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1. ABSTRACT 
 
 Tissue Factor (TF) is a crucial initiator of the 
extrinsic coagulation cascade.  TF is expressed on cells 
which are normally sequestered from blood.  However, 
upon injury TF is exposed to the blood resulting in 
activation of the coagulation cascade.  TF dependent 
generation of coagulation proteases also initiates 
intracellular signaling through protease activated receptors.  
Pathologic TF expression is found in patients with a 
number of different diseases.  This review will describe the 
roles of TF in health and disease as well as discuss 
approaches to reduce pathologic TF expression.   
 
2. INTRODUCTION 
 

Tissue factor (TF) is the primary activator of the 
coagulation protease cascade.  It is essential for hemostasis.  
However, aberrant TF expression can promote thrombosis in 
different diseases.  Finally, TF can influence cell signaling by 
generating coagulation proteases that activate protease 
activated receptors (PARs). This review will summarize our 
current knowledge on TF and its role in health and disease.   

 
 
 
3. TISSUE FACTOR AND COAGULATION 
 

TF is a 47kd transmembrane glycoprotein that 
contains 3 domains (a short intracellular domain, a 
transmembrane domain, and an extracellular domain)(1). It 
is normally sequestered from blood and high levels are only 
found on cells surrounding blood vessels (2, 3).  Drake and 
colleagues proposed that TF formed a hemostatic envelope 
that activated blood coagulation upon blood vessel 
injury(2). More recently it was shown that factor VII (FVII) 
is bound to TF surrounding dermal blood vessels in the 
absence of injury (4), which would allow a more rapid 
response to injury. TF is also highly expressed in cells of 
several organs, such as the placenta, heart, lungs, and brain. 
The TF/FVIIa complex activates factor IX (FIX) and factor 
X (FX) which subsequently leads to the activation of 
thrombin culminating in fibrin deposition.   

 
Low levels of TF are also found circulating in the 

blood in the form of microparticles/ microvesiscles. These 
are small membrane vesicles that are released from cells 
upon activation or cell death (5).  During microparticle 
generation, the plasma membrane loses its normal structure 
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and phosphatydlserine (PS) becomes exposed on the outer 
leaflet of the membrane.  It has been proposed that PS may 
induce a conformational change in TF that increases the 
activity of the TF/FVIIa complex.  The identification of TF 
on microparticles has sparked an interest in its role in 
thrombosis. Indeed, an early study showed that TF positive 
microparticles isolated from patients undergoing cardiac 
surgery are highly pro-coagulant (6).  The roles of TF 
positive microparticles in various disease states such as 
sepsis, acute coronary syndrome and cancer will be 
discussed further below.    

 
Another form of TF present in blood is generated 

by alternative splicing of TF pre-mRNA (7).  This so called 
alternatively spliced TF (asTF) has no transmembrane 
domain and likely has little to no pro-coagulant activity.  
However, it does bind to various integrins and enhances 
angiogenesis (8).  The role of asTF in different biological 
processes is reviewed by Srinivasan and Bogdanov in 
another article in this issue.    

 
4. TISSUE FACTOR AND PROTEASE ACTIVATED 
RECEPTORS  
 

TF is known to have functions beyond its pro-
coagulant activity, in part, by inducing the generation of 
coagulation proteases.  These proteases activate a family of 
receptors called protease activated receptors (PARs). PARs 
are seven transmembrane spanning G protein coupled 
receptors that act as sensors of the local environment.  
There are four receptors in the family, PAR1-4 and they are 
expressed throughout the vasculature (9, 10).  PARs are 
activated by proteolytic cleavage of the extracellular amino 
terminus which results in binding of a tethered ligand onto 
the receptor. This leads to activation of intracellular 
signaling pathways and the induction of various genes, 
including chemokines and cytokines.  As such, these 
receptors are thought to mediate the cross-talk between 
coagulation and inflammation.  Thrombin activates PAR1, 
PAR3, and PAR4(10).  While both FVIIa and FXa activate 
PAR2 in vitro (11-14).  However, the affinity for this 
interaction is much lower than other proteases that also 
activate PAR2, such as trypsin and tryptase (15).  Thus, the 
contribution of FVIIa and FXa to the activation of PAR2 in 
vivo is still unclear. 

 
5. TISSUE FACTOR AND DEVELOPMENT 
 

TF plays an essential role in development. For 
instance, inactivation of the TF gene in mice results in 
death of the majority of embryos at embryonic day 9.5-10.5 
(16-18).  Two explanations for this embryonic lethality 
have been proposed.  One group suggested that embryos 
lacking TF died because of a failure in remodeling of the 
yolk sac vasculature, while others proposed that the lack of 
TF led to bleeding (16-18).  To date, no humans have been 
found that lack TF.  These observations underscore the 
importance of TF for an organism containing blood in a 
high pressure vascular system.  As a result, the role of TF 
in hemostasis has been difficult to study. However, mice 
with greatly reduced levels of TF in all tissues or mice 
selectively lacking TF in different tissues have been 

generated (19, 20).  For instance, Low TF mice were 
generated by rescuing embryos lacking mouse TF with a 
very low level of human TF (at ~1% of the mouse TF 
levels). Mice lacking TF in myeloid cells, 
megakaryocyte/platelets, vascular smooth muscle cells, and 
both endothelial and myeloid cells are all viable (21, 22).  
The generation of these mouse models has provided a 
unique opportunity to study the roles of TF in hemostasis, 
thrombosis, and signaling.   

 
6. TISSUE FACTOR AND PREGNANCY 
 
 Hemostasis must be maintained by both the 
mother and the fetus during pregnancy.  Indeed, the uterus 
and placenta are highly vascularized tissues with high 
levels of TF (23, 24).  The role of TF expression during 
pregnancy was investigated by breeding Low TF female 
mice with wild type male mice.  In this scenario a high rate 
of lethal post-partum hemorrhage was observed.  In 
addition, blood pools were observed in the placentae of 
embryos with low levels of TF, although the embryos 
themselves survived.  The role of TF in pregnancy has been 
recently reviewed (25).  Taken together, these data indicate 
that TF is necessary for placental and uterine hemostasis. 
Interestingly, the absence of the intrinsic proteins factors 
VIII and IX is not associated with increased post-partum 
bleeding in mice (26). The role of TF in non-hemostatic 
PAR signaling during pregnancy is not well understood.  It 
has been suggested that thrombin activation of PAR1 in 
endothelial cells is important in yolk sack vascular 
development (26, 27). In addition, low levels of TF rescued 
the embryonic lethality of thrombomodulin deficient 
embryos, which appeared to be due to reduced PAR2 and 
PAR4 signaling rather than reduced fibrin deposition (28).     
 
7. TISSUE FACTOR AND BACTERIAL INFECTION 
 

During systemic bacterial infections, the presence 
of bacterial products, such as bacterial lipopolysaccharide 
(LPS), and pro-inflammatory cytokines increases TF 
expression within the vasculature.   Systemic bacterial 
infections can induce disseminated intravascular 
coagulation (DIC), which is associated with intravascular 
fibrin deposition, a consumptive coagulopathy and finally 
bleeding.  LPS administration to humans induces TF 
expression in circulating monocytes and elevated levels of 
TF positive microparticles (29).  Another study found that 
LPS induced TF mRNA expression in whole blood, which 
was presumably due to induction of the TF gene expression 
in monocytes (30).  Baboons exposed to a lethal dose of E. 
coli exhibited increased TF expression on circulating 
monocytes and DIC (31).  Importantly, experimental 
strategies that inhibit the TF/FVIIa complex reduced 
coagulation, inflammation and mortality (32-37).  Low TF 
mice also exhibited reduced coagulation, inflammation, and 
mortality after LPS administration (38).  Finally, mice 
lacking myeloid TF had reduced coagulation in an 
endotoxemia model (21).  Together these data provide 
evidence for a role for TF in DIC as shown in Figure 1.  
Inhibition of TF during sepsis may provide an attractive 
intervention strategy for septic patients with DIC.  
Unfortunately, a phase III clinical trial using recombinant 
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Figure 1. Roles of Tissue Factor in vascular occlusion.  TF is expressed in a thrombus on the foam cells and endothelial cells 
within an atherosclerotic plaque.  Plaque rupture causes exposure of TF to the circulating blood and results in clot formation.  In 
addition, circulating microparticles can also express TF and become involved in clot formation during arterial thrombosis.  
During venous thrombosis, circulating microparticle TF may cause clot formation in areas of low flow in the valve pockets.  This 
clot often elongates along the vessel wall before breaking off to cause a blockage of blood flow in the lungs.  During 
disseminated intravascular coagulation, TF expression by monocytes and cell within the vessel wall activate coagulation.  This 
systemic increased coagulation causes multiple organ failure and death.  During sickle cell disease, TF associated with 
monocytes and the vessel wall contributes to clot initiation and vasocolusive crisis in the microvasculature.    
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tissue factor pathway inhibitor, the natural inhibitor of the 
TF/FVIIa complex, failed to decrease mortality in septic 
patients (39).   

 
 TF also plays a role during lung injury induced 
by both local and systemic infection.  Acute lung injury 
(ALI) in septic patients is characterized by non-cardiac 
pulmonary edema, inflammation, and fibrin deposition 
(40). During experimental sepsis in baboons, TF is 
expressed by both alveolar macrophages and alveolar 
epithelial cells, as well as on endothelial cells (31, 41).  
Interestingly, bronchoalveolar lavage fluid (BALF) from 
patients with peritonitis contained elevated levels of TF 
compared to patients with mechanical ventilation (42).  
These data solidify the notion that systemic infection can 
result in TF dependent activation of coagulation in the 
lungs.  
 

Acute respiratory distress syndrome (ARDS) and 
pneumonia are also lung injuries found to be associated 
with activation of coagulation.  TF expression has been 
found on alveolar macrophages and epithelial cells in the 
lungs of patients with ARDS (43).  Also, patients with 
ARDS and pneumonia were found to have elevated TF 
activity in BALF (44).  Interestingly, TF levels were found 
to be increased in BALF prior to diagnosis of ventilator-
associated pneumonia, suggesting that levels of TF could 
be used as a diagnostic tool for ventilator-associated 
pneumonia (45).  In contrast to patients with ALI, fibrin 
deposition in patients with pneumonia was found to be 
localized to the primary infection site (46, 47).   
Importantly, blockade of TF activation decreased the pro-
coagulant response, pulmonary fibrin deposition, and 
cytokine expression in various models of bacteria induced 
lung inflammation (47, 48).  These data suggest that TF 
inhibition could be used to reduce lung injury.  However, 
recombinant active site inactivated FVIIa(FVIIai) failed to 
reduce morbidity in patients with ALI/ARDS and was also 
associated with increased adverse bleeding events (49). 

 
 The role of PARs in endotoxemia and sepsis has 
been investigated by several different laboratories.  Two 
studies found that the lack of either PAR1 or PAR2 did not 
reduce inflammation or mortality in endotoxemic mice (38, 
50).  In contrast, another study showed that PAR1 deficient 
mice exhibited reduced inflammation and increased 
survival compared with wild type littermates (51). The 
reason for these different results is unclear. Finally, 
inhibition of the different PARs with small cell permeable 
peptides called pepducins, revealed that PAR1 is 
detrimental to mice during the early phase of endotoxemia 
but later when acting through PAR2, it is  beneficial (52).   
 
 The role of PAR1 and PAR2 in lung infection is 
also not well understood.  One group found that PAR2 
enhanced lung inflammation in a neuropeptide dependent 
manner (53).  However, a later study by this group found 
no role for PAR2 in ALI (54).   In contrast, we have found 
that mice lacking PAR2 have decreased chemokine 
expression compared with wild type littermate controls 
after intratracheal LPS installation (Williams and 

Mackman, unpublished data). Therefore, more studies are 
needed to fully understand how PARs contribute to lung 
injury.   
 
8. TISSUE FACTOR AND VIRAL INFECTIONS 
 
 Several studies have investigated the role of TF 
in viral infections.  During Ebola virus infection a number 
of pathways are dysregulated, including coagulation and 
inflammation.  DIC is one major characteristic of Ebola 
hemmorhagic fever.  Recent studies have analyzed TF 
expression during Ebola infection.  Geisbert and colleagues 
showed that TF expression was increased in peripheral 
blood mononuclear cells in macaques infected with Ebola 
(55).  Also, increased numbers of TF positive 
microparticles were found in plasma.  The same group 
found that blockade of TF activity prolonged the survival 
of Ebola infected macaques and decreased levels of fibrin 
deposition and pro-inflammatory cytokine production (56). 
 

Human immunodeficiency virus (HIV) is 
associated with increased risk for thrombosis.  Levels of the 
pro-inflammatory cytokine interleukin-6 and the 
fibrinolytic product D-Dimer correlated with circulating 
HIV levels.  It was also found that TF expression on 
circulating monocytes was increased in chronically HIV 
infected individuals (57).  Herpes simplex virus 1 (HSV-1) 
infection of human umbilical vascular endothelial cells 
leads to increased TF, which likely contributes to the pro-
coagulant state associated with this infection (58).  In 
addition, patients in early phases of Dengue hemorrhagic 
fever had elevated levels of TF compared to patients with a 
milder form of infection (59).  While more investigation of 
the relationship between TF and viral infection is clearly 
warranted, taken together these data suggest that blockade 
of TF activity may improve outcomes for patients with 
many different viral infections.   

 
9. TISSUE FACTOR AND CARDIOVASCULAR 
DISEASE 
 
 Atherosclerosis is the accumulation of fatty lipids 
along the vessel wall of large and medium-sized arteries.  
Several risk factors can accelerate the formation of 
atherosclerosis include smoking, obesity, high cholesterol, 
diabetes, and hyperlipidemia.  Atherosclerotic lesions, 
known as plaques, are comprised of lipids, cells, calcium, 
and components of extracellular matrix.  High levels of TF 
are present in atherosclerotic plaques (2, 60).  Thus, it has 
been proposed that upon plaque rupture, TF within the 
plaque contributes to the activation of coagulation and 
thrombotic occlusion of the vessel.  TF within the plaque 
has been found on foam cells, macrophages and vascular 
smooth muscle cells, as well as in the form of MPs (2, 60, 
61).   
 

Studies have shown that oxidized low-density 
lipoprotein (LDL) and acetyl LDL induce TF expression in 
monoctye/macrophages, whereas only oxidized LDL 
induced TF expression in endothelial cells (62-68).  
Interestingly, atherosclerotic plaques with high levels of 
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lipids in macrophages also have high levels of TF (69).  
Moreover, TF protein and activity was also increased in 
foamy macrophages and smooth muscle cells in 
atherosclerotic lesions rabbits fed a high fat diet (70).  Pro-
atherosclerotic cytokines and growth factors within the 
plaque may also induce TF expression. For example, 
TNFα, platelet-derived growth factor, or thrombin all 
induced TF expression in smooth muscle cells (71, 72).  In 
addition, TNFα and vascular endothelial growth factor 
(VEGF) induce TF expression in endothelial cells (72, 73).  
Taken together, these data suggest that oxidized lipids, 
cytokines, and growth factors induce TF expression by cells 
within plaques.  

 
An early study showed that a 50% reduction in 

tissue factor pathway inhibitor in all cells increased 
atherosclerosis in the apolioprotein E (ApoE) deficient 
model (74).  Moreover, overexperssion of tissue factor 
pathway inhibitor by smooth muscle cells reduced 
atherosclerosis in mice (75).  In contrast, Tilley and 
colleagues found that TF heterozygotes in the same 
model did not affect atherosclerosis (76). In addition, 
reducing TF expression in hematopoietic cells did not 
reduce atherosclerosis in low density lipoprotein 
receptor (LDLR) deficient mice (76).  Interestingly, we 
found that a reduction of TF expression in smooth 
muscle cells was associated with reduced cell migration, 
and Low TF mice had reduced intimal hyperplasia 
following femoral artery injury (77).  Also, recombinant 
FVIIai administration prior to femoral balloon artery 
angioplasty decreased vascular neointimal lesion 
formation and thrombosis in a baboon model (78).  In 
addition, TFPI heterozygotic mice showed enhanced 
neointimal hyperplasia during vascular remodeling (79).   
These results suggest that additional studies are needed 
to analyze the role of TF expression by smooth muscle 
cells during vascular remodeling and atherosclerosis.  

 
 Another important facet of cardiovascular 

disease is acute coronary syndrome.  Several recent 
publications have investigated the role of TF in acute 
coronary syndrome.  Three groups found an increase in 
plasma TF levels in patients with acute coronary 
syndrome compared to those with stable disease (80-82).  
One of these groups also found, in patients with acute 
coronary syndrome, that plasma TF levels were also 
predictive of mortality (81).  Certain single nucleotide 
polymorphisms in the TF gene are also associated 
cardiovascular death but not with disease state (83).  In 
addition, patients with acute coronary syndrome had 
higher levels of TF positive monocyte/platelet 
aggregates than those with stable disease or healthy 
controls (84).  Our group has found that hyperlipidemia 
in mice, monkeys and man is associated with increased 
monocyte TF expression, MP TF activity and activation 
of coagulation ((85)unpublished data).  Given that 
cardiovascular disease can be associated with acute 
coronary syndrome and atherosclerosis, it may be 
possible to control adverse events associated with 
cardiovascular disease by inhibiting TF.  Indeed, 
inhibition of TF using antibody or recombinant FVIIai 

reduced injury after myocardial infarction in rabbits and 
mice (86-88).   

 
10. TISSUE FACTOR AND THROMBOSIS  
 
 Many different animal models have been used to 
study the role of TF in thrombosis.  Some of these models 
use arterial injury to examine a role for TF in thrombosis.  
In these models, TF is exposed to blood after vessel 
damage, as shown at the top of Figure 1.  One study 
demonstrated that Low TF mice had reduced thrombosis in 
a carotid artery injury model (89).  In this model bone 
marrow transplantation indicated that the vessel wall 
provided the major source of TF that initiated thrombosis.  
Correspondingly, mice lacking TF in smooth muscle cells 
also showed reduced carotid arterial thrombosis (22).  
Moreover, inhibition of the TF/FVlla complex reduced 
thrombosis in pigs and rabbits (90-92).  Recently the 
TF/FVIIa inhibitor recombinant nematode anti-coagulant 
protein c2 (NAPc2) was shown to reduce thrombosis in 
humans (93, 94).  These data suggest that inhibition of 
TF/FVlla could provide a novel approach for prevention of 
thrombotic events.   
 
 Venous thromboembolism (VTE) is triggered by 
variety of factors, including stasis, endothelial cell 
activation, and/or changes in the blood itself.  In fact, 
increased TF mRNA in thrombi and leukocytes has been 
shown to be associated increased risk for VTE (95, 96).   In 
a mouse model of inferior vena cava ligation (IVC), 
thrombosis was significantly decreased in Low TF mice 
(89). Again, bone marrow transplantation demonstrated that 
vessel wall TF initiated thrombosis. However, it should be 
noted that this model is not ideal because there is 
significant damage to the vessel wall during the ligation.  A 
recent study showed that ligation of the IVC in rats led to 
denudation of the endothelium.  In addition, TF protein 
expression was observed in the infiltrating monoctyes and 
endothelial cells at the site of injury (97).  Patients with 
VTE also have increased TF mRNA expression in 
leukocytes (96).  A diagram of venous thrombosis is found 
in Figure 1.   
 

Circulating TF in the form of TF positive 
microparticles may also play a role in VTE.  This may be 
particularly important in cancer patients. Indeed, VTE is a 
leading cause of death in cancer patients and TF expression 
has been described in glioma, colorectal cancer, ovarian 
cancer, non-small cell lung cancer, as well as renal cell 
cancer (98).  Several studies using human tumors grown in 
mouse models have detected tumor-derived human TF in the 
blood (99, 100).  Importantly, chemotherapy further increases 
the risk of VTE (101), and TF activity is increased in cells 
treated with chemotherapeutic agents (102).  As such, several 
groups have analyzed levels of microparticle TF in cancer 
patients. One group found increased levels of microparticle TF 
activity in patients with pancreatic cancer, breast cancer, and 
early prostate cancer (103, 104).  Another group found 
increased TF positive microparticles in colorectal cancer 
patients (105).  In addition, cancer patients with VTE were 
found to have elevated levels of microparticle TF compared to 
cancer patients without VTE (106, 107).  Our group found that 
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in a small cohort of 11 pancreatic cancer patients, 2 patients 
with the highest microparticle TF protein and activity levels 
subsequently developed VTE (108).  These data indicate 
there is an association between increased microparticle TF 
and the risk of VTE in cancer patients.  Nevertheless, 
further studies are needed to confirm these exciting early 
results. 

 
11. TISSUE FACTOR AND CANCER 
 
  TF also plays a role in tumor metastasis.  Indeed, 
inhibition of TF has been shown to reduce metastasis in a 
pulmonary metastasis mouse model (109-111).  It is 
thought that tumor cells may be coated with fibrin and this 
coating allows for circulating tumors cells to be trapped in 
the microvasculature.  Support for this hypothesis includes 
a study showing that mice deficient in fibrinogen had 
decreased tumor metastasis (112).  In addition, in a mouse 
model, tumor associated TF was shown to play a role in 
fibrinogen mediated evasion of natural killer cell killing, 
which was associated with an increase in metastasis (113).  
Also, TF expression is associated with increased tumor cell 
invasion in vitro and in vivo (111, 114).   
 
 TF expression in tumor cells also increases tumor 
size and vascularity (115).  Importantly, TF expression also 
increased expression of VEGF, a known inducer of 
angiogenesis.  Conversely, a reduction in TF expression 
also reduced tumor growth (99).  TF expression by host 
cells may also influence tumor angiogenesis.  For example, 
one study found that tumors grown in Low TF mice had 
smaller blood vessels but the overall tumor growth was not 
affected by the lower levels of host TF (116).   
 
 The role of TF in tumor growth is not well 
understood. Inhibition of the TF/FVIIa complex reduced 
growth of melanomas in mice, and blockade of TF in 
immunodeficient mice decreased growth, vascularization, 
and VEGF expression of human tumor cells (117, 118).  In 
addition, tumor growth was reduced in PAR2 deficient 
mice (119).  The use of an antibody to TF/FVIIa complex 
that inhibits TF dependent signaling but not TF pro-
coagulant activity also reduced tumor growth in wild type 
mice (120).  Therefore, while it is likely that TF/FVIIa 
dependent activation of PAR2 plays a role in the growth of 
some tumors, but it is not clear if this pathway is important 
in all types of cancer.   
 
12. TISSUE FACTOR AND ANTI-PHOSPHOLIPID 
ANTIBODY SYNDROME 
 
 Anti-phospholipid antibody syndrome is 
characterized by increased levels of anti-phospholipids and 
a hypercoagulable state.  This syndrome is often found in 
patients with systemic lupus erythematosus, which is also 
characterized by an increase in many different auto-
antibodies.  While one could imagine that antibodies to 
phospholipids may actually decrease availability of the 
surface needed to initiate coagulation, in fact the majority 
of these antibodies actually target phospholipid binding 
proteins and are associated with increased thrombotic risk 
(121).  Passive transfer of anti-phospholipid antibodies has 

been shown to induce thrombosis in animal models (122, 
123).  The mechanism for this increased thrombosis is not 
yet understood, but several groups have found elevated TF 
expression in monocytes from patients with anti-
phospholipid antibody syndrome (124-126).  In support of 
this, in vitro studies have demonstrated induction of TF 
expression by anti-phospholipid antibodies in monocytes 
and endothelial cells (127, 128).  TF activity was also 
found to be increased in carotid arteries and peritoneal cells 
of mice injected with  anti-phospholipid antibodies (129).   
 

A role for complement in anti-phospholipid 
antibody induced TF expression has been recently reviewed 
(130).  Ritis and colleagues showed that complement C5a 
induced TF expression in neutrophils (131).   However it 
should be noted that expression of TF by neutrophils is 
controversial and may be due to monocyte contamination 
and/or binding of TF positive microparticles by 
neutrophils(132).  Nonetheless, complement induction of 
TF expression in neutrophils and subsequent neutrophil 
activation were found to play a role in fetal loss in a mouse 
model of anti-phospholipid antibody syndrome (133, 134).  
This is especially relevant as a common complication for 
women with anti-phospholipid antibody syndrome is an 
inability to carry a pregnancy to term.   These data suggest 
that investigation into blockade of TF expression and/or 
activity could be a viable strategy for pathologic 
complications in anti-phospholipid antibody syndrome 
patients. In fact, recently it was demonstrated that statins 
decreased TF and PAR2 expression in neutrophils and 
prevent pregnancy loss in a mouse model of anti-
phospholipid antibody syndrome (135).   

 
13. TISSUE FACTOR AND SICKLE CELL DISEASE 
 

Sickle cell disease is associated with activation of 
coagulation.  As shown at the bottom of Figure 1, it is 
thought that TF on monocytes and on the vessel wall 
contribute to coagulation in this disease.  Recent studies 
found an elevated number of TF positive microparticles 
from monocytes and endothelial cells in blood from 
patients with sickle cell disease, compared to controls 
(136).   In addition, patients had elevated levels of TF 
positive microparticles and markers of coagulation.  
Patients with sickle cell disease have also been found to 
have elevated levels of whole blood TF and circulating TF 
positive endothelial cells (137, 138).  Nevertheless, there 
was no difference in plasma TF levels between those 
patients with steady state disease or those in pain crisis 
(137).  More recently, mouse models of sickle cell disease 
have been developed and will be helpful in delineating the 
role of TF in this disease (139, 140).  Clearly, more studies 
are required to understand the role of TF in this complex 
disease.   

 
14. TISSUE FACTOR AND DIABETES 
 

Patients with type II diabetes have an increased  
risk for death due to thrombotic complications (141).  The 
literature on TF and diabetes has recently been reviewed by 
Bogdonov and Osterud (142).  Increased circulating plasma 
TF activity was observed in patients with type II diabetes, 
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and those with elevated insulin and glucose have even 
higher levels of TF activity (143).  Oxidative stress in 
patients with type II diabetes has also been implicated in 
the induction of TF within the vasculature (144).  In 
addition, peripheral blood mononuclear cells from patients 
with type II diabetes with vascular complications had 
elevated TF levels (145).   Interestingly, another study 
found circulating TF induced thrombus formation in vitro 
correlated to glycemic control in patients with type II 
diabetes (146), suggesting a potential role for TF 
expressing circulating microparticles.  Indeed, well 
controlled type II diabetes patients also had increased 
numbers of TF positive microparticles compared to 
controls (147).  Taken together, these data suggest a role 
for TF in thrombosis in patients with type II diabetes.  

 
15. TISSUE FACTOR AND OTHER NON-
INFECTIOUS DISEASES 
 

Increased TF expression has also been observed 
in a number of other non-infectious disease states.  
Increased circulating TF activity was found in patients with 
chronic obstructive pulmonary disease (148).   An 
association between increased plasma TF expression and 
increased disease state was also observed in patients with 
liver disease (149).   Patients with inflammatory bowel 
disease (IBD) have a  3-4 fold higher risk of 
thromboembolic events compared to the normal population 
(150).  A recent study  analyzed  the levels of TF protein in 
plasma of IBD patients and found detectable levels of TF in 
34% of IBD patients tested whereas no TF was detected in 
healthy controls (151).  In addition, thrombin-anti-thrombin 
(TAT) levels were higher in a subset of IBD patients with 
higher plasma TF and FXIa levels compared to patients with 
low levels of plasma TF and FXIa.  Similarly, blockade of TF 
decreased TAT, thrombus formation, and intestinal injury in a 
mouse model of colitis (152).  Patients with acute Graft versus 
Host Disease after allogeneic hematopoietic stem cell 
transplantation were also found to have elevated levels of 
circulating TF protein.  However, TF levels diminished after 
recovery but remained significantly higher than at baseline 
(153).  Given the role TF has in coagulation and inflammation, 
many groups are continuing to investigate the relationship 
between TF and multiple disease states, especially in cases 
where an increased thrombosis risk is evident.   

 
16. STRATEGIES TO TISSUE FACTOR 
 
 Inhibition of TF is an attractive method for 
prevention of hypercoaguable states and perhaps 
hyperinflammatory states.  There are several different 
approaches that have been used to inhibit inducible TF 
expression or TF activity.  These include recombinant 
proteins discussed previously such as TFPI, FVIIai, and 
NAPc2, as well as drugs such as statins.   Since TF is 
required for normal hemostasis, but is upregulated in 
monocytes and possibly other cells during many disease 
states, it would be ideal to inhibit this inducible, pathologic 
TF.  Statins have been shown to reduce inducible TF 
expression by monocytes and macrophages both in vitro 
and in vivo (154-156).  Statins are able to prevent activation 
of NF-κB and Rho/Rho kinase(154, 157, 158) which are 

known to be involved in upregulation of TF expression 
(159-161).  Recently, our group found that simvastatin 
reduced monoctye TF expression and MP TF activity in 
hypercholesteremic monkeys (unpublished data).  Thus, it 
is promising that statins may be used as an inhibitor of 
inducible TF expression that would prevent excessive 
pathologic TF expression while leaving protective 
hemostatic TF intact.   
 
17. CONCLUSION 
 
 This review summarizes the roles of TF in health 
and disease.  TF is clearly important for normal hemostasis, 
pregnancy, and development.  However, TF also plays a 
pathogenic role in many diseases including, bacterial and 
viral infections, atherosclerosis, thrombosis, cancer, anti-
phospholipid antibody syndrome, sickle cell disease, and 
type II diabetes, among others.  The development of TF 
inhibitors as novel drugs for the treatment of these diseases 
is an attractive possibility.  However, the risk of bleeding 
complications due to TF inhibition must be considered.   
Ideally one would like to inhibit the expression of the 
inducible TF and preserve the constitutively expressed 
hemostatic TF.  One potential therapy may be statins, 
which have been shown to be effective at inhibiting TF 
induction in various systems. 
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