
[Frontiers in Bioscience E4, 331-341, January 1, 2012] 

331 

STIM and Orai in cellular proliferation and division 
 
Raphael Courjaret1, Khaled Machaca1 
 
1Department of Physiology and Biophysics, Weill Cornell Medical College in Qatar, Education City – Qatar Foundation, Doha, 
Qatar 
 
TABLE OF CONTENTS 
 
1. Abstract 
2. Ca2+ signaling and cellular proliferation 
3. Diversity of Ca2+ signaling 
4. Store-operated Ca2+ entry (SOCE) 
5. STIM1 and Orai1 during the cell cycle 
6. STIM and Orai loss of function in animal models and humans 
7. Vascular smooth muscle and endothelial cells  
8. Cancer cells 
9. Perspectives 
10. Acknowledgments 
11. References 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1. ABSTRACT 
 

Cellular proliferation and division are central 
processes in the development, survival and evolution of 
living systems. Transitioning into the cell division phase of 
the cell cycle encompasses dramatic remodeling of cellular 
organelles and signaling modules including Ca2+ signaling. 
As well, Ca2+ signals play important roles during 
progression through various stages of the cell cycle. A 
ubiquitous Ca2+ influx pathway that is activated based on 
intracellular Ca2+ store content is store-operated Ca2+ entry 
(SOCE). SOCE is activated through a complex interplay 
between a Ca2+ channel at the cell membrane, Orai1, and a 
Ca2+ sensor that localizes to the endoplasmic reticulum, 
STIM1. Herein, we discuss potential roles and regulation of 
STIM and Orai proteins during cellular proliferation. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2. CA2+ SIGNALING AND CELLULAR 
PROLIFERATION 
 

Cellular proliferation depends on progression 
through the growth and division phases of the cell cycle. 
Typically, the cell cycle is divided into four phases starting 
with the first growth phase (G1) during which cells grow 
and accumulate components required for the ensuing DNA 
duplication phase (S-phase). Terminally differentiated cells 
exit the G1-phase to arrest in a so called G0 phase. 
Following the DNA duplication phase, cells go through a 
second growth phase, G2, before entering the short but 
dramatic division phase, M-phase. This results in the 
production of two daughter cells with an equivalent cellular 
organelle and DNA complement allowing the continuation 
of cellular growth and division in the next generation (1). 
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 For the cell cycle to successfully support cellular 
proliferation it has to be sequential G1-S-G2-M, that is 
cells cannot undergo cellular division before having 
duplicated their DNA as this will result in cellular demise. 
In addition the cycle is unidirectional to prevent DNA 
endoreplication for example and ensure cellular survival. 
To guarantee the sequential and unidirectional nature of the 
cell cycle critical checkpoints and feedback loops are 
incorporated in the signaling cascades regulating cell cycle 
progression. Early embryonic cell cycles in the frog for 
example deviate from the typical cycle as they lack the 
growth phases and encompassed only the DNA synthesis 
and division phase. This is due to the need for rapid cell 
division at this stage of development, and the fact that 
macromolecular components required for cell cycle 
progression are stored in the large egg before fertilization.  

 
Ca2+ signals have been implicated at several 

stages during cell cycle progression (2). Ca2+ is a fitting 
second messenger in that context given the versatility and 
specificity it affords based on its spatial, temporal and 
amplitudes dynamics (3; 4). Ca2+ signals have been shown 
to be important for nuclear envelope breakdown during 
prophase, DNA condensation, anaphase onset, and 
cytokinesis (5-12). Notably some interesting differences 
were documented in terms of the role of Ca2+ signals 
between the mitotic and meiotic cell cycles, including the 
requirement for Ca2+ signals during the breakdown of the 
nuclear envelope. In contrast to mitosis, Ca2+ signals are 
dispensable for nuclear envelope breakdown during meiosis 
(13; 14).  

These dependencies on Ca2+ signals at various 
stages of the cell cycle have been translated to downstream 
Ca2+ signaling modules including calmodulin (CaM), Ca2+-
CaM dependent protein kinase II (CaMKII) and calcineurin 
among others. Progression through the cell cycle is 
associated with alterations in the levels of CaM expression 
with an increase during the G1-S transition (15; 16). 
Furthermore experimental manipulation of CaM levels 
affects progression through the G1 and M-phases, interferes 
with DNA replication and influences cellular growth and 
proliferation (17-20). CaM and extracellular Ca2+ levels 
have been linked to the cell cycle machinery through the 
phosphorylation state of Rb (21). Rb is a tumor suppressor 
that is phosphorylated by cyclin-dependent kinases Cdk4 
and Cdk2 leading to its dissociation from E2F and the 
induction of genes required for the G1-S transition (22). 
Consistent with the effects of CaM on the cell cycle, 
inhibition of CaMKII results in defects in the G2-M and G1 
phases (23). Furthermore, expression of a constitutively 
active CaMKII arrests the cell cycle in G2 (24). In yeast 
mutants defective in CaM exhibit defects in progression 
through mitosis (25-28). 

 
The most clearly defined function for Ca2+ signal 

during cell cycle transitions is following fertilization of 
vertebrate eggs. Following maturation vertebrate eggs 
arrest at metaphase of meiosis II until fertilization. This 
arrest is mediated by cytostatic factor (CSF) which 
maintains Cdk1 activity at high levels and thus prevents the 
activation of the anaphase-promoting complex (APC/C) 
and the transition to anaphase (29). Fertilization leads to 

dramatic Ca2+ transient that activates CaMKII (30). 
CaMKII in turn phosphorylates the APC/C inhibitor Emi2 
(31-33). Emi2 phosphorylated by CaMKII becomes a 
substrate for phosphorylation by polo-like kinase. Dual 
phosphorylation of Emi2 targets it for degradation by the 
proteasome thus releasing APC/C inhibition and releasing 
the metaphase II arrest (34).  

 
The Ca2+-CaM-dependent phosphatase 

calcineurin has also been implicated in the release of the 
metaphase II arrest and the activation of the anaphase 
promoting complex/cyclosome (APC/C) during the meiotic 
cell cycle (35; 36). Calcineurin inhibition has also been 
reported to arrest the cell cycle in G1 (37). Furthermore, 
calcineurin play a central role in the resumption of the cell 
cycle following antigen stimulation in T-cells. Antigen 
stimulation activates Ca2+ influx through SOCE leading to 
a sustained transient which activates the phosphatase 
calcineurin (38). Calcineurin dephosphorylate the 
transcription factor NFAT leading to its translocation to the 
nucleus and the transcription of genes required for T-cell 
clonal expansion.  

 
Together these effects show that Ca2+ signaling is 

pervasive during the cell cycle, through downstream Ca2+-
dependent signaling modules that regulate various aspects 
of cell cycle transition and cellular proliferation. This raises 
interesting questions about how specificity is achieved to 
modulate different aspects of the cell cycle through Ca2+ 
signals. Are specific Ca2+ signaling pathways implicated 
differentially during different stages of the cycle? Is SOCE 
involved and does it play defined roles in cellular 
proliferation?  
 
3. DIVERSITY OF Ca2+ SIGNALING 
 
 As discussed above, Ca2+ signals and 
downstream Ca2+-dependent effectors play important roles 
during cell proliferation, however it seems that the 
dependency on Ca2+ signals is defined in a cell type and 
developmental stage specific fashion (2; 39). Ca2+ signals 
maintain specificity despite their ubiquitous nature and 
involvement in disparate cellular behaviors often in the 
same cell. The attribute of Ca2+ signals that endow them 
with such versatility is the specific signature encoded in 
their spatial, temporal and amplitude dynamics (3; 40). This 
Ca2+ code, coupled to the affinity and association and 
dissociation constants of downstream Ca2+ binding proteins 
allows Ca2+ signals to activate distinct signal transduction 
pathways based on the need of the cell. Spatially, Ca2+ 
signals can localize to within a few nanometer at the mouth 
of a channel, and as such activate Ca2+-binding proteins in 
the immediate vicinity of the channel (41). Alternatively 
Ca2+ waves can sweep through the entire cell or groups of 
coupled cells (42). Similarly, temporally Ca2+ signals can 
be very short lived on the order of µseconds during 
vesicular exocytosis, or they can persist for quite a long 
time as illustrated by the Ca2+ oscillations that last up to 
several hours after fertilization in mammals (43). 
 

The regulation of Ca2+ signaling depends on 
different channels, transporters and pumps that localize to 
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the cell, mitochondria and ER membranes. The ER 
constitutes the primary intracellular Ca2+ storage organelle. 
Free Ca2+ is highest in the extracellular space (1-2mM) and 
ranges between 250-600 µΜ in the lumen of the ER (44). 
In the cytoplasm Ca2+ is maintained at low levels ~100nM 
to allow signaling to occur. In effect, the extracellular and 
intracellular Ca2+ pools are functionally linked through the 
store-operated Ca2+ entry (SOCE) pathway. Depletion of 
Ca2+ stores following agonist-induced Ca2+ release, results 
in Ca2+ influx at the cell membrane. Several of these Ca2+ 
signaling pathway could be differentially involved in 
generating the Ca2+ signals required for progression 
through different stages of the cell cycle. For example, Ca2+ 
release through the IP3 receptor has been exclusively 
implicated in the resumption of the meiotic cell cycle 
during fertilization of the frog egg (45). In the following 
sections we discuss what is currently known about the role 
of SOCE during cellular development and proliferation. 
 
4. STORE-OPERATED CA2+ ENTRY (SOCE) 
 

SOCE represents a ubiquitous Ca2+ influx 
pathway that is pronounced in non-excitable but also 
present in excitable cells such as skeletal muscle (46; 47). 
SOCE is activated following store depletion in response to 
activation of G-protein or tyrosine kinase coupled 
receptors, which activate PLC resulting in inositol 1,4,5 
trisphosphate (InsP3) production leading to ER Ca2+ 
release. SOCE is not due to Ca2+ release per se or other 
PLC-dependent downstream messengers, since it can be 
induced by store depletion mechanisms that are PLC-
independent such as inhibition of endoplasmic reticulum 
Ca2+-ATPase using thapsigargin (46). SOCE is critical for 
several physiological functions including activation of 
immune cells and skeletal muscle development (48). As 
discussed above, following antigen stimulation of T-cells, 
Ca2+ influx through SOCE is important for T-cell clonal 
expansion by initiating re-entry into the cell cycle. 
Antigens crosslink T-cell receptors leading to 
PLCγ activation and the production of InsP3. InsP3 gates 
the InsP3-receptor Ca2+ channel on the ER membrane, thus 
releasing Ca2+ and inducing store depletion, which 
stimulate Ca2+ influx through SOCE. This produces a 
sustained Ca2+ transient, which is required for calcineurin 
activation and dephosphorylation of NFAT (nuclear factor 
of activated T cells) (38; 49).  
 

The molecular players mediating SOCE have 
been elucidated and studied extensively over the past five 
years. Large scale RNAi screens identified stromal 
interaction molecule 1 (STIM1) as the ER Ca2+ sensor (50; 
51), and Orai1 as the SOCE Ca2+ channel at the cell 
membrane (52-54). STIM1 is a single pass trans-membrane 
domain protein with a luminal EF-hand allowing it to 
detect ER Ca2+ content. Orai1 is an integral membrane 
protein with four trans-membrane domains and cytoplasmic 
N- and C-termini. Co-expression of STIM1 and Orai1 
replicates the biophysical properties of Ca2+-release 
activated Ca2+ current (ICRAC), which is the best 
characterized SOCE current biophysically (54-56). 
Furthermore, mutations of glutamate residues in the first 
and second trans-membrane domains confirm that Orai1 

lines the SOCE channel pore as they alter SOCE current 
selectivity and permeation (57-59). Finally, mutations in 
STIM1 and Orai1 in human patients and knock-out strains 
of either protein in mice abrogate SOCE in cells of the 
immune system and other cells in the body (48; 52). 
Besides STIM1 and Orai1, mammalian genomes encode an 
additional STIM homologue, STIM2, and two additional 
Orai genes, Orai2 and 3 (60; 61). In addition to their roles 
in SOCE, STIM and Orai proteins are involved in other 
Ca2+ signaling pathways such as the arachidonate-regulated 
Ca2+ channel (ARC) (62; 63). STIM1 has also been 
implicated in the regulation of TRP channels (64). 

 
Structure-function studies on STIM1 and Orai1 

have greatly improved our understanding of the coupling 
mechanism between Ca2+ store depletion and Ca2+ influx at 
the cell membrane. We will briefly summarize STIM1-
Orai1 coupling here since this topic is addressed in 
significant details in other reviews in this issue. When 
lumenal Ca2+ levels in the ER fall below a certain threshold 
Ca2+ dissociates from the STIM1 EF-hand inducing a 
conformational change in the protein that results in its 
clustering. Large STIM1 clusters, referred to as puncta, are 
stabilized in a cortical ER domain within a few nanometers 
of the cell membrane where they directly interact with 
Orai1 leading to its co-clustering and gating (53; 57; 59; 
65-69). Therefore direct physical coupling between STIM1 
-the ER Ca2+ sensor- and Orai1 -the Ca2+ channel at the cell 
membrane- results in functional coupling between Ca2+ 
levels in the ER lumen and Ca2+ influx. In addition to its 
coupling to Orai1, STIM1 also interacts with and gates 
members of the TRPC channel family (64; 70; 71), which 
may play a role in cellular proliferation. 
 
5. STIM1 AND ORAI1 DURING THE CELL CYCLE 
 

It has been know for many years that soce 
inactivates during the division phase of the cell cycle (72). 
That is in both mitosis of mammalian cells and meiosis of 
frog oocytes, store depletion does not activate Ca2+ influx 
(73-76). Recent studies have shown that uncoupling of 
store depletion from Ca2+ influx during M-phase is due to 
the inability of STIM1 to cluster in response to depletion of 
Ca2+ stores (77; 78), and to internalization of Orai1 (77; 
79). Orai1 is removed from the cell membrane and 
becomes enriched in endosomes during Xenopus oocyte 
meiosis. This occurs by targeting Orai1 for internalization 
through a caveolin and Rab5-dependent endocytic pathway 
(79). Combined STIM1 clustering inhibition and Orai1 
internalization uncouple Ca2+ store depletion from Orai1 
gating, thus inactivating soce. This is the only known 
physiological situation where soce is inhibited arguing for 
an important functional role. soce inactivation during cell 
division may reflect the tight regulation of Ca2+ signaling 
necessary to ensure proper transition through M-phase. Cell 
division encompasses dramatic changes to the cell, 
including the breakdown of the nuclear envelope, 
chromosome condensation, fragmentation of the Golgi 
apparatus and remodeling of the cell’s cytoskeleton. As 
discussed above Ca2+ signals have been implicated during 
various stages of cell division. Hence, soce inactivation 
may be a mechanism to prevent unwanted Ca2+ influx, 
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which could derail Ca2+-dependent processes during critical 
stages of M-phase. For the Xenopus egg sporadic Ca2+ 
influx through soce is likely to lead to egg activation prior 
to fertilization, which will result in its demise. The fully 
mature Xenopus egg is arrested at metaphase of meiosis II 
and is activated by a sweeping Ca2+ wave following sperm 
fusion (45; 80). A localized Ca2+ transient, as would be 
mediated by soce activation, is prone to produce a 
sweeping Ca2+ wave that will activate the egg, including 
the completion of meiosis in the absence of sperm (81). In 
fact simply pricking the egg in Ca2+ containing medium is 
sufficient to activate it (82). 
 

In addition to soce other Ca2+ signaling pathways 
are also remodeled during cell division, which reflects 
specific signaling requirements during M-phase. Inositol 
(1,4,5)-trisphosphate (InsP3)-dependent Ca2+ release is 
sensitized during both meiosis (83-85) and mitosis (86); 
and the plasma-membrane Ca2+-ATPase is internalized 
during meiosis (87; 88). 
 
6. STIM AND ORAI LOSS OF FUNCTION IN 
ANIMAL MODELS AND HUMANS 
 

The identification of STIM1 and Orai1 as the 
molecular mediators of SOCE allows the analysis of the 
global function of these proteins. Indeed several whole 
animal and tissue specific knockout strains have been 
generated and their phenotypes characterized. The 
generation of STIM1-KO mice produces animals that 
mostly die either in utero or in the first hours/days of life 
(89-92), and the few surviving animals have a growth 
retardation phenotype (89; 93). The cause of the premature 
death of the animals is not clearly understood yet, with the 
most obvious phenotype being a respiratory failure in 
STIM1-KO mice due to severe skeletal muscle dysfunction 
(89; 91). STIM2-KO mice had a better survival rate (death 
occurring after 4 to 8 weeks), though they did also exhibit a 
growth retardation phenotype (90; 93; 94). Whether these 
growth phenotypes are linked to defects in cellular 
proliferation is presently not known. Knocking down STIM1 
does not significantly affect immune system development, 
although splenomegaly was reported as well as a 
lymphoproliferative disease and infiltration of lymphocytes in 
non lymphoid tissue such as lung and liver. This phenotype is 
also observed in conditional T-cell restricted STIM1/2 double 
KO but is not yet fully understood, although it most likely 
involves the density/function of Treg cells (90; 93). 
 

In the case of Orai1, although Orai1 knockout leads 
to perinatal death, some mice lacking the channel protein were 
able to grow providing special breeding or backcrossing 
conditions but show reduced size, a hair loss phenotype and a 
deficit in lymphocytic function (95; 96). The proliferation of 
B-cells following stimulation with an anti-IgM was impaired 
in Orai1-/- (95). In the case of T-cells the effect of Orai1 
deletion does not affect the development of naïve T-cell (96). 
The phenotype of these knockout lines may not be 
representative of acute knockdown of Orai1 as expression of 
other Orai proteins, Orai2 and 3, may complement part of 
the Orai1 function in lymphocytes and other tissues (95; 
96).  

The consequences of Orai1 or STIM1 deficiency 
in humans has been recently reviewed (48; 97). Briefly, 
patients lacking STIM1 or Orai1 functional genes display a 
severe immunodeficiency linked, but not restricted, to a 
reduced T-cell ability to proliferate and to release 
cytokines. The vulnerability to infections associated with a 
congenital myopathy strongly limits the survival of 
patients. In addition, some patients show 
lymphoproliferative symptoms, a phenotype also observed 
in STIM1 and STIM1/2 KO mice. Surprisingly, although 
STIM1 and Orai1 are quite ubiquitously expressed, their 
absence does not induce a total loss of function in many 
cell types, suggesting a compensation mechanism involving 
for instance STIM2 and Orai2 and 3. 

 
Loss of function phenotypes of STIM1 and Orai1 

in mice and humans confirm the central role of these 
proteins in the context of SOCE in the proliferation of 
immune cells in response to antigen stimulation. They also 
show that SOCE is not essential for the development and 
differentiation of immune cells. More detailed analyses of 
different cell types in these knockout models is warranted 
to better define the role of STIM and Orai1 in cell cycle 
progression and cell proliferation.  
 
7. VASCULAR SMOOTH MUSCLE AND 
ENDOTHELIAL CELLS  
 
 In vascular smooth muscle cells (VSMC), 
although SOCE has been recorded for quite some time, the 
molecular partners contributing to the generation of the 
calcium current are still a matter of debate. Recently, 
different strategies aimed at inactivating Orai1 and STIM1 
in VSMCs provided new clues to functionally define SOCE 
in these cells. Knocking down Orai1 but not Orai2 or 3 
reduces store-operated calcium influx and current. 
Moreover, silencing of Orai1 reduces cell proliferation but 
also cell migration during wound healing in culture (98; 
99). Similar results were obtained in cultured VSMCs 
derived from pulmonary or coronary artery and aorta 
following the knock-down of STIM1, where both SOCE 
and VSMCs proliferation were reduced (99-102). The 
existence of a link between STIM1/Orai1 and cell 
proliferation is also supported by the finding that 
proliferating VSMCs have higher expression levels of both 
proteins (99; 102). Furthermore, siRNA mediated 
knockdown of STIM1 in VSMC results in G0-G1 arrest 
(101). This was coupled to increased expression of the 
CDK inhibitor p21 and an accumulation of the hypo-
phosphorylated form of Rb. This would explain the G1 
arrest and inability of the cells to progress to S-phase.  
 

Two nuclear targets have been proposed so far to 
explain the regulation of cellular proliferation by SOCE. 
First, activation of SOCE by thapsigargin has been shown 
to induce the phosphorylation of CREB, while knocking 
down STIM1 reduces the amount of pCREB (100). Second, 
thapsigargin induced activation of NFAT was strongly 
reduced by the knockdown of STIM1 as well as production 
of the mRNA coding for the modulatory calcineurin protein 
1 (MCPI1), an NFAT-driven gene (102). Finally, and in 
contradiction with the previously cited works, it was 
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reported that in VSMCs isolated from the human saphenous 
vein, the knockdown of STIM1 reduces SOCE without 
affecting cell proliferation. Conversely, in those cells, the 
inactivation of TRPC1 reduced cell migration and 
proliferation (103). 

 
The importance of SOCE in cell proliferation within 

the vascular system is not restricted to VSMCs. Although the 
players underlying SOCE in endothelial cells remain 
controversial (104; 105), STIM and Orai1 proteins have been 
shown to regulate endothelial cell proliferation. In human 
umbilical vein endothelial cells in culture, silencing Orai1 
increased the proportion of cells in phase S and G2-M. A 
similar but much lower effect was observed with STIM1 or 2 
knockdown, suggesting that Orai1 might act, at least partly, 
independently of STIM proteins (104). These results also argue 
that the role of soce in modulating the cell cycle of endothelial 
cells differ from that of VSMCs. In endothelial precursor cells 
derived from rat bone marrow, STIM1 levels have been shown 
to increase during cell proliferation induced by hepatocyte 
growth factor (106), while STIM1 knockdown limited the 
proliferation of naïve and stimulated cells (106; 107). These 
observations are supported in a vascular injury model using 
balloon angioplasty in rat carotid arteries. After arterial injury, 
STIM1 expression increases in smooth muscle cells in the 
media of the injured vessel but also in the neointima, 
confirming the increased expression of STIM1 in proliferating 
cells (101). Consistently, knockdown of STIM1 using 
adenoviral delivery of shRNA and siRNA prevents neointima 
formation and restores normal lumen diameter (101; 102).  

 
In contrast, STIM1 knockdown in HEK cells in 

culture has been reported to have no effect on cellular 
proliferation. siRNA-mediated Orai1 knockdown in HEKs 
decreases cell proliferation, as does STIM2 knockdown but to 
lowers level than Orai1 (108). Serum starvation of HEK cells 
or pharmacological inhibition of cdk1 results in decreased 
Orai1 protein without affecting RNA levels arguing for 
translational control of Orai1 expression under these 
conditions. Therefore the effects of STIM1 knockdown appear 
to display a cell-type specific effect on cellular proliferation. 

 
8. CANCER CELLS 
 

STIM1 was originally isolated as a tumor suppressor 
and was termed GOK (109), linking it to cell proliferation and 
cancer. STIM1 was shown to be expressed in normal skeletal 
muscle but not in the muscle-derived rhabdomyosarcoma and 
rhadbdoid tumor cell lines. Moreover, in those cell lines, 
restoration of STIM1 induces cell death. This tumor 
suppressive phenotype of STIM1 was shown to be cell-type 
specific since it was not observed in the breast cancer cell line 
HBL100 (109). More recently, increased understanding of the 
structure and function of STIM and Orai proteins, has 
rekindled interest in the role of SOCE in various cancers, 
particularly in the case of breast cancer.  

 
Orai1 expression is increased in breast cancer 

tissue and in the cancer cell line MCF-7 as compared to 
normal human mammary epithelial cells and to the non-
cancerous cell line MCF-10A (110; 111). Knockdown of 
Orai3 inhibits the proliferation of MCF-7 cells and 

produces an arrest in G1 phase. A detailed analysis of the 
key proteins regulating the G1 and G1-S transition revealed 
that the expression of cyclin D1 and E was decreased as 
well as their corresponding Cdks (Cdk4/2). At the same 
time, over-expression of the CDK inhibitor p21Waf1/Cip1 
and of the tumor suppressor p53 were observed (110). 
However it appears that breast cancer cell lines are not 
homogenous regarding STIM/Orai expression, and can 
be divided into al least two distinct pools: estrogen 
receptor-positive cells that express STIM1/2 and Orai3, 
and estrogen receptor-negative cells that express STIM1 
and Orai1 (111).  

 
The knockdown of Orai1 has been shown to 

reduce the proliferation of MCF-7 but also to reduce 
tumor generation and inhibit metastasis in mice (112; 
113). Conversely, the knockdown of STIM1 did not 
affect the proliferation of the MCF-7 (112) or of the cell 
line MDA-MB-231 while reducing serum induced cell 
migration (114). Adding to the complexity of the 
pattern, it was also found that Orai1 knockdown can 
reduce tumor generation and proliferation of the MCF-7 
cell line, but that this was independent of STIM1/2 
expression and activation. Orai1 has been shown in that 
case to form a complex with the Secretory Pathway 
Ca2+-ATPase (SPCA2) to trigger a store-independent 
calcium influx promoting tumorogenesis (112).  

 
The implication of modulating STIM and Orai 

protein levels in other types of cancerous cell lines has also 
been reported although the data are limited to date. In human 
hepatoma cells, the knockdown of either STIM1, Orai1 or 
TRPC6 decreases SOCE and cyclin D1 levels (115). In human 
prostate cancer cells, STIM1/Orai1-dependent SOCE is a 
major contributor to calcium-induced apoptosis and the 
expression of Orai1 depends on expression of the androgen 
receptor, making androgen-independent cells more resistant to 
apoptosis (116). Although much more remains to be learned 
about the role of STIM and Orai in cancers it is clear that they 
are involved in cancer development and metastasis, with the 
added complexity that their specific role in different types of 
cancer appears to be cell-type specific. 
 
9. PERSPECTIVES 
 

Over the past few years we have learned 
significantly about the basic molecular mechanisms of STIM1-
Orai1 coupling in the context of soce, however our 
understanding of the contribution of STIM and Orai proteins to 
cell cycle progression, cellular proliferation and to cell 
physiology in general remains in its infancy.  

 
Many questions remain. What are the mechanisms 

underlying the dramatic inhibition of SOCE during the 
division phase of the cell cycle? Are the effects of Orai and 
STIM modulation during cellular proliferation linked to SOCE 
and if not what are the specific pathways involved? The 
interaction of Orai1 with SPCA2 illustrates one example 
where Orai1 functions in an soce independent fashion. 
Are there other physiological or pathological situations 
where this is the case, for either STIM or Orai proteins? 
What determines the cell-type specific differential roles 
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of STIMs and Orais that is already emerging in the literature? 
It is fair to speculate that additional molecular partners of 
STIMs and Orais remain to be discovered and that they may 
modulate the function of these proteins in a cell-type and 
developmental specific fashion. Recent reports pointing to 
STIM-independent, Orai-dependent processes suggests that the 
cellular physiology of these molecules deviates from a simple 
model of STIM/Orai interaction. This would explain the 
differential phenotype observed in distinct cell types following 
modulation of STIM or Orai expression levels. Moreover, the 
relative viability of STIM1 and Orai1 knockouts tends to 
suggests that STIM1 and Orai1 are not key players in the 
normal process of cell division, or that other isoforms of the 
proteins can fulfill their roles when they are inactivated.  In 
summary, the future promises exciting discoveries regarding 
the roles of STIMs and Orais in cellular proliferation and their 
regulation during the cell cycle. 
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