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1. ABSTRACT 
 

Cancer affects the lives of millions of people. 
Several signaling pathways have been proposed as 
therapeutic targets for cancer therapy, and many more 
continue to be validated. With the identification and 
validation of therapeutic targets comes the question of 
designing novel strategies to effectively counter such 
targets. Natural compounds from dietary sources form the 
basis of many ancient medicinal systems. They are 
pleiotropic i.e. they act on multiple targets, and, therefore, 
are often the first agents to be tested against a novel 
therapeutic target. This review article summarizes the 
knowledge so far on some actively pursued targets - Notch, 
CXCR4, Wnt and sonic hedgehog (shh) pathways, the 
process of epithelial-mesenchymal transition (EMT) as well 
as molecular markers such as uPA-uPAR, survivin, FoxM1, 
and the microRNAs. We have performed an extensive 
survey of literature to list modulation of these targets by 
natural agents such as curcumin, indole-3-carbinol (I3C), 
3,3’-diindolylmethane (DIM), resveratrol, epigallocatechin-
3-gallate (EGCG), genistein etc. We believe that this 
review will stimulate further research for elucidating and 
appreciating the value of these wonderful gifts from nature.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
2. INTRODUCTION 
 
 The use of naturally occurring agents for the 
treatment and/or chemoprevention of cancer has long been 
advocated (1) and the search for such agents has often 
focused on chemical compounds that are typically found in 
fruits and vegetables (2). In pursuit of such beneficial 
compounds, a major prerequisite is that they should be 
physiologically non-toxic, and inert towards the normal 
cells. As a consequence, there has been a key interest in 
investigating the components of traditional medicines for 
possible therapeutic use against human cancers. While 
searching for novel therapeutic agents is crucial, a clear 
understanding of the physiological processes which 
contribute to cancer progression is equally important. A 
number of signaling pathways and their constituent 
members have been implicated in initiation, promotion as 
well as progression of human cancers. Also, there is 
substantial heterogeneity among different cancers as well 
as within the subsets of each cancer type. All this makes the 
field of cancer research particularly challenging wherein 
the pursuit for novel therapeutic targets as well as novel 
therapeutic agents goes hand in hand. It is highly desirable 
that the novel anti-cancer agents are multi-targeted
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Table 1. Reports on down-regulation of uPA-uPAR system 
by anti-cancer natural compounds 

Natural Compound Study (reference) 
Apigenin  Kim 2003 (19) 
Curcumin  Aggarwal 2003 (16) 
DIM Kong 2007 (22); Ahmad 2009 (27); 

Ahmad 2009 (23) 
DMC and BDMC Yodkeeree 2009 (17) 
DMC Yodkeeree 2010 (18) 
EGCG Ho 2007 (20) 
Genistein  Li and Sarkar 2002 (21); Kim 2003 (19) 

 
(pleiotropic) and this holds true for most of the natural 
chemopreventive agents that are being tested for their 
effectiveness against various human cancers in laboratories 
across the globe (3;4).  
 
 Decades of innovative research has helped 
identify a plethora of putative targets for cancer therapy. 
Many of these targets have been unable to stand the test of 
time and quite a few of them are relevant to only specific 
human cancers. The purpose of our current review article is 
to give readers a broad view of therapeutic targets that are 
being actively investigated for putative role in cancer 
progression in multiple cancers. Additionally, for each such 
target, we have reviewed and grouped together studies that 
demonstrate the ability of naturally occurring 
chemopreventive agents to modulate the expression/ 
activity of the target in question, thus leading to the desired 
anti-cancer effect of the agent. We hope that such 
cataloging of novel targets and pleiotropic agents at one 
place would be of interest to many readers and would spark 
an interest in further validating the anti-cancer activity of 
naturally occurring compounds thus leading to a full 
realization of their potential.  
 
3. THERAPEUTIC TARGETS AND THEIR 
MODULATION BY NATURAL COMPOUNDS 
 
3.1. uPA/uPAR 

uPA is a member of the urokinase plasminogen 
activator system, a serine protease family comprising of 
uPA, plasminogen activator inhibitors (PAI’s), tissue-type 
plasminogen activator (tPA) and the receptor uPAR. The 
urokinase plasminogen activator system provides the most 
substantial amount of activated plasminogen when tissues 
are being degraded (5). uPA system is primarily associated 
with the degradation and regeneration of the basement 
membrane and extracellular matrix that leads to metastasis 
(6;7). uPA protein is 411 amino acid residues long, consists 
of two α helices and two anti-parallel β strands, and is 
secreted as a 53 KD zymogen (pro-urokinase). uPA 
catalyzes the activation of plasminogen into plasmin by 
cleaving the arginine-valine bond. In turn, plasmin 
facilitates the release of several proteolytic enzymes, 
including gelatinase, fibronectin, fibrin, laminin, and latent 
forms of collagenases and stromelysins (8;9). uPA is 
activated through cleavage of the Lys158-Ile159 peptide bond 
after it binds to its receptor, uPAR. This activation of uPA 
is brought about by plasmin. Since activated uPA, in turn, 
generates active plasmin from plasminogen, such activation 
of uPA by plasmin completes the loop for a feed-back-type 
activation. The involvement of uPA family members in the 
progression of several human cancers is gaining interest (7) 

and uPA system is increasingly being recognized as a 
candidate target for gene therapy in cancers (10).  

 
Several natural agents have been shown to 

effectively down-regulate uPA leading to their anti-cancer 
effects (Table 1). There are reports on the ability of dietary 
components from ethnic foods to inhibit uPA expression 
and/or down-regulate its activity (11-15). Curcumin, a 
natural compound isolated from the plant Curcuma longa 
(turmeric), can down-regulate uPA which might, at least in 
part, be responsible for its anticancer effects in several 
preclinical studies (16). In a study to compare the anti-
cancer effects of active components from turmeric, it was 
shown that demethoxycurcumin (DMC) as well as 
bisdemethoxycurcumin (BDMC) were more effective 
agents than curcumin (17). This conclusion was largely 
based on the relative ability of these compounds to inhibit 
uPA along with matrix metalloproteinases, all of which are 
crucial players in the degradation of extracellular matrix. A 
more recent report on DMC from the same research group 
(18) shows that this compound, at non-cytotoxic doses, can 
significantly inhibit the invasion of breast cancer cells, 
MDA-MB-231. Treatment with DMC was found to reduce 
the protein levels of uPA and uPAR and increase those of 
the inhibitor PAI-1 (18). Such down-regulation of uPA and 
related family members was suggested as the reason for 
observed inhibitory action of DMC on motility, invasion 
and metastasis of breast cancer cells. Similar observations 
have earlier been made with polyphenolic natural 
compounds flavonoids where it was shown that 3 
representative flavonoids – genistein, apigenin and 3-
hydroxyflavone blocked the generation of active uPA and 
also had modulatory effect on the expression of PAI-1 in 
human umbilical vein endothelial cell (HUVEC) model 
leading to inhibition of angiogenesis (19). In human oral 
cancer model, epigallocatechin- 3-gallate (EGCG), a 
polyphenol from green tea, has been demonstrated to 
inhibit the expression of uPA in a dose-dependent fashion 
resulting in the inhibition of invasion of these cells (20). 

 
Li et al. (21) identified uPA and uPAR among 

several angiogenesis-related genes, that were down-
regulated by genistein in prostate cancer cells. In this study, 
PC3 cells were treated with genistein and microarray 
analysis was performed. Later on, Kong et al. (22) showed 
that B-DIM, a formulated DIM (3,3’-diindolylmethane, an 
indole compound from cruciferous vegetables) with higher 
bioavailability, can repress extracellular matrix-degrading 
proteases, including uPA, leading to a reduced 
bioavailability of VEGF. Such biological activity of DIM 
led to the inhibition of angiogenesis and invasion of human 
prostate cancer cells. Taking a cue from this initial 
observation, it was later shown that silencing of uPA as 
well as uPAR leads to reduced cell growth and migration of 
highly aggressive PC3 cells (23). DIM- treatment also had 
similar effects but the silencing of uPA/uPAR significantly 
attenuated the ability of DIM to inhibit cell growth and 
migration of PC3 cells. This suggested an essential role of 
uPA-uPAR in mediating the biological activity of DIM 
against prostate cancer cells. Since we had earlier 
demonstrated an inhibitory effect of DIM on proliferation 
of breast cancer cells (24-26), we extended our 
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investigation to study the relevance of uPA-uPAR in breast 
cancer cells as well (27). We found that DIM treatment 
could inhibit cell growth and motility of MDA-MB-231 
cells. Silencing of uPA-uPAR led to decreased sensitivity 
of these cells to DIM, thus implicating uPA-uPAR in DIM-
mediated inhibition of cell growth and migration.  
 
3.2. Survivin 
 Survivin, discovered more than a decade back 
(28;29), is an inhibitor of caspase-9 and, thus, is a key 
molecule that regulates apoptosis (30). Survivin is a 
member of the Inhibitor of Apoptosis (IAP) gene family. 
Survivin plays important role in multiple cellular pathways 
that are essential for tumor cell proliferation and viability 
(31) and is a molecule that favors cancer survival (32). It is 
expressed in most human cancers (33) and it is now 
believed that survivin is a universal requirement for 
successful tumor suppression in humans (34;35). Therefore, 
usefulness of survivin as an anti-cancer agent is now being 
tested in clinical settings and there are reports of some 
encouraging responses (31;35). In light of these evidences, 
survivin has been suggested as a potent cancer therapeutic 
target (36-38). 
 
 Previously we have shown that indole-3-carbinol 
(I3C) possesses anti-carcinogenic effects in experimental 
animals and inhibits the growth of human cancer cells (39-
42). In one of the earliest reports on the modulation of 
survivin by a natural agent, Takada et al. (43) reported 
down-regulation of survivin by I3C treatment. Polyphenol 
phytoalexin resveratrol (3,4',5-trihydroxystilbene) is 
another well-studied natural agent (44;45) that has been 
shown to induce its anti-cancer and apoptosis-inducing 
effects through the down-regulation of survivin (46-51), 
and down-regulation of survivin leads to increased TRAIL-
induced apoptosis (52;53). Further, flavonoid quercetin 
could also sensitize non-small cell lung cancer cells to 
TRAIL-induced cytotoxicity by suppression of survivin 
(54). Such survivin-dependent sensitization to TRAIL-
mediated apoptosis has also been demonstrated for silibinin 
(55), a flavonoid that inhibits survivin expression resulting 
in apoptosis-induction in prostate (56), renal cancer (57) 
and urinary bladder cancer cells (58). Our own microarray 
gene profiling of DIM-treated breast cancer cells MDA-
MB-231 revealed survivin as a gene that was significantly 
down-regulated by DIM (59). DIM was observed to inhibit 
cell growth and induce apoptosis in MDA-MB-231 
MCF10CA1a breast cancer cells (26;60). Down-regulation 
of survivin by small interfering RNA prior to DIM 
treatment resulted in enhanced cell growth inhibition and 
apoptosis, whereas over-expression of survivin by cDNA 
transfection abrogated DIM-induced cell growth inhibition 
and apoptosis (59). In glioblastoma, EGCG has been shown 
to sensitize cells to ionizing radiations (61). In this study, 
transfection with survivin was observed to potentiate 
cytoprotective effect against ionizing radiations, however, 
treatment with EGCG, prior to survivin transfection, 
significantly increased the sensitivity of cells to radiation. 
The modulatory effect of flavonoids on survivin leading to 
cell cycle arrest has been discussed (62) and, on a similar 
note, curcumin has been shown to inhibit the expression of 
survivin (63) leading to cell cycle arrest and induction of 

apoptosis in leukemia cells while resveratrol has been 
shown to sensitize cancer cells to anticancer drug-induced 
apoptosis by cell cycle arrest and survivin depletion (64). 
 
 In a cellular model for angiogenesis, flavonoid 
deguelin has been shown to inhibit angiogenesis through 
the down-regulation of survivin (65). This natural agent has 
also been shown to induce apoptosis in breast cancer cell 
lines SKBR3 and MCF-7 through a dose-dependent down-
regulation of expression of survivin (66). Further, deguelin 
was found to have no apoptosis-inducing effect in ‘normal’ 
human breast epithelial cells MCF-10A suggesting the 
ability of this agent to selectively target cancer cells. In 
prostate cancer cells LNCaP, betulin, a triterpene from 
birch bark, has been reported to activate proteasome-
dependent degradation of transcription factors specificity 
protein 1 (Sp1), Sp3, and Sp4 leading to down-regulation of 
VEGF and survivin which, in turn, leads to induction of 
apoptosis and an efficient inhibition of angiogenesis (67). 
Our own studies on the effect of DIM, either alone or in 
combination with taxotere, using LNCaP and C4-2B 
prostate cancer cells revealed that DIM enhanced taxotere-
induced apoptotic death in both the cell lines tested (68). 
These effects were related to down-regulation of survivin 
as well as androgen receptor and NF-κB-DNA-binding 
activity. Luciferase assays demonstrated a significant 
reduction of survivin-Luc and NF-κB-Luc activity in 
prostate cancer cells exposed to DIM and taxotere. Results 
were confirmed in vivo where combination treatment was 
observed to significantly inhibit C4-2B bone tumor growth 
and this correlated with the down-regulation of survivin. 
These studies clearly established that inactivation of 
survivin by DIM enhances the therapeutic efficacy of 
taxotere in prostate cancer cells (68).  
 

Additionally, down-regulation of survivin by 
many naturally occurring compounds, such as, by curcumin 
in bladder cancer (69) and osteosarcoma cells (70); by 
berberine through suppression of NF-κB pathway (71); by 
silymarin in multiple models (58;72); by plumbagin in non-
small cell lung cancer cells (73); by carotenoids 
fucoxanthin and its metabolite fucoxanthinol in leukemia 
cells (74); by psoralidin in androgen-independent PC3 and 
DU145 prostate cancer cells (75); by garlic extract in 
albino rats (72); by gingerol (76) and tea polyphenols (77) 
in skin tumors; by DIM (78), genistein (79) and maslinic 
acid (80) in pancreatic cancer cells; by naphthoquinone 
rhinacanthone in cervical cancer cell (81) and by sesamin 
in multiple cancer cells (82) is believed crucial for the 
apoptosis-inducing and anti-cancer effects of these agents. 

 
 DIM has been shown to down-regulate survivin 
in colon cancer cells and pre-treatment with DIM enhanced 
butyrate-induced apoptosis in colon cancer cells with APC 
(adenomatous polyposis coli) mutation (83) suggesting that 
a combination of DIM and butyrate is potentially an 
effective strategy for the prevention of colon cancer. In 
another study highlighting the efficacy of combinational 
treatment, I3C, an anti-cancer compound closely related to 
DIM, in combination with genistein, has been reported to 
effectively induce apoptosis in colon cancer cells through a 
mechanism that involves down-regulation of survivin (84). 
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Table 2. Reports on down-regulation of survivin by anti-cancer natural compounds 
Natural Compound Study (reference) 
Berberine Pandey 2008 (71) 
Betulin Chintharlapalli 2007 (67) 
Curcumin Magalska 2006 (63); Tian 2008 (69); Leow 2009 (70) 
Deguelin Peng 2007 (66); Dell'Eva 2007 (65) 
DIM Rahman 2006 (59); Rahman 2007 (24); Rahman 2009 (68); Bhatnagar 2009 (83); Banerjee 2009 (78) 
EGCG McLaughlin 2006 (61) 
Genistein Nakamura 2009 (84); Wang 2010 (79) 
I3C Takada 2005 (43); Nakamura 2009 (84) 
Maslinic acid Li 2010 (80) 
Plumbagin Gomathinayagam 2008 (73) 
Psoralidin Kumar 2009 (75) 
Quercetin Chen 2007 (54) 
Resveratrol Fulda and Debatin 2004 (64); Fulda and Debatin 2004 (52); Aziz 2005 (46); Fulda and Debatin 2005 (53); Aziz 2005 (47); Hu 2007 

(48); Shankar 2007 (49); Shankar 2007 (50); Roy 2009 (51) 
Sesamin Harikumar 2010 (82) 
Silibinin Son 2007 (55); Singh 2007 (56); Li 2008 (57); Tyagi 2007 (58) 
Silymarin Tyagi 2007 (58); Shaarawy 2009 (72) 
Tea Polyphenols Roy 2009 (77) 

 
Moreover, in addition to the parent natural compounds, 
even their synthetic analogs, such as the synthetic analogs 
of DIM (DIM-C-pPhBr and 2,2'-diMeDIM-C-pPhBr) could 
inhibit proliferation and induce apoptosis in SW480 colon 
and Panc28 pancreatic cancer cells, again through down-
regulation of survivin (85). It was also reported that 
gamma-radiation-induced inhibition of pancreatic and 
colon cancer cell growth is associated with induced 
expression of survivin and, in cells co-treated with gamma-
radiation plus DIM-C-pPhBr or 2,2'-diMeDIM-C-pPhBr, 
induction of survivin by gamma-radiation was inhibited 
after co-treatment with both compounds, suggesting 
applications for these drugs in combination cancer 
chemotherapy with gamma-radiation. Clearly, down-
regulation of survivin by natural compounds (Table 2) is 
one of the mechanism by which these agents exert their 
anticancer properties.  
 
3.3. FoxM1 

Forkhead box protein M1 (FoxM1) belongs to a 
family of evolutionary conserved family of proteins that is 
characterized by the presence of a DNA-binding domain 
called the forkhead box. FoxM1 is known to be a key 
regulator of transition from G1 to S phase as well as for the 
progression to mitosis (86;87). Loss of FoxM1 expression 
has been reported to generate mitotic spindle defects and 
accumulation of cells in mitosis leading to mitotic 
catastrophe (88). FoxM1 signaling maintains a balance 
between cell proliferation, differentiation and apoptosis 
(89;90) and an abnormal activation of FoxM1 gene is a 
hallmark of many human cancers (91-94). Therefore, 
FoxM1 appears to be an attractive target for therapy 
(95;96) and it has rightly been pointed out that by inhibiting 
this single transcription factor it should be possible to target 
multiple facets of tumorigenesis (97). In addition to role in 
the regulation of cell cycle, FoxM1 has also been 
implicated in the processes of tumor development. In 
hepatocellular carcinoma (98), prostate cancer (93) as well 
as lung cancer (99), FoxM1 expression was shown to 
correlate with increased proliferation while siRNA 
transfections for the inactivation of FoxM1 resulted in the 
reduction of cell proliferation and anchorage-independent 
growth (93;99). Additionally, the role of FoxM1 in the 
progression of different cancers such as glioma 

 
 (91;100;101), cervical cancer (102), gastric cancer (103), 
osteosarcoma (104), lung cancer (105) and colon cancer 
(106) has been reported.  

 
Our research investigations were the first to 

suggest that down-regulation of FoxM1 by a natural agent 
could be mechanistically associated with the inhibition of 
cell growth of breast cancer cells (59).  While studying the 
molecular mechanisms underlying the observed anti-cancer 
properties of a DIM, we found that FoxM1 was one of the 
target genes that was significantly down-regulated by DIM 
in MDA-MB-231 breast cancer cell line (59). In a latter 
study in prostate cancer cells, we reported down-regulation 
of FoxM1 by DIM alone, as well as in combination with 
chemotherapeutic drug taxotere (68). Our detailed 
investigations in breast cancer cells have also yielded 
similar results (unpublished data). On a similar note, 
FoxM1 down-regulation has been reported by other 
researchers, using drugs, namely, antibiotic thiostrepton 
(107) and EGFR inhibitor Gefitinib (108). In a more recent 
study on the ability of a natural chemopreventive agent to 
modulate FoxM1 leading to its anti-cancer effects, the soy 
isoflavone genistein was reported to down-regulate FoxM1 
expression and its downstream genes, including survivin, 
cdc25a, MMP-9 and VEGF, resulting in the inhibition of 
pancreatic cancer cell growth and invasion (79). These 
interesting results provide first evidence that FoxM1 is a 
legitimate target in pancreatic cancer and that the targeted 
inactivation of FoxM1, especially by natural agents, could 
be highly relevant to treatment of highly aggressive 
cancers. Additionally, down-regulation of FoxM1 was 
found to decrease cell proliferation and aggressiveness of 
breast cancer cells mediated by down-regulation of uPA, 
uPAR, MMP-2, MMP-9 and VEGF (109). Thus, there is 
evidence to suggest an important role of FoxM1 in 
aggressive cancers and reports on the anti-cancer effects of 
natural compounds through the down-regulation of this 
target are just beginning to emerge.  
 
3.4. Notch 
 Notch signaling is associated with normal 
developmental processes (110;111) and loss of Notch 
signaling leads to embryonic lethality (112); however, 
increased activation of Notch signaling is believed to be the 
“hallmark” of aggressive cancers. There are four known 
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Notch-family receptors in humans, Notch-1, Notch-2, 
Notch-3 and Notch-4. The ligands for Notch receptors 
identified in mammalian cells are Jagged-1, Jagged-2, 
Delta-like1, Delta-like 3 and Delta-like 4. Binding of Notch 
ligands to their receptors initiates a proteolytic cascade 
resulting in the release of intracellular part of Notch that 
translocates to the nucleus and thereby regulates the 
transcription of target genes (113). In the context of cancer, 
activation of Notch signaling was first reported in T-cell 
lymphoblastic leukemia (114). Since then, a number of 
reports have demonstrated the relevance of Notch signaling 
in several other human cancers (115-121). Notch-1 
expression has been reported in H-ras over-expressing 
breast cancers (122), is known to transform human breast 
epithelial cells (123) and, thus, implicated in mammary 
tumorigenesis (124;125). Further, while high expression of 
Notch-1 (126;127) and Jagged-1 (127) is associated with 
overall poor survival, high expression of Notch-2 has been 
linked with better survival (126). These reports clearly 
suggest the complex role of Notch signaling in human 
breast cancer (128;129). However, taken together, there is 
enough evidence to suggest that Notch signaling could be a 
valid therapeutic target in various human cancers. 
 
 With the emergence of reports detailing the 
contribution of Notch signaling to cancer progression in 
last few years, there has also been a realization that natural 
chemopreventive agents possess the ability to down-
regulate various members of this signaling pathway in 
various cancer cells, leading to the desired anti-cancer 
effect. There is evidence to suggest that curcumin can 
efficiently down-regulate the expression of Notch-1 leading 
to apoptosis-induction in pancreatic cancer cells either 
alone (118) or in combination with soy-derived isoflavone 
(130). Curcumin has also been shown to down-regulate 
TNF-α-induced Notch-1 in leukemia cells (131). Similar 
activity in leukemia cells for resveratrol has also been 
reported (132). However, in medulloblastoma cells, 
resveratrol was found to have no effect on Notch signaling 
members (133) and the expression of Notch-1 and Notch-2 
was actually found to be up-regulated by resveratrol in 
these cells. In pancreatic cancer cells, genistein has also 
been reported to inhibit the activity of Notch-1 resulting in 
inhibition of NF-κB and cell growth (134). Recently, 
inhibition of Notch-1 by yet another natural agent, 
withaferin-A, has been linked to inhibition of growth and 
induction of apoptosis in colon cancer cells (135). 
 
3.5. CXCR4 

CXCR4 is a chemokine receptor that is widely 
expressed in many different cancers (136). It is a G-protein-
coupled receptor with seven trans-membrane domains. The 
ligand for CXCR4 is CXCL12 (also known as stromal cell 
derived factor-1, SDF-1). The role of CXCR4 and its ligand 
in progression of human cancers, especially in the process 
of metastasis, is widely recognized (137-148). As a result, 
signaling through CXCR4 receptor offers an attractive 
target for therapy.  

 
CXCR4 in the tumor microenvironment may 

function to promote breast and prostate cancer 
proliferation, migration, and invasion, and our published 

data suggests that I3C could interrupt CXCR4/SDF-1α 
signaling pathway, resulting in tumor growth inhibition of 
breast cancer bone metastasis (42). Specifically, we showed 
that I3C significantly inhibited the bone tumor growth of 
MDA-MB-231 cells in a human mouse model of 
experimental bone metastasis through down-regulation of 
CXCR4-NF-κB pathway (42). These results further extend 
the potential therapeutic application of I3C for metastatic 
cancer. Modulation of CXCR4 and CXCL2 levels has also 
been suggested as a possible mechanism by which DIM can 
lower the invasive and metastatic potential of different 
human cancer cells (149;150). In addition to the usefulness 
of I3C against CXCR4, a synthetically developed 
derivative of I3C, OSU-A9, was reported to be more potent 
than the parent compound and down-regulation of CXCR4 
was identified as one of the mechanism responsible for 
better efficacy of the compound against multiple breast 
cancer cells (151). 

 
Curcumin has also been demonstrated to down-

regulate CXCR4 in multiple cancer models. In follicular 
lymphoma, CXCR4 was found to be a major factor down-
regulated by curcumin that was responsible for its 
anticancer properties (152). This study documented that 
attainable in vivo levels of curcumin are sufficient for 
inhibition of CXCR4 at mRNA as well as protein levels. 
Subsequently there have been reports on the down-
regulation of CXCR4 by curcumin (153) and 
demethoxycurcumin (18) leading to anticancer effects in 
breast cancer cells. Curcumin has also been shown to 
sensitize colorectal cancer cells to chemotherapeutic drug 
capecitabine through the down-regulation of CXCR4 (154). 
 
3.6. Wnt 
 The Wnt family of proteins is a family of 
glycoproteins that activate various intracellular pathways 
after binding to transmembrane frizzled (Fz) receptor 
family proteins or to a complex comprised of Fz and LDL 
receptor-related proteins 5/6 (LRP5/6). The best studied 
Wnt pathway, the Wnt/β-catenin pathway is also known as 
the "canonical" Wnt pathway. In the absence of Wnt 
ligands, β-catenin is recruited into a destruction complex 
comprised of adenomatous polyposis coli (APC) and axin, 
which induce the phosphorylation of β-catenin by casein 
kinase 1 (CK1) and glycogen synthase kinase 3 (GSK3) 
leading to ubiquitylation and proteasomal degradation of β-
catenin. When Wnt proteins bind to Fz, dishevelled (DVL) 
is activated which recruits the destruction complex to 
plasma membrane, inhibiting GSK3 and thus preventing 
phosphorylation of β-catenin. β-catenin then accumulates 
in the cytoplasm and translocates to the nucleus, where it 
activates target genes (155). The role of Wnt signaling in 
human cancers has been recognized (156;157) and, thus, 
Wnt signaling offers an attractive target for therapy of 
human cancers. 
 
 Recently, sulforaphane, an isothiocyanate from 
cruciferous plants, has been demonstrated to modulate Wnt 
signaling leading to an efficient inhibition of breast cancer 
stem cells (158). This natural compound was found to be 
effective against an in vitro as well as an in vivo model for 
breast cancer stem cells. There are reports on ability of 
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components of traditional ethnic foods (159) and omega 3 
polyunsaturated fatty acids (160;161) to inhibit Wnt 
signaling pathways resulting in reduced cancer growth in 
different cancer models. The Wnt signaling-inhibitory effect 
leading to inhibition of growth of breast cancer cells has also 
been reported for natural anti-cancer agents resveratrol (162), 
white currant berry (163), dietary triterpene lupeol (164), grape 
seed extract (165), silibinin (166), germinated brown rice (167) 
and deguelin (168). DIM has been found to significantly 
increase the phosphorylation of β-catenin and inhibit β-catenin 
nuclear translocation, suggesting a role of DIM in the down-
regulation of Wnt signaling (169). The two natural 
chemopreventive agents that have been studied in relatively 
more detail with relation to their effect on Wnt signaling are 
curcumin and the green tea polyphenol EGCG. In addition to 
the documented role of curcumin in inhibiting Wnt signaling, 
particularly β-catenin (170-173), its synthetic analog, which is 
reported to be more potent, inhibits β-catenin leading to 
reduced growth of cancer cells and a prolonged survival time 
of colorectal carcinogenesis model mice (174). These studies 
confirm that modulation of Wnt signaling pathway represents a 
major mechanism of anti-cancer action of curcumin. Further, 
reduction of levels of β-catenin by green tea polyphenols in 
animal model of colon carcinogenesis (175;176) and in MDA-
MB-231 breast cancer cells (177) points to the ability of green 
tea polyphenols, especially EGCG, to inhibit Wnt signaling 
pathway in different cancers.  
 
3.7. Sonic hedgehog 
 The Hedgehog (Hh) pathway is primarily involved 
in the development of organs in most animals (178). The Hh 
gene was first identified in Drosophila and the three 
mammalian counterparts, Sonic Hedgehog (Shh), Desert 
Hedgehog, (Dhh), and Indian Hedgehog (Ihh), were identified 
thereafter (179). Shh binds to its 12-pass transmembrane 
receptor, Patched (Ptch1) resulting in de-repression of 
Smoothened (Smo) (178-180). This leads to the activation of 
Gli2 in the cytoplasm, which travels to the nucleus and 
regulates the transcription of Shh-pathway target genes, which 
include Gli1 and Ptch1. Shh signaling is increasingly being 
implicated in human cancers (181-184) and represents another 
attractive target for cancer therapy.  
 
 Curcumin has been shown to down-regulate Shh 
protein and its targets GLI1 and PTCH1 resulting in apoptosis 
induction through the mitochondrial pathway in 
medulloblastoma cells (173). In a recent study (185), seven 
agents - apigenin, baicalein, curcumin, EGCG, genistein, 
quercetin, and resveratrol were evaluated for their ability to 
inhibit Shh signaling in prostate cancer models. While 
genistein, curcumin, EGCG and resveratrol were found to 
inhibit Shh signaling by inhibiting Gli1 mRNA concentration 
by up to 95% and Gli activity by 80%, apigenin, baicalein and 
quercetin decreased Gli1 mRNA concentration but had no 
effect on Gli activity. Effect of EGCG on Hh signaling has also 
been reported in chondrosarcoma cells where EGCG was 
found to inhibit Ihh, as well as down-regulate Ptch1 and Gli1 
levels (186). 
 
3.8. Epithelial-mesenchymal transition 
 Progression of most carcinomas towards 
malignancy is associated with the loss of epithelial 

differentiation and a switch toward mesenchymal 
phenotype, which is accompanied by increased cell motility 
and invasion. The process of EMT by which epithelial cells 
undergo remarkable morphological changes is 
characterized by a transition from epithelial cobblestone 
phenotype to elongated fibroblastic phenotype. This 
process involves loss of epithelial cell-cell junction, actin 
cytoskeleton reorganization and up-regulation of 
mesenchymal molecular markers such as vimentin, ZEB-1, 
ZEB-2, fibronectin and N-cadherin (187). A disassembly of 
cell-cell junction, including down-regulation and relocation 
of E-cadherin and zonula occludens-1 (ZO-1) as well as 
down-regulation and translocation of β-catenin from cell 
membrane to nucleus, are known to be the mechanisms for 
the induction of EMT (188). Epithelial cells have a regular 
cell-cell junction and adhesion which inhibits cell 
movement of individual cells. In contrast, mesenchymal 
cells have weaker adhesion between cells compared to their 
epithelial counterparts, which renders mesenchymal cells 
more motile function, and confers more invasive 
characteristics. In addition to classical markers of EMT, 
such as e-cadherin, vimentin, ZEB-1/ZEB-2 etc, the 
process of EMT is also influenced by several other 
signaling molecules, particularly those from Notch and Wnt 
signaling pathways. 
 
 Since a switch from epithelial to mesenchymal 
phenotype is a good indicator of aggressiveness of cancer 
cells, it is desirable for an anti-cancer agent to reverse this 
phenomenon i.e. revert back from mesenchymal to 
epithelial phenotype (189). Consequently, an up-regulation 
of epithelial markers and/or down-regulation of 
mesenchymal markers is considered a reliable indication of 
the ability of any therapeutic agent to reverse EMT thereby 
reducing the invasion and metastasis of cancer cells (190). 
Curcumin has been reported to induce the expression of 
epithelial marker e-cadherin in melanoma (191), lung (192) 
and breast cancer cells (172). There is also evidence to 
indicate modulation of mesenchymal marker vimentin by 
curcumin leading to apoptosis induction (193). In one of 
the earlier studies on the subject, I3C was found to up-
regulate e-cadherin in breast cancer cells leading to an 
inhibition of invasion and metastasis (194). Silibinin, an 
active constituent of silymarin isolated from milk thistle 
down-regulates the expression of vimentin in a dose- and 
time-dependent manner which leads to inhibition of 
invasion, motility and migration of prostate cancer cells 
(195). In a recent study with gemcitabine resistant 
pancreatic cancer cells, it was observed that exposure to 
DIM or isoflavone could up-regulate e-cadherin in these 
cells, and at the same time, down-regulate ZEB-1 and 
vimentin (196). Recently we found that treatment with 
DIM in combination with taxotere could up-regulate e-
cadherin in MDA-MB-468, MCF7 and SKBR3 breast 
cancer cells and down-regulate vimentin in these cells 
including MDA-MB-231 (unpublished data). 
 
3.9. microRNAs 
 microRNAs (miRNAs) are a group of small 
endogenous single-stranded non-coding RNAs, 19-25 
nucleotides in length, that regulate gene expression by 
multiple mechanisms (197). microRNA (miRNA) profiling 
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is a rapidly emerging field that holds a lot of promise in 
cancer research (198). There has been an enormous spurt in 
research lately to suggest that the loss and gain of specific 
miRNAs is associated with the processes of invasion and 
metastasis. The regulation of oncogenes/tumor suppressor 
genes by miRNAs is increasingly being realized to be a key 
step in the progression of human malignancies (199). 
Further, expression of miRNAs is also known to regulate 
the acquisition of mesenchymal phenotype (200-202). New 
reports linking miRNAs with cancer progression are 
emerging everyday and this area of cancer research stands 
out as the most widely investigated one.  
 
 With the identification of novel miRNAs, 
researchers are busy identifying novel therapeutic agents 
that can modulate the expression levels of different 
miRNAs leading to desired effects on genes that play a 
crucial role in tumorigenicity. The ability of naturally 
occurring agents to play a role in regulation of miRNAs has 
not gone unnoticed, and, slowly but surely, evidence is 
emerging that suggests a modulatory effect of natural 
chemopreventive agents on miRNAs (203). Resveratrol has 
been shown to modulate miR-146a (204) while EGCG has 
been found to modulate miR-16 (205). Curcumin is also 
reported to influence miRNA expression (206) and it has 
been shown to up-regulate miR-22 and down-regulate miR-
199a in pancreatic cancer cells (207). Natural agent 
ellagitannin has been found to modulate a number of 
miRNAs in liver cancer cells which is suggested to be the 
basis of its anti-proliferative and anti-cancer properties 
(208). I3C has been shown to down-regulate miR-21 (209) 
in lung cancer model while its dimeric product DIM as well 
as isoflavone have been reported to up-regulate expression 
of miR-146a (210) and miR-200 and let-7 (196) in 
pancreatic cancer cells. It is important to note that the data 
on modulation of miRNAs by naturally occurring dietary 
chemopreventive agents is just beginning to emerge. Lot of 
studies report a list of miRNAs that might be modulated by 
the agent in question, with data on the miRNAs that are up-
regulated Vs. those that are down-regulated. Since a 
majority of such miRNAs wait for validation, we have 
listed here only those miRNAs that were actually validated 
in different studies by either over-expression (treatment 
with respective pre-miRNAs) and/or silencing (treatment 
with respective anti-miRNAs) studies.   
 
4. CONCLUSION AND PERSPECTIVE 
 

Naturally occurring chemopreventive agents 
come across as promising agents in the fight against human 
cancers which is largely due to their pleiotropic effects. As 
discussed above, several of these agents such as resveratrol, 
curcumin, EGCG, I3C, DIM, isoflavone etc have, in 
particular, shown a modulatory effect against more than 
one therapeutic target. This stands testimony to their 
pleiotropic potential. Despite such promising activity 
against cancer cells, none of these agents has yet been 
approved as a standard anti-cancer therapeutic drug. A 
good example is the compound curcumin that has 
traditionally been used in Indian herbal medicines for 
centuries. It is also interesting to note that curcumin stands out 
as the candidate agent that has shown promise in inhibiting 

almost all of the pathways presented above. The predominant 
reason that has hindered the clinical utility of curcumin is its 
bioavailability. Towards this end, Sarkar and co-workers have 
synthesized a novel analog of curcumin, curcumin-
difluorinated (211), which not only retains the biological 
properties of curcumin but is actually a better anti-cancer agent 
(212), and, on top of it, is significantly more bioavailable (213-
215). Such innovative studies provide an insight into the future 
of drug design. While natural chemopreventive agents provide 
an advantage in the form of non-toxicity, more often than not, 
they have their own limitations. A carefully designed synthetic 
analog might be the need of the hour which brings together the 
beneficial features of natural agent and, at the same time, 
overcomes its limitations. 

 
 Cancer cells are programmed to favor pro-
survival pathways. Therapeutic regimes that target a 
single molecule/pathway usually have limited success. 
This is partly due to the ability of cancer cells to 
immediately bypass the targeted pathway and, instead, 
utilize alternate pathway (s) as means for survival and 
proliferation. The pleiotropic nature of natural 
chemopreventive agents is highly relevant in this 
context because simultaneous inhibition of multiple 
signaling pathways ensures a more effective killing of 
cancer cells. As reviewed by us recently (38), a very 
interesting property of natural chemopreventive agents 
is their ability to sensitize various cancers to the 
standard chemotherapeutic regimes. In such 
combinational therapies, standard chemotherapeutic 
drug can be used at a significantly reduced dosage 
which reduces its associated toxicity. While novel 
targets for therapy continue to be unveiled and validated, 
it is expected that the usefulness of natural agents as anti-
cancer will not diminish, thanks to their pleiotropic activity. 
However, it is urgently needed to start planning on 
translating their laboratory utility to clinics, which could be 
made possible, either by careful synthesis of novel and 
more potent analogs or through their use in combinational 
therapy as chemo-sensitizers.  
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