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1. ABSTRACT 
 

The advent of molecular medicine allowed 
identifying the malfunctioning of subcellular processes as 
the source of many diseases. Since then, drugs are not only 
discovered, but actually designed to fulfill a precise task. 
Modern computational techniques, based on molecular 
modeling, play a relevant role both in target identification 
and drug lead development. By flanking and integrating 
standard experimental techniques, modeling has proven 
itself as a powerful tool across the drug design process. The 
success of computational methods depends on a balance 
between cost (computation time) and accuracy. Thus, the 
integration of innovative theories and more powerful 
hardware architectures allows molecular modeling to be 
used as a reliable tool for rationalizing the results of 
experiments and accelerating the development of new drug 
design strategies. We present an overview of the most 
common quantum chemistry computational approaches, 
providing for each one a general theoretical introduction to 
highlight limitations and strong points. We then discuss 
recent developments in software and hardware resources, 
which have allowed state-of-the-art of computational 
quantum chemistry to be applied to drug development. 

 

 
 
 
 
 
 
 
 
 
 
 
2. INTRODUCTION: FROM DRUG DISCOVERY TO 
DRUG DESIGN 
 
The need to provide medicines can be traced back to the 
roots of humankind, when religious beliefs and common 
sense guided all attempts to cure disease. For many 
centuries during the age of botanicals (pre-1800s), medical 
care consisted of eating, drinking, or applying substances. 
Since the strategies for identifying new drugs were driven 
by empirical observation and intuition, each success was 
necessarily reliant on fortuitous accident. Pharmacopoeia 
regulating composition and dosage of the available drugs 
were introduced in Egypt as early as 16th Century BC 
(Ebers Papyrus, Edwin Smith Papyrus) and, later (5th 
Century BC) improved and refined in Greece (Corpus 
Hippocraticum); yet the first successful attempts to 
individuate illnesses by their symptoms only date back to 
the 19th Century. Since the cures were almost exclusively 
symptomatic, only a few authentic drugs were discovered 
in this period (quinine, cocaine, digitalis and, later, aspirin). 
The diffusion of the “microbial theory of diseases” at the 
turn of the last century was a key development in biology 
and medical science, paving the way for the advances of 
the 1920s and 1930s. The almost serendipitous discovery of 
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penicillin by Fleming provided the basis for the rational use 
of substances as specific drugs to cure specific illnesses. 
The antibiotic era began in the early 1940s, heralded by 
advances in synthetic organic and analytic chemistry, 
technical improvement of instruments and tools, a new 
multidisciplinary approach to studying disease, and an 
increased demand during World War II for penicillin 
derivatives and other antibiotics. Although the drug 
discovery process was becoming less serendipitous, the 
main approach in the 1950s and 1960s was still based on 
trial-and-error. Whenever a new active substance was 
discovered in nature, and its active principle purified, 
characterized and tested, entire libraries of similar 
compounds would then be synthesized, tested, and 
examined for higher activity levels and fewer side effects.  
 

In the 1970s, cancer and heart diseases became 
the greatest targets for medical research. Drug discovery 
strategies based on massive and systematic scans of 
compound libraries were thus abandoned in favor of newer 
and more efficient approaches. To deal with such 
intrinsically multifactorial diseases, identifying specific 
targets appeared the only route to success(1). Recent 
advances in biochemistry, chemical biology, and 
biotechnology allowed scientists to look for drug targets at 
a subcellular level, which was desirable because many 
diseases were associated with the activity of nanoscale 
objects. The recent discoveries concerning DNA and 
protein structure dramatically changed landscape for those 
interested in finding new therapies. As soon as molecular 
and atomistic details about DNA replication and enzyme 
activity become available, the quest for molecules capable 
of interfering with those processes began in earnest. Drugs 
would not be discovered, but designed to exert an action on 
a specific target selected from thousands of potential targets 
in the organism’s metabolic pathway. The atomistic 
structure of DNA and its complexes with proteins are now 
studied to identify molecules capable of interfering with 
replication (anticancer drugs). The active sites of enzymes 
are also studied in detail so that their activity can be better 
prevented by inhibitor molecules (antibacterial, anti-
inflammatory drugs) (2, 3).  

 
In this new era of drug development, computer 

sciences play many significant roles (4, 5). The most 
obvious is the classification, storage, and effective retrieval 
of the exponentially increasing amount of data coming 
from different research fields. Several drug development 
strategies are based on scanning databases of the properties 
of known compounds. Moreover, hardware improvements 
and the availability of new programming languages have 
allowed for some physical theories and methods to be 
employed in chemistry and biology. Computable models 
directly based on (or derived from) Quantum Mechanics 
(QM) are used to study the physical and chemical 
properties of molecules. These methods can provide 
insights at the molecular and atomistic level, which are 
usually difficult to obtain by experimental techniques. The 
reaction mechanism of enzymes, for instance, can be 
elucidated using these methods, providing a rational guide 
in the design of specific inhibitors. The binding affinity of 
drug candidates with proteins and DNA can also be tested 

in silico, with considerable gain in both time and money. 
The increased reliability of QM-based methods means they 
are crucial drug development tools. The improved quality 
of the available molecular models and their widespread use 
in drug design are indeed contributing to a new era of 
molecular medicine. 
 
3. MOLECULAR MODELLING 
 

In recent decades, molecular modeling techniques 
have evolved with unexpected speed, becoming ever more 
reliable. As theoretical chemists developed new theories to 
describe reality, computational chemists were able to 
efficiently implement these models in parallel. Nowadays 
many experimental chemists, working in either organic or 
physical chemistry, can easily use modern software for both 
research and teaching (6).  
 

The systems that can be considered by molecular 
modeling (6-8) range from small isolated molecules to large 
biological macromolecules (like proteins and DNA). Most 
molecular modeling studies involve three stages. In the first 
stage, the most appropriate level of theory must be chosen to 
describe the system in question. The balance between accuracy 
and speed must reflect the nature of the system as well as its 
size. The two most common computational approaches are 
based on quantum mechanics (QM) or molecular mechanics 
(MM). The former is based on an approximate solution of the 
Schrödinger equation, the latter on a classical description of the 
atoms following Newton’s law. Both computational 
approaches provide the total energy for a given atomic 
configuration and can provide information about the system’s 
thermodynamic properties. The second stage of a molecular 
modeling study is the actual calculation, using the chosen 
computational procedure to calculate the best geometrical 
arrangement (the one with the lowest energy), the reaction 
pathway, the behavior of the system as a function of time, 
and/or the value of relevant observables that are useful for 
rationalizing experimental data or predicting the behavior of 
the system in question. The third stage is the analysis of the 
results, which leads to the construction of an interpretative and 
predictive model. 
 
4. QUANTUM CHEMISTRY-BASED METHODS 
 
The so-called ab initio or first-principles methods are 
usually considered the most accurate and consistent (6) 
because they provide the best physical approximation of the 
system. The term ab initio implies that these methods, 
based on the laws of quantum mechanics, require the 
knowledge of just a few fundamental constants: the 
electron mass, the electron and nuclear charges, and the 
values of fundamental physical constants, such as Planck’s 
constant and the speed of light.  
 

The time-independent Schrödinger equation is 
used to find stationary, fixed states and is reported in 

Equation 1, whe ( )rΨ
r

 is the wavefunction describing the 

system, E is the energy of the system, and Ĥ  is the Hamiltonian 
operator. For a system of charged particles (electrons and 
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nuclei), Ĥ  can be written as in Equation 2, where T̂ in 

the kinetic energy operator, V̂ is the potential energy 

operator, am  is the mass of the particle a, 2
a∇  is the 

Laplacian operator for particle a, aq  and bq are the 

charges of a and b ,and ar
r

 and br
r

the positions of a and b.  

Equation 1 Ψ=Ψ EĤ  
Equation 2
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Since the ratio of electron-mass to proton-mass is about 
1/1836, the electronic motion is much faster than the 
nuclear motion. Consequently, the electrons of a molecule 
can rapidly adjust to any change in the nuclear positions, 
and the energy of a molecule in its ground state can be 
considered a function of the nuclear coordinates only. This 
is the rationale behind the Born-Oppenheimer (BO) 
approximation (8, 9), which allows us to separate electronic 
and nuclear degrees of freedom. The total Hamiltonian can 
be split into its nuclear and electronic terms, as reported in 
Equations 3 and 4, where the indices υµ, and ji,  refer, 
respectively, to nuclei and electrons. Thus, the total 
Hamiltonian can be written in terms of one-, two- and zero-
electron operators (see Equation 4). 
 
Equation 3 2

2ˆ
2nucH

m µ
µ µ

= − ∇∑ h  

Equation 4
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According to the Molecular Orbital (MO) approach, the 
molecular wavefunction can be written in terms of one-
electron functions (spin-orbitals) )( jiψ  each defined as a 

product of a spatial part )( jiφ  (representing the “shape” 

of the orbital) and a spin function )( jiα  or )( jiβ , to 
identify the electron spin state (“up” or “down”). The i and 
j indices run on the spatial functions and the electrons, 
respectively. The anti-symmetric (due to the particle’s 
indistinguishability) electronic wave-function can be 
approximated as a product of spin-orbitals, in the form of a 
Slater Determinant (Equation 5).(10) 
 
Equation 5
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Each molecular orbital iφ of a system can be expanded in 

terms of a set of N predefined one-electron functions iµχ  

denoted as basis functions (basis set) according to Equation 
6, where icµ  are the molecular orbital expansion 

coefficients. When atomic orbitals (AO) are used as basis 
functions, this approach is often referred to as Linear 
Combination of Atomic Orbital (LCAO) approximation. 

Equation 6 µ
µ

µ χφ ∑
=

=
N

ii c
1

 

 
4.1. Hartree-Fock  

For decades, the Hartree-Fock (11) (HF) method 
has been one of the most widely used computational 
approaches to determining the wavefunction within the 
molecular orbital model. The wavefunction is written in the 
form of a Slater determinant. The procedure is based on the 
use of the Hartree-Fock eigenvalues equations (Equation 

7), where the Fock operator F̂ acts on the orbitals iφ  to 

give the same orbital function multiplied by a constant iε , 
which represents the energy of the orbital. The LCAO 
approximation can be applied to obtain Equation 8 and, 
after rearrangement, Equation 9.  
 
Equation 7 iiiF φεφ =ˆ  ( )Ni K,2,1=  

Equation 8 
µ
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Equation 10 εScFc =  
 

The solution of the Hartree-Fock equations, even 
in the tensorial Roothaan-Hall formulation (Equation 10) 
(12), is not trivial, since the Fock operator is a function of 
the molecular orbitals, which themselves correspond to the 
solutions of the eigenvalues equations. The algorithm used 
to solve the Roothaan equations is an iterative approach 
known as Self Consistent Field (SCF) procedure. 
According to this algorithm, an initial guess for the Fock 
matrix is built using the molecular orbitals obtained using 
approximated procedures based on the Extended Huckel 
theory (6) or on semiempirical methods (6). Then, the 
Roothaan-Hall equations are solved to give atomic 
coefficients for each orbital and the relative energies and, 
consequently, the total energy. The procedure is repeated 
using the updated coefficients to build a new Fock matrix 
and a new value of energy is obtained. The new total 
energy value is compared to the previous one. The 
procedure stops when this energy difference is smaller than 
a chosen threshold. 
 
In summary, the widespread HF-SCF approach relies on 
several approximations: 
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1) The Born-Oppenheimer approximation is 
inherently assumed. The true wavefunction 
should also be a function of the coordinates of 
each of the nuclei. 

2) Typically, relativistic effects are completely 
neglected.  

3) The representation of molecular orbitals is 
composed of a finite number of orthogonal one-
electron wave-functions. The true wavefunction 
would need a complete (infinite) representation. 

4) The energy eigenfunctions (wavefunctions) are 
assumed to be products of one-electron functions 
(Slater determinants). The effects of electron 
correlation, beyond that of exchange energy 
resulting from the anti-symmetry of the 
wavefunction, are neglected. 

 
Nowadays more advanced approaches are preferred 

to HF, due to these intrinsic limitations. In fact, the missing 
electronic correlation effects of the HF-SCF method lead to 
large deviations with respect to experimental results. A number 
of approaches, usually denoted as post-Hartree-Fock methods, 
have been devised to include electron correlation in the multi-
electron wave function, thus avoiding many of the HF pitfalls. 
One of these approaches, Møller-Plesset perturbation theory, 
(11, 13) treats correlation as a perturbation of the Fock operator 
(see below). Others methods expand the multi-electron wave-
function in terms of a linear combination of Slater 
determinants, such as Multi-Configurational Self Consistent 
Field (MC-SCF) (7, 8) Configuration Interaction (CI) (11) 
Complete active space SCF (CAS-SCF) (7, 8). Both MC-SCF 
and CAS-SCF are considered the reference methods for the 
study of processes involving multiple electron states. 
Photoinduced chemical reactions are an important application 
field, as exemplified by studies on vision processes initiated by 
rodhopsin light absorption (14) and by investigations into 
DNA light absorption processes (15). Another important field 
of applications is the study of reaction mechanisms involving 
low-lying excited states, a common example being the studies 
on cytochromes: ubiquitous and versatile catalysts involved in 
respiration, waste product degradation and drug excretion. (16, 
17) The insights provided by QM methods (18) into 
cytochromes (e.g. reaction mechanism, substrate specificity) 
have been important for understanding the pharmacokinetics of 
many drugs.  
 
4.2. Møller-Plesset perturbation theory 

Møller-Plesset perturbation theory (MP) is one of 
the most popular post-Hartree-Fock ab-initio methods in 
quantum chemistry (the main idea was published in 1934 
(13)). Rayleigh-Schrödinger perturbation theory (RS-PT) is 
used to improve the Hartree-Fock energy. MP2, MP3, MP4 
acronyms are used to denote a truncation of the 
perturbation series up to the second, third, and fourth order, 
respectively. Although it is more computationally 
expensive than HF, the MP2 method is often used to treat 
systems where electronic correlation effects play a key role. 
For instance, weak interactions like dispersion (London) 
forces or π-stacking interactions between aromatic 
compounds can be properly described at the MP2 level. In 
several enzymes, substrate recognition and transition state 
stabilization are mediated by aromatic residues in the active 

pocket (19), thus methods capable of accounting for such 
interactions can be useful in the search for inhibitors 
capable of displacing the natural substrate by establishing 
tighter interaction with the active site pocket. 

 
4.3. Density Functional Theory (DFT) 

DFT is somewhere between the ab initio and 
semiempirical approaches. According to its formalism, the 
basic quantity is not a many-body wavefunction, but the 
molecular electron density. The most common implementation 
of density functional theory is the Kohn-Sham (20) approach, 
where the intractable many-body problem of interacting 
electrons in a static nuclear electrostatic potential is reduced to 
a tractable problem of non-interacting electrons moving in an 
effective potential. This is composed of the nuclear potential 
and the effects of the interactions between the electrons, 
divided into exchange and correlation contributions. In 
Equation 11, the first term represents the electromagnetic 
interaction of the electron density with the external potential (it 
often corresponds to the Coulomb interaction between 
electrons and nuclei), the second represents the repulsion 
between the electron density and itself (Coulomb energy), the 
third term approximates the electronic kinetic energy (by 
expanding the density in a set of orbitals and computing the 
kinetic energy for the hypothetical system of non-interacting 
electrons), and the final term is the exchange-correlation 
functional which corrects the other terms.  
 
Equation 11
 
[ ] )()()(d)()( ρρρρνρ EXs ETJrrrE +++= ∫  

 
The major problem within KS-DFT is the modeling of 
exchange and correlation interactions. The oldest and 
simplest approximation, called Local Density 
Approximation (LDA), was based on the Thomas-Fermi 
model of a uniform electron gas. In local exchange–
correlation functionals, correlation and exchange 
interactions are functions which depend only on the scalar 
value of the electron density at a given point in space 
(Equation 12). A simple exchange functional (Slater) (21) 
is reported in Equation 13: it accounts for stabilization of 
high electron density correcting the electron-electron 
energy, which is overestimated by the Coulomb term. 
Combining this exchange functional with that proposed by 
Vosko, Wilk and Nusair leads to the SVWN functional 
(which is synonymous with LDA). 
 
Equation 12
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Second generation exchange–correlation 
functionals include not only functions of the scalar density, 
but also functions of the gradient of the density. They are 
also referred to as “non-local” as the gradient introduces a 
certain degree of non-locality in the energy expression. 
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They should be more properly referred to as “gradient-
corrected” (adopting the Generalized Gradient Approximation 
or GGA) because the exchange-correlation term is still an 
integral relating a defined energy contribution with the electron 
density of an infinitesimal volume. Since Becke’s proposal 
(22) of a gradient-corrected exchange functional, many 
attempts have been made to improve the reliability of the GGA 
DFT by developing correlation functionals with parameters 
obtained by fitting experimental data or generated to reproduce 
well-known physical principles. A popular GGA functional 
combines the Becke exchange expression with the Lee, Yang 
Parr correlation formulation(23), giving the commonly used 
BLYP functional. Other functional forms for both exchange 
and correlation expressions have been proposed and all their 
possible combinations constitute the large family of GGA DFT 
functionals. The next GGA functional generation, called meta-
GGA, like the Tao, Perdew, Staroverov and Scuseria 
(TPSS),(24) include two more functions of the density, the 
Laplacian of the total density (or of the densities of spin-up and 
-down electrons) and the sum of the kinetic energy densities of 
the Kohn–Sham orbitals. 

 
The observation that atomization energies (i.e. the 

energy required to break the molecule completely into its 
component atoms) are underestimated by HF method, and 
overestimated by both LDA and GGA methods, suggested 
some combined treatment to improve the results. Many 
sophisticated hybrid functionals have been developed. An 
early formulation (25) adopted a three-parameter functional 
where the exchange–correlation energy was expressed as a 
combination of the local exchange–correlation energy, the HF 
exchange energy, and the gradient corrections to the exchange 
and correlation energies as shown in Equation 14, where 
Becke exchange (22) and Perdew et al. Correlation (26) are 
used. Substituting the Perdew correlation with that of LYP 
(23) leads to the well-known B3LYP functional. 

 
Equation 14
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For studying large biomolecular systems, hybrid 
functionals like B3LYP are usually preferred to more 
accurate approaches like MPn or coupled cluster methods 
(6) because of a considerably lower computational cost, 
comparable to that of HF. Nevertheless, hybrid functionals 
have had little application for ab initio molecular dynamics: 
LDA and GGA functionals are used instead because of 
their lower computational cost.  
 

The use of the DFT method has become very 
popular in the last two decades, including among 
experimental chemists. New functionals are constantly 
developed to improve accuracy and performance in dealing 
with particular classes of systems (gas clusters, metal 
surfaces, metal complexes, radical containing systems, 
unbound complexes, etc...). Due to the limited 
transferability of some of the new functionals, the choice of 
the correct functional for a given system becomes a major 
issue. However a large number of publications have 
reviewed the main application domain of the various 

functionals (27-30), thus providing a valuable guide for the 
correct usage of the DFT method.  
 
4.4. Dispersion force corrections in exchange-
correlation functionals 

 DFT functionals generally provide a poor 
description of dispersion forces, which play a fundamental 
role in many aspects of chemistry and biochemistry. For 
instance, π-stacking interactions are often central to the 
correct folding of proteins, in determining packing of DNA 
base pairs, in enzymes’ substrate recognition and binding, 
etc. Current approximations of the gradient corrected XC 
functional prevent accurate description of π-stacking, since 
long-range electron correlation is not implicitly included in 
many functionals, which are thus unable to correctly 
reproduce the interactions between unbound chemical 
species. 

 
  Fortunately, several recent advances allow 
researchers to partially overcome such problems. The so-
called DFT-D schemes (31, 32) can correct the DFT energy 
using a damped dispersion term that is able to reproduce 
the correct asymptotic form -C6R-6. Empirical corrections to 
DFT are a significant improvement over standard DFT 
functionals with no added computational cost. The 
functional form of the empirical dispersion term can be 
easily parameterized for use with any existing DFT 
functional, substantially increasing the domain of 
applications of GGA functionals. Alternatively, there is 
promise in the new multi-atom-centered expansion schemes 
introduced by Roethlisberger and co-workers for correcting 
the approximate XC functionals in DFT, in which the total 
electronic density of a system can be described as a sum of 
the atomic densities corrected for the interatomic 
interactions. This scheme (atom-centered potentials, ACPs) 
has proven particularly efficient when applied to the 
correction of dispersion forces in DFT (33-36). Dispersion-
corrected atom-centered potentials (DCACPs) can 
reproduce the asymptotic R−6 behavior when a sufficiently 
complete basis set is used. A set of DCACPs is currently 
available for all the biologically relevant elements (37).  
 

Other approaches involve reshaping the form of 
the exchange and correlation functionals, introducing new 
parameters taken from experiments or higher level 
computations, varying the amount of included HF exchange 
etc. A new family of functionals (MPW1B95, MPWB1K, 
M05, M05-2X, M06-2X, M08-HX and M08-SO) 
developed by Truhlar and co-workers (38-41) is proving 
particularly effective for studying biologically relevant 
systems (42, 43). A different approach is behind the family 
of functionals developed by Grimme (44). They comprise a 
mixture of DFT components and the MP2 correlation 
energy calculated with the DFT orbitals. Grimme referred 
to his functional as B2PLYP (45-48) (B88 exchange, 2 
fitted parameters and perturbative mixture of MP2 and 
LYP); a version with improved performance (especially for 
weak interactions) is mPW2PLYP.(49) From the extensive 
calibration work, the new functionals appear to give better 
energetics and a narrower error distribution than B3LYP. 
Thus, the additional cost of the calculation of the MP2 
energy may be well invested. 
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4.5. Semi-empirical methods 
Semi-empirical (SE) methods such as AM1 (50), 

PM3 (51), PM6 (52) and RM1 (53) are based on HF 
formalism but contain several approximations and include 
some parameters from empirical data and some from higher 
level calculations. Because of their extremely low 
computational cost, SE methods have been used to study 
large molecules and are still used to investigate the 
dynamics of organic and bioorganic systems. Their general 
performance is affected by the approximations adopted to 
decrease the computational cost; still, for some selected 
systems they provide reliable results due to the particular 
parameterization. Nevertheless, the use of SE methods, 
even for large systems, is steadily decreasing as 
computational resources and code optimization progress 
allow the use of more reliable and transferable methods like 
DFT. 

 
4.6. Density Functional Tight-Binding 

DFTB is an alternative approach to the quantum 
chemical semi-empirical (6) methods. It corresponds to an 
approximate DFT scheme and is characterized by a 
computational speed similar to that of traditional semi-
empirical quantum chemical methods (like AM1, and 
PM3), but requiring a smaller number of empirical 
parameters. The approximate DFTB method is derived 
from DFT by a second-order expansion of the DFT Kohn-
Sham total energy with respect to charge density 
fluctuations. The zero-order approach is equivalent to a 
common standard non-self-consistent (Tight-Binding: TB) 
scheme, while at the second order, a transparent, 
parameter-free and readily calculable expression for 
generalized Hamiltonian matrix elements may be derived. 
DFTB can be seen as a tight binding method, parameterized 
from DFT. DFTB was augmented by a self-consistency 
treatment based on atomic charges in the so-called self-
consistent charge density functional tight-binding (SCC-
DFTB) method (54-57). The SCC-DFTB method has been 
applied to a large variety of problems in chemistry (58-60), 
physics (61, 62), materials science (54, 63), and 
biochemistry (64-70). During the past decade, it has been 
continually developed to improve its accuracy and 
transferability. 
 
5. MOLECULAR MECHANICS APPROACH 
 

Computational approaches based on Molecular 
Mechanics (MM) allow researchers to compute the energy 
and properties of large molecular systems. The total energy 
of a system is simply derived from the sum of different 
energetic contributions (additive force field). The MM 
Hamiltonian (6-8) thus comprises several terms, each one 
taking into account the contribution arising from the 
system’s bonding (stretching, bending, and torsional) and 
non-bonding interactions (van der Waals, Coulombic) (see 
Equation 15). Both stretching and bending contributions 
(first and second terms in Equation 15) are expressed by 
simple harmonic potentials. The torsional contribution is 
described by a cosine series (third term) to account for 
multiple conformational minima. The classical 6-12 
Lennard-Jones potential (6) and the Coulombic function 
have been used to describe, respectively, the van der Waals 

and Coulombic non-bonding interactions (fourth and fifth 
terms of Equation 15). In the MM force field, the 
equilibrium bond lengths and angles ( eqeqr ϑ, ) and the 

spring constants ( ϑkkr , ) are parameterized to reproduce 

experimental frequencies of specific sets of molecules, nV  

is fitted to reproduce ab initio energies, ijA and ijB are 

obtained from Monte Carlo(6-8) simulations, and the 
atomic point charges ( ji qq , ) are derived from ab initio 

calculation and subsequent RESP (71) fitting (72) or by 
other procedures.  
 
Equation 
15
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To obtain reliable values from MM calculations, 

a new atom definition has been adopted: all atoms in a 
molecule are classified as different atom types not only on 
the basis of the atomic number (as in QM approaches), but 
also according to their chemical environment (bonded 
atoms). This has led to the development of different 
parameters for aliphatic and aromatic carbon atoms, for 
carbonyl or alcoholic oxygen atoms, and so on. A particular 
MM Force Field (73) is defined on the basis of the adopted 
functional form for the energy expression and the specific 
values of the chosen parameters for the available atom 
types. Force fields like OPLS (74), AMBER (75-77), 
GROMOS (78) and CHARMM (79) are widely used to 
study standard biomolecular systems (protein, DNA, and 
RNA), while corrections and extensions are continually 
developed and improved to treat carbohydrates, lipids, 
enzyme cofactors, and other molecules of relevant 
biological interest, including drugs and ions. Particularly 
relevant in the field of drug design are both the Generalized 
AMBER Force Field(GAFF) (80) and CHARMM General 
Force Field (CgFF) (81). This is because they provide 
suitable parameters for drug-like organic molecules, which 
can be readily parameterized for virtual screening studies. 
MM potentials are in fact widely used in molecular docking 
protocols (82-85) devised to score the conformation of 
ligands within the active site of an enzyme. The small 
computational cost of these potentials allows for fast 
screening of large libraries of chemical compounds. 
Moreover, MM potentials, when coupled to advanced 
simulation techniques (such as free energy calculations), 
can be efficiently employed in the lead optimization step, 
which is aimed at optimizing the potency of drug 
candidates for specific targets (86-88).  
 
6. HYBRID QUANTUM MECHANICS/MOLECULAR 
MECHANICS METHODS 
 

Along the challenging pathway leading to the 
development of new drugs, the study of the structure and  
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Figure 1. QM/MM partitioning scheme. Schematic 
representation of a system partitioned into two regions 
treated at the QM and MM level, respectively.  

 
function of the targeted proteins is of paramount 

importance. While MM approaches are useful when 
investigating structural features of very large systems, they 
cannot be used to study reactive processes (when bond 
topology changes), as those take place at the enzymatic 
active site. In contrast, QM approaches, capable of dealing 
with both thermodynamics and kinetics of chemical 
reactions, cannot be used for large systems, like those of 
biological interest, because of their excessive 
computational demand. For many years, a partial solution 
involved building model systems comprising the sole 
reactive region and the nearest surrounding atoms. Using 
this approach, the reaction mechanism of several enzymatic 
reactions was elucidated, but the results had only a 
qualitative value since most of the environmental effects of 
the enzyme were overlooked and excluded from the model. 

 
Recently, the most commonly used approach to 

overcoming such limitations is the combination of DFT (or 
other QM methods) with classical force-field-based 
molecular mechanics (MM) in the so-called quantum 
mechanics/molecular mechanics (QM/MM) schemes. The 
system is partitioned into two or more regions treated with 
different levels of theory (Figure 1). The chemically 
relevant part of the system may be described by QM, while 
the remaining portion is treated with faster MM methods. 
The choice of the QM region is not trivial as solvent 
molecules, ions and parts of protein/DNA may be directly 
involved in the process of interest. In addition, a proper 
treatment of the long-range electrostatic interactions 
between the QM and MM regions is crucial for obtaining a 
reliable approach. Originally proposed in 1976 by Warshel 
and Lewitt, (89) many different QM/MM implementations 
have flourished in the last two decades, with such hybrid 
approaches successfully employed in both biological and 
material science fields (89-97). The gathered experience 
allowed researchers to define the most important issues that 
a QM/MM scheme should address to provide reliable 
results, with the treatment of the QM-MM boundary region 
being considered the most controversial (98-101). A more 
technical issue connected with the efficiency of QM/MM 
schemes is the actual implementation of the hybrid 
potential; several QM/MM implementations are constituted 

by MM extensions to existing QM codes such as the 
ONIOM (102) implementation included in the GAUSSIAN 
(103) suite of programs, or the hybrid approaches included 
in CPMD (104) and CP2K (105). MM codes also feature 
interfaces to (or embed) QM algorithms (often 
semiempirical), as is the case with AMBER (68, 106, 107), 
CHARMM (108). A somewhat less efficient, but more 
flexible approach is provided by the “pipe” or “interface” 
codes, capable of interfacing existing and well-tested QM 
and MM software by means of light procedures for 
preparing the inputs for the chosen QM and MM programs, 
launching, and then combining the output of the employed 
codes. This approach is used in the COBRAMM (109-111), 
CHEMSHELL(112), COMQUM (113) and PUPIL (114) 
software, whose scope ranges from material science to drug 
discovery. QM/MM approaches have been successfully 
applied to the various phases of the drug design process 
(115-117), providing a better understanding of enzyme 
reaction mechanisms (118-122) and catalytic proficiency 
(109, 110). More recently, hybrid approaches have been 
integrated into computational protocols devised for docking 
(85, 123, 124) and computing the binding affinity of drugs 
(85, 125, 126), thus providing a useful tool for in silico 
screening of lead candidates (127-130). 
 
7. METALLOENZYMES: A CHALLENGE FOR QM 
METHODS 
 

Metal ions interact with cellular components and 
their role is of paramount importance e.g., in assuring 
structural stability, inducing conformational 
rearrangements, and conferring proper functionality in 
biological catalysis (metalloenzymes). Metalloenzymes are 
widespread proteins, ubiquitous in all life kingdoms, being 
involved in various biosynthetic processes. α-Carbonic 
anhydrases (CAs), matrix metalloproteinases (MMP), and 
angiotensin-converting enzyme (ACE), among others, are 
clinically exploited targets in the treatment or prevention of 
a variety of diseases such as congestive heart failure, 
hypertension, glaucoma, epilepsy, and cancer (131, 132). 
Other members of the family, like metallo-β-lactamases 
(MBL), are promising targets for developing new 
antibacterial drugs capable of avoiding bacterial resistance 
insurgence (133). Heme-group-containing enzymes are an 
important subgroup of the metalloenzyme family; 
cytochromes (16, 17), among others, have been 
investigated in detail (18, 134-136) to elucidate the 
degradation pathway of both endogenous metabolites and 
drug molecules, with the aim of rationally improving the 
pharmacokinetics of lead compounds. QM and MM 
methods, as well as the recent QM/MM hybrid techniques, 
have been used to study several metalloenzymes to better 
understand their catalytic features (125, 137-141) or to help 
in the lead optimization phase of structure-based drug 
design (85, 116, 117, 119, 126, 142-144). The investigation 
of metalloenzymes is a major challenge for computational 
methods because many metals can easily undergo spin state 
changes, allowing for different ligand arrangements. The 
polarizability in metal complexes is barely addressed by 
even the most sophisticated MM force fields. Several QM 
methods can be used to investigate metals’ peculiar 
behavior, but at an increased computational cost. For this 
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Figure 2. Potential Energy Surface representation. a) Graphical representation of a three-dimensional energy surface; b) bi-
dimensional cross-section. The Minimum Energy Path (MEP) connecting the two critical points M1 and M2 is shown. 

 
reason, many theoretical and computational chemists 
continue to focus on developing new techniques capable of 
capturing the elusive behavior of metalloenzymes. For 
these techniques to be used in the field of drug 
development, particular care must be devoted to the general 
usability of the methods and to the cost/accuracy balance. 
 
8. THE POTENTIAL ENERGY SURFACE  
 

The energy of a molecular system, computed at 
the QM, MM, or QM/MM level for a particular atomic 
arrangement, is often referred to as “single point energy”. 
Since the absolute energy has little physical meaning, it is 
common practice to compare the energy of two or more 
atomic configurations, since energy differences are related 
to physical observables. The Potential Energy Surface 
(PES) accounts for the dependency of the energy of a 
system with respect to its atomic configuration; it collects 
the potential energy of all the possible atomic 
configurations of a given system. In the Cartesian 
coordinate system 3N coordinates are required to describe a 
system comprising N atoms, since each atom is described 
by 3 coordinates that identify its position with respect to an 
arbitrary point (origin of the coordinate system). The 
internal coordinate system can be obtained by choosing 3N-
6 linearly independent coordinates (rotation and translation 
degrees of freedom are eliminated) that coincide with bond 
lengths, angles (plane angles) and dihedral angles (solid 
angles) between atoms (6, 8). The PES can be thus defined 
in terms of Cartesian or Internal coordinate systems. 

 
Only a few points on the PES landscape have a 

chemical and physical significance. In particular, the points 

with null first derivatives of the energy with respect to all 
the n coordinates are of great interest. Those characterized 
by all positive second derivatives can be either one of the 
many local minima or the unique global minimum of the 
energy, corresponding, respectively, to meta-stable nuclear 
configurations or to the most stable configuration. Points 
with null first derivatives and negative second derivatives 
with respect to k<n coordinates are denoted as saddle point 
of index k. They have a chemical significance only if k=1, 
in which case they correspond to “transition structures”. An 
elementary reaction step is described as a transition from 
one equilibrium state (minimum) to a neighboring one via a 
single transition state. The reaction mechanism is given by 
the sequence of steps involved in a chemical process and 
corresponds on the PES to the Minimum Energy Path 
(MEP) connecting the two minima that represent reactants 
and products, respectively (Figure 2). 

 
The localization of critical points on the PES is 

the main goal of many computational procedures aimed at 
studying the stability or reactivity of a system. This is 
because minima and first order saddles represent, 
respectively, stable nuclear arrangement and transition 
structures.  

 
Since the PES complexity rapidly increases with 

the increasing number of coordinates, the search algorithm 
is crucial to locating critical points. Efficient algorithms for 
locating equilibrium and transition structures are now 
available in modern molecular software. These algorithms 
are based on the calculation of the first (gradient) and 
second derivatives (Hessian matrix) and allow researchers 
to perform a simultaneous optimization of the whole set of 
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coordinates. In general, the search algorithm is iterative and 
the geometry is gradually modified till the desired critical 
point is obtained. The fundamental equations for computing 
the coordinate variations at each step of the search 
procedure can be derived by assuming a quadratic shape of 
the PES (6-8). Should the surface be a real quadratic 
surface, the desired critical point will be obtained in a 
single step. In most cases, however, the surface is far from 
being quadratic, so a sequence of motions on the surface 
(optimization step) is usually required to locate the critical 
point. Because the calculation of the Hessian matrix is 
computationally expensive, approximate forms of the 
Newton-Raphson equations (involving approximated 
Hessian matrices) are usually employed. These methods are 
often referred to as “quasi-Newton” methods. The “steepest 
descent” method is far from being accurate but it is very 
fast and can be efficiently used to decide the first moves on 
a non-quadratic region of the PES, far away from the 
critical point. Then, in the vicinity of the critical point, the 
search algorithm can be switched to the Newton-Raphson 
method or to a more accurate quasi-Newton scheme. 
Examples of quasi-Newton methods are the widely used 
BSGF (145-148) scheme (Broyden-Fletcher-Goldfarb-
Shanno), the L-BFGS (149, 150) scheme (Limited 
memory-BFGS), and the PSB (151) scheme (Powell-
Symmetric-Broyden). Extensive exploration of a system’s 
configurational space is thus avoided by using an 
appropriate optimization algorithm, capable of locating 
critical points by computing the energy and gradient of a 
small number of atomic configurations. 

 
9. THE FREE ENERGY SURFACE  
 

The potential energy does not take into account 
the temperature of the system, thus it should not be related 
directly to physical observables like kinetic and equilibrium 
constants. Kinetics and thermodynamics of physical and 
chemical processes are directly related to free energy 
differences. In particular, the Gibbs free energy is defined 
when both pressure and temperature are constant, as in 
most physical systems under standard experimental 
conditions. The Gibbs free energy G is defined as the sum 
of an enthalpic term H, accounting for the potential 
contributions, and an entropic term –TS (i.e. G=H-TS). 

 
Computing the Free Energy Surface (FES) for a 

given system is an extremely difficult task, and several 
strategies based on either MD or Monte-Carlo techniques 
have been devised to compute free energy differences 
between states or free energy changes associated with 
processes. In all cases, the time required to explore and 
characterize the relevant portion of the FES is orders of 
magnitude greater than that required for PES exploration. 
This is because a large number of energy and gradient 
evaluations are required for statistical reasons. MD-based 
methods coupled to different levels of theory (e.g. HF, 
DFT, etc.) and different schemes (e.g. QM/MM) are 
valuable solutions for exploring the FES of a given system. 
Nevertheless, the time required to spontaneously explore 
the relevant portions of the FES is still out of reach for 
large systems of biological and pharmaceutical relevance, 
and for current software and hardware performance. 

Enhanced sampling techniques are thus required to speed 
up calculations. Some of these procedures require the 
definition of one of more reaction coordinates so as to 
restrict the exploration of the phase space to a smaller, 
more interesting region chosen as representative of the 
process in question. Steered (SMD) and targeted (TMD) 
molecular dynamics (152, 153), umbrella sampling (US) 
(154-156) have been successfully used in the past to study 
both protein conformational changes and enzymatic 
reactions (6). More recent techniques like conformational 
flooding (CF) (157) and metadynamics (MMD) (158-160) 
do not require prior knowledge of the reaction coordinate 
components, allowing an unbiased investigation of the 
FES. In particular, the use of metadynamics schemes within 
the framework of QM/MM simulations have recently 
proven to be an effective protocol for investigating the 
reaction mechanism of potential drug target enzymes (161-
163). 
 

Within this framework, hybrid QM/MM (104, 
105, 164) MD simulations based on the Car-Parrinello (CP) 
(165, 166) treatment of the electronic degrees of freedom 
has emerged as an efficient method for characterizing the 
reaction mechanism of several enzymes of pharmaceutical 
relevance (137, 138, 167-169). The CP scheme, as 
implemented in the CPMD code (165, 170), was originally 
developed for the study of condensed matter systems. In the 
past decade, it has frequently been used to treat isolated 
systems of biological relevance (171). In the DFT 
framework, the CP method allows researchers to describe 
the dynamics of the ground state, in which the electrons 
adiabatically follow the nuclear degrees of freedom. The 
advantage of this method over Born-Oppenheimer (BO) 
MD is that the wavefunction does not need to be optimized 
at every MD step, providing a considerable computational 
gain (for further details on the CP and BO methods, see the 
review by Marx and Hutter) (172). Recently, efficient 
optimization schemes (173) have been developed, which 
quickly converge the wavefunction of the system. This 
allows the use of BO-MD as alternative way of studying 
enzymatic catalysis in a QM/MM setup (e.g. see the 
implementation of BOMD in CP2K (166, 174) and the 
recent studies published using this scheme (161)). 
 
10. FUTURE PERSPECTIVES 
 

In recent decades, computational approaches 
have played an increasingly significant role in the field of 
drug development thanks to their improved reliability. In 
particular, QM and QM/MM-based protocols are today 
routinely used to investigate the reaction mechanism and 
catalytic proficiency of potential drug targets. CPU-
demanding simulations are thus used to obtain structural 
and electronic information about reaction intermediates and 
transition states so that researchers can design analogue 
molecules that act as inhibitors. The ongoing effort of many 
research groups in academia and industry continues to 
improve the reliability and cost/efficiency ratio of QM-
based approaches. QM/MM potentials have been designed 
to investigate biological systems without introducing 
unphysical truncations near the active site; thus, QM/MM 
hybrid schemes offer noticeable improvements over simple 
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QM treatment of small portions of the system, and have 
been used in recent years to study a large variety of 
biological systems. Researchers have thus been forced to 
test and improve the accuracy of QM methods and often to 
develop new theoretical approaches to cope with the 
diversity of chemical reactions and substrates encountered 
in biology. The need for a better description of 
metalloenzymes required accurate tests of old DFT 
functionals (28) and led to the development of novel 
strategies for studying transition metal complexes (175). 
Additionally, the increasing importance attributed to weak 
interactions in both complex stability and reactive 
processes is driving research into new QM methods capable 
of correctly describing noncovalent interactions at a 
reasonable computational cost.(43) Nonetheless, the high 
demand in terms of simulation time and hardware 
requirements remains a limiting factor for QM methods, 
especially in the field of drug design. Thus, many 
researchers have focused on developing new theories and 
better approximations to improve performance without 
impairing the accuracy of results. The RI approximation, 
(176) for example, is a recent breakthrough, which allows 
DFT and even MP2 to be efficiently used to study 
biological systems. While theoreticians develop more 
accurate methods and computer scientists implement these 
in efficient algorithms, developments in hardware are 
poised to herald a new era for QM-based methods. Since 
many available QM applications are so CPU-demanding 
(central processing unit), several strategies have been 
devised to efficiently share the load of a single calculation 
over a large number of CPUs. Algorithms were written to 
work in parallel on many processor units and wiring 
systems, which had been devised to allow for efficient 
communication between different nodes of a cluster. More 
recently, graphical processing units (GPU), formerly used 
only for graphical applications in professional design and 
video-gaming, have started to be used for general 
computing applications, benefiting from the evident 
advantages in terms of parallelization and hardware cost. 
Thus, QM algorithms have recently been rewritten using 
new programming languages designed for new-generation 
GPUs. Two-electron integral evaluation (177) and SCF 
procedure (178), both at the heart of many ab initio QM 
methods, have been shown to be faster on GPUs than on 
state-of-the-art CPUs by one to two orders of magnitude, 
opening the way for GPU-specific implementation of HF 
(179), DFT (180) and even RI-MP2 (181). These promising 
results are expected to steadily improve with the continuous 
progress in the GPU-based hardware and software. Soon, 
they will significantly affect the way we use QM-based 
methods to investigate biological systems and to rationally 
design more effective drugs. 
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