starts to be synthetized only 
following the chorio-allantoic fusion by a mechanism of 
adhesion-dependent signaling from cell membrane to 
translation control site in the cytoplasm. This type of post-
transcriptional control is found in embryonal development 
of other organs, as well as in tumorigenesis (33). 

 
Whereas the Gcm1 gene serves at the initiation 

stage of villous branching, for the continuation of 
branching and vascularization of the trophoblast a large 
number of genes seems to be responsible. Of those, two 
seem to be important for the growth of labyrinth (the main 
part of rodent placenta), based on its defective development 
when gene is mutated: Gab 1 (signal adaptor molecule for a 

range of proteins like the Fibroblast growth factor receptor 
– Fgfr2, Epidermal growth factor receptor – Egfr, receptor 
for leukemia inhibitory factor (LIF)) and Sos 1 (guanine 
exchanger or GDP/GTP exchanger) (19). 

 
Finally, it remains for us to consider those genes 

responsible for transplacental transport of various 
substances and molecules. Among molecules that appear 
critical for such a function are connexins Cx26 and Cx31 
(34). Connexins Cx26 function as bridges linking 
neighboring cells and they have been identified as channels 
for transport of glucose across hemochorial barrier (35). 
Connexin Cx31 plays the role in the differentiation of the 
trophoblast cells (36). 

 
Our experiments using DNA demethylation agent 

5-azacytidine (5azaC), which disrupts normal gene 
expression, point to the importance of orderly gene 
expression during placental development in rats. Treatment 
of rats with 5azaC at different time points during gestation 
produces changes in morphology of the placenta. We 
observed reduced or entirely absent labyrinth, placental 
mass and proliferation capacity of throphoblast cells (37). 
In addition, we have found significant changes in 
glycosylation of cytosolic and membranous proteins 
(37,38). DNA methylation is unquestionably important for 
the process of placentation and in humans as indicated by 
many research (39). Novakovic and collaborators discover 
data which strongly implicates epigenetic regulation of the 
DNA methyltransferase gene family in the establishment of 
the unique epigenetic profile of extraembryonic tissue in 
humans (40). Examination of invasive choriocarcionoma 
cell lines revealed altered methylation patterns consistent 
with a role of methylation change in gestational 
trophoblastic disease. The distinct pattern of tumour-
associated methylation implicates a coordinated series of 
epigenetic silencing events, similar to those associated with 
some tumours, in the distinct features of normal human 
placental invasion and function (41). 

 
4. FEATURES OF THE RODENT PLACENTA 
 

Similar to humans, rodent placenta is of 
hemochorial type, i.e., the trophoblast cells originating 
from chorion are in direct contact with the erythrocytes, of 
the maternal blood (42,43). In hemochorial placenta, 
trophoblast invasion takes place in the uterine endometrium 
(44). Responsible for this invasion are two types of cells: 
the trophoblast giant cells (TGC) (Figure 2) and the 
glycogen-rich trophoblast cells (45) (Figure 2 E, F, G, H; 
analyzed in our laboratory on Fisher rat). The glycogen-
rich trophoblast cells form structure analogous to the 
extravillous invasive interstitial trophoblast in humans, and 
are thus responsible for the interstitial invasion of uterine 
endometrium (46). Trophoblast giant cells of the rat are 
analagous to the endovascular trophoblast in humans and as 
such enable invasion into the maternal blood circulation 
system (47). These processes are associated with 
redistribution of cell-cell and cell-substrate adhesion 
molecules, cross talk between external extracellular matrix 
through adhesion molecules and the expression of several 
proteolytic enzymes, including matrix metalloproteases and 
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serine proteases (48,49). Defects in these processes may 
lead to diseases such as gestational preeclampsiae. 
Preeclampsia is a hypertensive disorder unique to human 
pregnancy that can result in significant morbidity and 
mortality for mother and fetus (50). One possible mediator 
may be the matrix metalloproteases, a family of proteinases 
typically recognized for long term tissue remodelling (51). 

 
The result of trophoblast invasion is the creation 

of functional placenta with three essential parts: the basal 
zone, the labyrinth and decidua (52). Decidua grows at 
smaller rate as gestation progresses since the labyrinth 
reaches its maximum size in the third part of gestation (53) 
(Figure 2; shown on Fisher rat analyzed in our laboratory). 
The basal zone of the placenta consists of trophoblast stem 
cells and three types of differentiated cells: trophoblast 
giant cells, spongyotrophoblast cells and glycogen-rich 
cells (54). This second generation of giant cells (secondary 
giant cells) emerges in the border between the basal zone 
and the decidual part of placenta (55). Here there are no 
fetal blood vessels nor the chorioallantoic mesenchyme, 
only the blood circulation system which exclusively 
belongs to the mother (56). 

 
The labyrinth zone is located on the fetal side of 

placenta and represents the space where one can find both 
maternal lacunes and fetal blood vessels (57) (Figure 2B, 
2C; Fisher rat). The labyrinth is constructed of 
cytotrophoblast stem cells which differentiate at all times 
into trophoblast giant cells (TGC) or agglomerate into 
syncytium (58) (Figure 2E, 2F, 2H; Fisher rat). Many genes 
involved in TGC development and function are conserved 
between rodents and humans, such as transcription factors, 
proteases and cell adhesion molecules (59). 

 
 System of fetal capillaries and maternal lacunas 
form two separate blood circulations separated by the 
placental membrane (60). In rats, this membrane is 
composed of three layers: the outer layer of trophoblast 
bathed directly by maternal blood and inner two layers 
which are multinucleated and syncytial in nature (61). For 
this reason the rat placenta belongs to the group of 
hemotrichorionic placentas, as opposed to human placenta 
which is monochoryal (62). In monochoryal placentas, the 
villi have a nearly complete cytotrophoblast layer 
underlying the surface layer of syncytial trophoblast during 
most of the first trimester. As gestation proceeds the 
cytotrophoblast layer becomes discontinuous and the 
cytotrophoblast cells become more stellate, at which time 
the placenta is considered to be villous hemomonochorial 
(63). Syncytiotrophoblast's function is to produce proteins 
and steroid hormones (64). 
 

In rat hemotrichorionic placenta, the outer layer, 
throphoblast, later develops into trophoblast giant cells. 
These cells (TGC) show reduced levels of p53 and Rb 
protein synthesis which are indispensable for their exit 
from the cell cycle and entry into the endocycle of genomic 
amplification, and synchronous rise in synthesis of cyclin 
E, which is indispensable for the transition into the S-phase 
(65,66). Towards the end of pregnancy the TGC-layer loses 
its regular shape and thins down on some places to sheer 

bilayer of cell membranes (67). Similar thinning of the 
hemochorial barrier happens generally in all placentas in 
order to increase transport efficiency for better growth of 
the fetus (68). 

 
This fact is especially interesting in light of the 

toxicological studies on the placenta. Reproductive and 
developmental toxicology studies have yielded evidence 
that metals from tobacco smoke can act as endocrine-
disrupting chemicals in reproductive tissues (69). The 
results were initially obtained in rat placenta, and then 
confirmed at the human (70,71). 

 
Because of all these characteristic, i.e. 

haemochorial and chorioallantois placentation as well as 
the depth of trophoblast invasion (especially rats) and a 
number so far discovered genes in human and rodent 
(especially mouse) performing similar functions, we can 
generally consider the rodent placenta as a suitable model 
for studying not only human placentation, but also diseases 
that are associated with it. 

 
5. CONCLUDING REMARKS AND PERSPECTIVES 
 

Thanks to the progress in medicine and to the fact 
that placenta is increasingly becoming an interesting organ 
to study, primarily in its obstetric sense and function, but 
also in its evolutionary, immunological, and genetic sense, 
there appears a necessity for the animal experimental model 
whose placental development resembles closely to that of 
humans. We suggest that the development of placenta in a 
rodent is such a model, uniquely helpful to investigate 
trophoblast cell invasion as well as the impacts of various 
teratogenic agents on development of placenta, as the 
exclusive reproductive organ in mammals. 
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