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1. ABSTRACT

In the past decade, information technology has
enabled synergistic advances in key domains of
immunological research including the development of
diagnostics and vaccines. Computational methods of
epitope mapping now play instrumental roles in bench
experiments, by facilitating the selection of immunogenic
targets and the modeling of downstream cellular responses.
In this article, we summarize the latest development and
application of immune epitope prediction methods and
discuss future directions in this field which could enhance
our understanding of immune specificity.
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2. INTRODUCTION

The immune system serves as the bedrock of the
organism’s defense against foreign pathogens. It is made up
of two arms — the innate immune response, for immediate
non-specific responses to intrusive agents, and the adaptive
immune response, for threat-specific responses (1, 2).
While the body’s innate immune responses are determined
by rapid and instantaneous recognition of a bewildering
range of intrusive agents, the adaptive immune responses
are characterized by specific memory-dependent assault on
the previously identified intrusion. At the heart of the
adaptive immune system lies the ability of the organism to
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Table 1. Biological databases and knowledge portals for immunoinformatics research

IResource Description URL Refs.
Immune  Epitope DatabaseComprgnhenswe repository Qf MHC binding peptndes, TH . ) )
cell epitopes and B-cell epitopes data. Also provides a http://www.immuneepitope.org/ 6
IEDB) ) et ) A !
ariety of MHC-binding and epitope prediction services.
[The InternationalHighly integrated resource for sequence, structural and|
ImMunoGeneTics  informationjgenetic information on immune regulators across multiple http://imgt.cines.fr/ 7
system (IMGT) species. Provide excellent links to relevant resources.
The Innate Immune DatabaseORl’eiZ?l?ergeref:;afiglgﬁ:ﬁi?iﬁ;SE:S\/T;Z? :15?2151(51\/01155;{ http://db.systemsbiology.net/cgi- o
1IDB) . - . s i bin/GLUE/U54/IIDBHome.cgi
immune-active genes or the entire genomic locus.
. Portal for accessing references and experiment data fo
[mmunological Database and. . . . .. . .
) immunologists. Supports production, analysis, archiving,https://www.immport.org p
lAnalysis Portal (ImmPort) S
and exchange of scientific data.
SYFPEITHI Database of experimentally verified MHC binding peptides.| http://www.syfpeithi.de/ 10
IMHCBN E:;fﬁisé:e repository of MHC-binding and non_bmdmg'http://Www.imtech.res.in/raghawa/mhcbn/ 11
[Database containing quantitative binding data for peptides
AntiJen binding to MHC peptides, T-cell epitopes, TAP, B-cell http://www.darrenflower.info/antijen/ 12
epitopes and protein-protein interactions.
Bcipep [Extensive repository of B-cell epitopes. http://www.imtech.res.in/raghava/bcipep/ 13
Comprehensive information about a wide range of|
AntigenDB experimentally-validated antigens cross-linked to epitope| http://www.imtech.res.in/raghava/antigendb/ 14
data.
HIV  Molecular Immunolog; H'IVTI cytotoxic and helper T-cell epitopes and antibod; http://www.hiv.lanl.gov/content/immunology/ Is
[Database binding sites.

develop and maintain immune specificity to a wide spectrum
of immunogenic agents — or antigens, through the T- and B-
cells (2).

In the T-cell arm of the adaptive immune system,
antigenic peptides derived from degradation of cytosolic
proteins are bound to the major histocompatibility complex
(MHC) class I molecules before being presented to the T-cell
receptors on CD8+ cytotoxic T-cells, while peptides derived
from degradation of internalized antigens are bound to MHC
class II molecules and subsequently recognized by CD4+
helper T-cells. While CD8+ cytotoxic T-cells play a key role in
targeted killing of infected or cancerous cells, CD4+ helper T-
cells are involved in the initiation and regulation of
downstream immuno-signaling responses. Unlike T-cells, B-
cells recognize cognate antigens in their native form through
binding of the B-cell receptor to epitopes which may be linear
or conformational, consisting of distant amino acid sequences
brought together spatially upon protein folding. It is believed
that about 10% of B-cell epitopes are linear, with the majority
being conformational in nature. Together with signaling inputs
from other immune cells, B-cells become activated upon
binding to the epitope on the antigen and differentiate into
mature B-cells which produce and secrete antibodies specific
for the antigen.

Due to the inherent combinatorial complexity of
the adaptive immune system, as evidenced by the interplay
between diverse repertoires of MHC molecules, B-cells, T-
cells and antigenic molecules, it is not surprising that
experimental studies are complex and could be assisted by
data-driven hypothesis generation (3). A primary goal of
immunoinformatics is the application of information
technology to manage data and model these complex
relationships in a high-throughput and systems-wide manner,
with the end point of facilitating bench-to-bedside research for
vaccine discovery and disease diagnostics (4). In this article,
we highlight available immunological databases and relevant
resources which are important for investigating immune
specificity. Next, we review the latest development and
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application of computational algorithms for B- and T-cell
epitope mapping. Finally, we discuss emerging perspectives on
other bioinformatics-based research which could significantly
contribute to the investigation of immune specificity.

3. IMMUNOLOGICAL
RESOURCES

DATABASES AND

High-throughput genome sequencing of the
human and other model organism genomes, together with
traditional experimental work, have led to a tremendous
surge in the availability of biological data. The deluge of
data has necessitated the development of specialized
immunological data repositories for efficient data storage
and retrieval. To date, a total of 27 immunological
databases have been archived in the 2010 Nucleic Acids
Research Database Collection, ranging from highly
specialized, boutique databases to data warehouses
integrating data from diverse sources (5). The more
prominent resources are highlighted in Table 1.

The Immune Epitope Database and Analysis
Resource (IEDB) is a highly integrated web portal
containing data related to antibodies and epitopes for
humans, non-human primates, rodents, and other animal
species (6). It stores over 70,000 entries on epitope
sequences related to a diverse range of infectious diseases
and allergens. The International ImMunoGeneTics
Information System (IMGT) serves as a convenient
resource for antibodies, genetic and structural data on the
human leukocyte antigen (HLA) molecules, and related
proteins of the immune system of human and other
vertebrates (7).

IMGT currently (November 2010) contains six
databases: (i) IMGT/LIGM-DB  with 150,027
immunoglobulin (IG) and T-cell receptor (TCR) sequences
from 261 species; (ii) IMGT/MHC-DB with sequences of
2,292 HLA class I alleles, 1,012 HLA class II alleles, and
106 non-HLA alleles; (iii) IMGT/GENE-DB with 2,702
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Table 2. T-cell epitope prediction servers

perver Flass Algorithm(s) Web Url Refs.
BIMAS Matrix-based ttp://www-bimas.cit.nih.gov/molbio/hla_bind/ 8
IEDB , 11 Matrix-based, ANN http://tools.immuneepitope.org/main/html/tcell_tools.html

HC-1 Structural-based with protein threading http://atom.research.microsoft.com/hlabinding/hlabinding.aspx 7
IMHCPred , 11 Multivariate statistical methods ttp://www.darrenflower.info/mhcpred/ 8
NetMHC IANN, weight matrix-based http://www.cbs.dtu.dk/services/NetMHC/ 2
nHLAPred IANN, matrix-based http://www.imtech.res.in/raghava/nhlapred/neural.html 0
SYFPEITHI | II Matrix-based http://www.syfpeithi.de/Scripts/ MHCServer.dll/EpitopePrediction.htm 0
ProPred-1 Matrix-based http://www.imtech.res.in/raghava/propred1/ 1
ProPred-I11 I Matrix-based ttp://www.imtech.res.in/raghava/propred/ 2
Rankpep , 11 Matrix-based http://bio.dfci.harvard.edu/RANKPEP/ 3

N-align I ANN http://www.cbs.dtu.dk/services/NetMHCII-2.0 4
SVMHC , 11 SVM ttp://www-bs.informatik.uni-tuebingen.de/Services/SVMHC 0
SVRMHC , 11 SVM regression http://svrmhc.biolead.org/ 1

etCTL IANN, weight matrix-based http://www.cbs.dtu.dk/services/NetCTL/ 1
IMAPPP Matrix-based http://www.mpiib-berlin.mpg.de/MAPPP/ 0
MetaMHC , 11 [Ensemble method http://www.biokdd.fudan.edu.cn/Service/MetaMHC.html. 4

genes and 3,761 alleles of human, mouse, rat and rabbit IG
and TCR genes; (iv) IMGT/PRIMER-DB with 1,864
primer records of IG and TCR from 11 species; (V)
IMGT/3Dstructure-DB with 2,367 records of 1G, TCR, and
MHC proteins with known 3D structures; and (vi)
IMGT/mADb-DB with 343 entries of monoclonal antibodies
and fusion proteins for immune applications.

Another related resource, the Innate Immune
Database (IID) provides a useful interface for gene-specific
and systems-biology oriented research development, and
contains a database of computationally predicted transcription
factor binding sites and related genomic features for a set of
over 2,000 murine immune genes of interest (8). The
Immunological Database and Analysis Portal (ImmPort),
provides access to extensive references and experimental data
on immunological research, as well as an interface for
production, analysis, archival, and exchange of scientific data

.

The boutique databases such as SYFPEITHI (10)
and MHCBN (11) comprise entirely of data on
experimentally-derived MHC-binding peptides with more than
7,000 and 20,000 entries respectively. In addition, AntiJen
contains over 24,000 entries on experimentally-derived data on
MHC peptides, MHC-TCR complexes, T-cell epitopes,
transporter associated with antigen processing (TAP) proteins,
B-cell epitopes and protein-protein interactions (12). On the
other hand, Bceipep focuses on B-cell epitopes binding data and
is deposited with over 3,000 entries (13). Unlike the epitopes-
only databases, AntigenDB has a compilation of more than
500 antigens culled from literature and other immunological
resources (14). These antigens are derived from 44 important
pathogenic species where individual antigen entries are
annotated with information on sequence, structure and B- and
T-cell epitopes. In addition, in silico studies have also
benefited from the availability of specialist databases such as
the HIV Molecular Immunology Database which has 9,172
records on HIV-1 cytotoxic T-cell epitopes, helper T-cell
epitopes and antibody-binding sites, as well as extensive
links to HIV-related literature (15).

4. T-CELL EPITOPE PREDICTION

More than 30 T-cell epitope prediction servers
have been developed and are available online (16, 17). A
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number of the more prominent servers are listed in Table 2.
As the primary feature in T-cell epitope identification is the
requisite binding of the potential peptide to the MHC
molecule, majority of the existing predictors are based on
identifying such MHC-peptide binding events. The results
of prediction range from simple binary outputs to
quantitative scores on peptide binding affinity. The
pioneering work on MHC-binding prediction is primarily
based on experimentally verified epitope motifs (18). For
example, in the case of MHC class I binders, it is common
to find peptides of length of 8-10 residues with anchoring
residues at the N- and C-terminus. Subsequent discovery of
the unique contribution of specific peptide residue positions
on MHC binding encouraged the development of matrix-
based algorithms, such as BIMAS (18) and SYFPEITHI
(10). The methods comprised of scoring matrices which
quantitatively measure the influence of different amino
acids at different residue positions on the overall peptide
binding ability to the MHC molecules. However, as matrix-
based methods are restricted from accounting the non-
linear contributions of residues along the length of the
peptide, non-linear algorithms such as Artificial Neural
Networks (ANN), Hidden Markov Models (HMM) and
Support Vector Machines (SVM) were explored (16, 17).
Several prediction servers, including MULTIPRED (19),
SVMHC (20) and SVRMHC (21), were developed using
these non-linear algorithms and were shown to outperform
the matrix methods on independent testing (16, 17). More
recently, servers such as NetMHC (22) have shown that
integration of two or more prediction methods either by
averaging over the predictions made or by feeding the
prediction outputs from one method to another, could lead
to better overall prediction performance.

While much progress has been made in designing
accurate MHC class I predictors, development of MHC
class II predictors have been complicated by several factors
(23). Structurally, the open binding cleft of MHC class 11
molecules allows for greater degeneracy in the length of the
binding peptides — and consequently a much more varied
T-cell epitope repertoire is observed. In addition, the MHC
class Il binding motifs have relatively weak and often
degenerate sequence signals. To date, most of the methods
for MHC class II binding predictions have been trained and
evaluated on very limited datasets covering only a single or
a few different MHC class II alleles. Hence, there are
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Table 3. B-cell epitope prediction servers

perver Algorithm Web Url Refs.
BcePred PPS http://www.imtech.res.in/raghava/bcepred/ 35
BepiPred PPS, HMM http://www.cbs.dtu.dk/services/BepiPred 37
ABCPred ANN http://www.imtech.res.in/raghava/abcpred/ 42
BCPredS SVM, String kernels http://ailab.cs.iastate.edu/bepreds/ 39
ICOBEpro SVM, Sequence similarity http://scratch.proteomics.ics.uci.edu/ 38
Discotope Structural-based http://tools.immuneepitope.org/stools/discotope/discotope.do 44
Ellipro Structural-based http://tools.immuneepitope.org/tools/ElliPro/iedb_input 45
Bepro (Pepito) Amino-acid propensities, structural http://www.igb.uci.edu/ 46
[Epitopia Naive Bayes classifier http://epitopia.tau.ac.il/ 0,41

correspondingly less available servers for MHC class II
binding prediction and a much more limited adoption of
these methods for MHC class II epitope discovery (23).
However, it is encouraging to note that ensemble-based
methods — such as MetaMHC - were found to perform
better when compared to the use of individual algorithms
on their own (24). The MetaMHC server aggregates
prediction outputs from distinctive, standalone MHC-
binding prediction algorithms and computes the prediction
outcome. As these results are in agreement with other
ensemble-based methods in related computational domains
(25), it is expected that more algorithmic work would be
carried from this perspective.

Besides modeling MHC-binding  events,
significant work have been done on developing systems
that model and integrate the events upstream of MHC
peptide presentation. Notably, a number of servers are
available for predicting antigen processing and peptide
transport through the MHC class 1 presentation pathway.
FRAGPREDICT (26), PAProC (27), NetChop (28) and
Pcleavage (29) are dedicated methods for proteasomal
cleavage prediction. FRAGPREDICT utilizes a motif-based
algorithm and an experimentally-defined kinetic model for
proteasomal cleavage prediction. On the other hand,
PAProC adopts a stochastic hill-climbing algorithm while
NetChop and Pcleavage are developed using ANN and
SVM algorithms respectively. Interestingly, servers such as
MAPPP (30) and NetCTL (31) have incorporated multiple
prediction services for integrated modeling of the various
molecular events leading up to MHC-peptide interaction.
For the MAPPP server, potential MHC class I binding
peptides are predicted for proteasomal cleavage using
either the FRAGPREDICT or PAProC algorithms while
MHC-binding prediction are made using the BIMAS or
SYFPEITHI methods. For NetCTL, MHC-peptide binding
is predicted using ANN and weight matrices while
proteasomal cleavage prediction is based on the NetChop
algorithm. In addition, NetCTL offers a predicted output
on TAP-mediated transport efficiency of the query peptide
using an experimentally-derived weight matrix.

5. B-CELL EPITOPE PREDICTION

While T-cell epitope prediction have attained
significant performance and could be suitably applied for
preliminary epitope mapping studies, progress in predicting
B-cell epitopes has been considerably slower. Due to the
highly varied nature of epitope binding to the B-cell
receptor, it is expected that the accurate modeling of the
epitope and receptor interaction would be significantly
more complex. Nonetheless, a wide of range of B-cell
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prediction methods have been developed (Table 3), with
much of the current research being devoted to the
prediction of linear B-cell epitopes. Early efforts in this field
were primarily based on the use of amino acid propensity
scales to identify amino acid residues that are most commonly
found in B-cell epitope sequences. Computational methods
that implement such scales include PREDITOP (32), PEOPLE
(33), BEPITOPE (34) and BcePred (35). However, the
effectiveness of amino acid propensity scales in detecting B-
cell epitopes remains a subject of debate. An extensive
assessment by Blythe and Flower (36) on 484 propensity
scales concluded that even the best set of scales and parameters
performed only marginally better than random and cannot be
used to predict epitope location reliably. This has led to the
development of more sophisticated methods, some of which
incorporate machine learning techniques, to address the
growing need for reliable prediction. Specific examples
include BepiPred, which combines HMM with propensity
scale methods (37); COBEpro, which employs SVM and
fragment predictions to compute an epitopic propensity score
for each residue (38); BCPredS, which utilized SVM together
with string kernels for predicting linear peptides of 12-20
amino acids in length (39); Epitopia, which uses a naive Bayes
classifier to predict immunogenic regions on either a protein
3D structure or linear sequence (40, 41); and ABCPred, which
employs a recurrent neural network to predict continuous B-
cell epitopes on the antigen (42). Decision tree based models
have also been reported and used for analysis of protective
continuous epitopes (43).

Much progress has been made in the development
of discontinuous or conformational epitope prediction
algorithms, most of which hamess structure-based
technologies to analyze the protein’s globular surface. One
good example is the Discotope server, which was developed
using amino acid statistics, spatial information, and surface
accessibility on a set of experimentally resolved discontinuous
epitope structures (44). Others include ElliPro, which
implements Thornton's method, a residue clustering algorithm
and homology modeling algorithm for epitope screening (45),
and PEPITO (46), which utilizes a combination of amino-acid
propensity scores and half sphere exposure values at multiple
distances for prediction. With the rapid growth of experimental
3-D structures in the Protein Data Bank (PDB) (47), it is
expected that more structure-based methods will emerge for
the development of linear and conformational B-cell
epitope prediction algorithms.

6. EMERGING PERSPECTIVES

While most immunoinformatics research have
been centered on the traditional aspects of immunology
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Table 4. Caspases and granzymes cleavage sites prediction servers

perver Algorithm Web Url Refs.
PeptideCutter Motif-based ttp://www.expasy.ch/tools/peptidecutter/ 4
CASVM SVM http://www.casbase.org/casvm/index.html 8-60
CasCleave SVM, Bayes Feature Extraction http://sunflower kuicr.kyoto-u.ac.jp/~sjn/Cascleave/ 1
Pripper SVM, Random Forest, J48 ttp://users.utu.fi/mijopi/Pripper 2

such as MHC-peptide binding and epitope prediction, a
number of recent experimental studies have highlighted the
potential of integrating bioinformatics applications from
other domains to refine the investigation of peptide immune
specificity. In the following sections, we summarize these
findings and review the in silico methods available.

6.1. Caspases

Caspases belong to a unique class of cysteine
proteases which function as critical effectors of apoptosis,
inflammation and other important cellular processes such
as cell proliferation and cell differentiation (48, 49).
Caspases cleave substrates at specific tetrapeptide sites
with a highly conserved aspartate (D) at the P, position
(50). To date, more than 300 different caspase substrates
have been experimentally defined (51). These substrates
belong to a myriad of functional classes such as cell cycle
regulators, DNA-binding proteins, cell surface receptors
and viral proteins. In a recent study by Rawson et al. (52),
the first evidence of caspase involvement in
immunopathology was noted when they found that the
proteome of apoptotic T-cells included fragments of
cellular proteins generated by caspases and that a high
proportion of distinct T-cell epitopes in these fragments
were recognized by CD8+ cytotoxic T-cells during HIV
infection. The frequencies of CD8+ cytotoxic T-cells that
are specific for apoptosis-dependent epitopes correlate with
the frequency of circulating apoptotic CD4+ helper T-cells
in HIV-1-infected individuals. It was further suggested that
caspase-dependent cleavage of proteins associated with
apoptotic cells has a key role in the induction of self-
reactive CD8+ cytotoxic T-cell responses, as the caspase-
cleaved fragments are efficiently targeted to the processing
machinery and are cross-presented by dendritic cells. In
addition, Lopez et al. reported that caspases were involved
in processing and presentation of a short vaccinia virus-
encoded antigen (53). By cleaving at non-canonical sites, at
least two caspases were found to generate antigenic
peptides recognized by the T-cells. As the cleavage sites
and peptide products were partially overlapping but
different to those produced by proteasomes in vitro, it was
suggested that caspase-mediated cleavage might be an
alternative mode of antigen processing.

A number of online servers are available for
caspase cleavage site prediction (Table 4). PeptideCutter is
a general proteolytic cleavage prediction server which has
in-built modules for a number of different caspases based
on expertly curated cleavage motifs (54). Lohmuller et al.
developed the peptidase substrate prediction tool (PEPS)
based on position-specific scoring matrices (PSSM) for
cathepsin B, cathepsin L and caspase-3 substrates (55).
Garay-Malpartida et al. (56) developed the CasPredictor
software based on a similar PSSM and the GraBCas
software by Backes et al. (57) advanced the earlier PSSM-
based methods by training on an updated set of caspase

315

cleavage specificities. More recently, machine-learning
algorithms have been implemented for caspase cleavage
prediction and were shown to perform better than the
earlier motif- and matrix-based methods. Wee et al.,
developed a SVM-based method utilizing various sequence
lengths for prediction and incorporated secondary structure
and solvent accessibility features (58-60). Cascleave,
another SVM-based prediction server, was developed using
Bayes Feature Extraction for feature representation (61).
More recently, Pripper utilized a variety of machine
learning algorithms, including SVM, J48 and random
forest, for caspase cleavage prediction of whole proteomes
(62).

6.2. Granzymes

Granule enzymes, or granzymes, belong to a
unique class of serine proteases which play critical roles in
the immune response through the killing of virus-infected
or tumor cells (63). Granzymes are released into the
cytoplasm of the target cells through endocytosis of
cytolytic granules released by cytotoxic T-cells and natural
killer (NK) cells. Once released into the target cells,
granzymes go on to cleave specific cellular proteins which
activate multiple signaling pathways leading to apoptotic
cell death. The most well studied granyzme, granzyme B, is
known to recognize and cleave proteins at specific
tetrapeptide motifs with Asp (D) residue at the P, position.

Although granzyme-induced apoptotic cell death
has long been considered the de facto mechanism for
killing virus-infected cells, accumulating evidence suggest
that granzymes also mediate antiviral effects through
distinctive non-apoptotic pathways. Andrade et al. reported
that the adenovirus type 5 DNA-binding protein and the
100K protein are cleaved by granzyme B and granzyme H
(64). These proteins are essential for adenovirus replication
and cleavage by the granzymes was shown to inactivate
these proteins and inhibit viral replication. It was also
reported that elevated concentrations of circulating
granzymes were found in various inflammatory processes
and that granzymes could mediate cleavage of extracellular
substrates (reviewed in ref. 65). Together, these findings
suggest that granzymes mediate a board range of functions
relevant to antiviral activities and tumor rejection, as well
as the pathogenesis of chronic inflammatory diseases. As
reviewed in Darrah et al. (66), granzyme-mediated
cleavage was found to modify the structure of autoantigens
during cytolytic granule-mediated cell death and could be
instrumental in driving the progression of systematic
autoimmune diseases such as systemic lupus erythematosus
and rheumatoid arthritis. Granzyme B cleavage sites were
found to co-localize with autoimmune epitopes and
cleavage of cellular proteins has been shown to create or
destroy the autoimmune epitopes. There is much evidence
to suggest that elucidation of granzyme targets and their
cleavage products will have profound impact on the
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understanding of the role of granzymes in immune
responses. However, unlike caspase cleavage prediction,
there are limited resources for predicting granzyme
cleavage sites. Both GraBCas and PeptideCutter are
available for granzyme B cleavage site prediction, in
addition to caspase cleavage prediction. GraBCas uses a
position-specific scoring matrix model derived from
quantitative measures of cleavage specificities of granzyme
B (57), while PeptideCutter employs expertly curated
cleavage motifs for prediction (54).

7. CONCLUSION

With the ever-growing availability and deposition
of biological data, it clear that information technology has a
critical role to play in driving various aspects of
immunology research. It is expected that epitope discovery
will continue to be the mainstay in defining immune
specificity and that these efforts will be complemented by
sophisticated in silico methods, which are increasingly
being integrated into platforms for system-wide analyses.
Synergistic  interactions between experimental and
computational research will augment practical efforts in
applied immunological research such as vaccine and
diagnostics development.
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