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1. ABSTRACT 
 

Evidence suggests that immunological response 
in chronic inflammation is dynamic, oscillating between 
active immunity and tolerance. We hypothesized that a 
similar dynamic exists in melanoma and administration of 
therapy during a unique phase of such oscillation could 
impact clinical outcome. Patients with metastatic 
melanoma eligible to undergo temozolomide underwent 
serial measurements of C-reactive protein (CRP) and 
immune biomarkers every 2-3 days for 2 weeks before 
starting therapy. Treatment was initiated prior to the 
estimated next CRP peak, or on day 14 post-registration if a 
peak was not identified. Time profiles of measured 
biomarkers were analyzed by fitting serially measured data 
points to 9 mathematical functions and were correlated to 
time of therapy and outcome. Data suggested that 
metastatic melanoma patients exhibit a dynamic immune 
response. The fluctuation of several biomarkers fitted 
cosine functions with periods which were multiples of 3-4 
days. Chemotherapy delivery during a unique phase of this 
cycle seemed to correlate with improved response. 
Individualized conventional chemotherapy delivery by 
synchronizing treatment with pre-existing patient-specific 
biorhythms may improve clinical outcomes in metastatic 
melanoma. 

 
 
2. INTRODUCTION 
 

The incidence of melanoma has been increasing 
over the last two decades at a rate higher than most 
malignancies (1). It is currently estimated that one in every 
40 people in the Unites States will be diagnosed with 
melanoma during their lifetime (1, 2). While potentially 
curable when diagnosed early, the median survival of 
patients with metastatic disease remains less than 1 year, 
and less than 5% of patients are alive at 5 years (3). 
Melanoma is notoriously refractory to most 
chemotherapeutic agents, but does show sporadic and 
dramatic responsiveness to immune modulating therapies. 
One explanation for the isolated successes of 
immunotherapeutics is the increasingly recognized 
variability in systemic immune dysfunction in patients with 
disseminated disease.  The abnormalities of immune 
competence in stage IV melanoma have been extensively 
studied; recent evidence suggests the existence of varying 
degrees of immune suppression in the tumor 
microenvironment, as well as systemic immune 
“exhaustion” brought upon by tumor-driven chronic 
inflammation (systemic helper T cells, Th2 dominance) (4).  
Different levels of such immune compromise in un-selected 
patients with stage IV melanoma may render different 
levels of “responsiveness” to immune stimulating drugs 
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(e.g. ipilumumab) with varied clinical outcomes.  It is 
therefore possible that the rare patients in whom systemic 
immunity has not yet been fully compromised are those 
who exhibit dramatic responses to immunotherapeutics and 
that simply “boosting” unknown pre-existing endogenous 
immunity may not be sufficient to achieve clinical benefit.      

 
Many approaches have been used to generate 

endogenous anti-tumor immunity in metastatic melanoma 
(5-7). Recently, adoptive transfer studies have definitively 
demonstrated that some form of “re-setting” 
(lymphodepleting) endogenous immune homeostasis may 
be necessary for the success of infused, in vitro prepared, 
tumor specific cytotoxic T cells (8, 9).  This approach 
implies that the state of cancer-associated immune 
dysfunction is established and static, requiring depletion.  
However, increasing pre-clinical data suggest that 
immunity to cancer is a cyclical process, which oscillates 
between active immune responsiveness and tolerance (10-
12). This “on-off” cycle of systemic anti-tumor immunity is 
modulated, among others, by periodical clonal expansion of 
regulatory T-cells (Treg) and possibly other 
immunosuppressive elements (13-15). In animal models, 
Treg appear to undergo synchronous clonal expansion 
approximately 10 to 14 days post viral or tumor inoculation 
(16) and act to suppress the activity of effector T cells 
undergoing clonal expansion some days prior (13,17). 
Application of a single dose of cytotoxic (lymphodepleting) 
chemotherapy at the time when Treg enter mitosis and are 
particularly vulnerable to alkylating agent destruction has 
resulted in an “unblocked” immune response leading to 
prevention of murine AIDS progression (16), or 
immunologically mediated regression of advanced 
lymphoma in mice (18), with no effect on non-cycling 
tumor specific CD8+ T-cells. Thus, an alternative strategy 
to circumvent melanoma-associated immune dysfunction 
may be to utilize spontaneously developed anti-tumor 
immunity and exploit these dynamic (oscillating) changes 
of host immune homeostatic response by therapeutically 
depleting the elements of immune tolerance, thereby 
favoring active anti-tumor immunity.   

 
In the current study, we hypothesized that 

systemic (homeostatic) immunity in patients with 
metastatic melanoma exists in a state of dynamic 
equilibrium and that delivery of lymphodepleting cytotoxic 
chemotherapy (temozolomide, TMZ) in a unique phase of 
this cycle may favor active immunity over tolerance, 
yielding clinical benefit.  As serum C-reactive protein 
(CRP) levels appeared to inversely correlate with 
regulatory T cell (Treg) frequency in patients with chronic 
inflammatory diseases (19), we used serial CRP 
measurements as a surrogate for Treg frequency to detect 
oscillations of systemic immunity and empirically select a 
time during said cycle to deliver TMZ (10,19).  We 
postulated that delivery of TMZ just prior to the presumed 
peak of Treg concentration in the blood may yield 
maximum Treg depletion, favoring persistence of active 
systemic immunity..  The study objectives were: (1) 
ascertain whether or not CRP (and other biomarkers of 
inflammation) is predictably variable over time in patients 
with advanced melanoma (i.e. is systemic immune 

competence is a dynamic process oscillating between states 
of “active” immunity and tolerance); and (2) 
therapeutically utilize this information and devise a 
treatment strategy to selectively lymphodeplete the immune 
down-regulating phase of systemic immunity. 

 
3. MATERIALS AND METHODS 
 
3.1. Patient population and study design 

Eligible patients had unresectable, histologically 
confirmed stage IV disease, age over 18 years, measurable 
disease as defined by the Response Evaluation Criteria in 
Solid Tumors (RECIST), Eastern Cooperative Oncology 
Group (ECOG) performance status (PS) of 0-2, and life 
expectancy ≥ 3 months. Both previously untreated patients 
and patients who have had prior therapy for their metastatic 
disease (excluding prior exposure to TMZ) were eligible. 
All patients provided signed informed written consent, and 
the study was approved by the Mayo Clinic Rochester 
Institutional Review Board. The TMZ dose was 150 mg/m2 
on days 1-5 of cycle 1 and was increased to 200 mg/m2 for 
all subsequent cycles if well tolerated. Patients were treated 
every 28 days until progression, unacceptable toxicity or 
patient refusal.  Prior to initiation of first chemotherapy 
cycle, eligible patients underwent serial peripheral blood 
testing for CRP and associated immunological biomarkers 
every 2-3 days (to account for weekend days) for a period 
of two weeks. CRP concentration was measured using a 
clinical laboratory test (20) in real time in order to identify 
the optimal time for chemotherapy delivery. The time 
series of serial CRP concentration measurements was fitted 
to a sine curve and the next peak of CRP concentration was 
predicted based on the periodicity of CRP oscillations. 
Treatment with TMZ was initiated immediately prior to the 
estimated time of the next CPR peak, or on day 14 post-
registration if the peak could not be identified.  
 
3.2. Immunological studies 
 In order to study the global behavior of the anti-
tumor immune response in metastatic melanoma, peripheral 
blood samples obtained prior to initiation of TMZ therapy 
were subsequently analyzed for plasma concentration of 29 
different cytokines and 22 immune cell subsets (described 
below). All biospecimens were collected, processed, and 
stored following established and validated standard 
operating procedures in our laboratory (4). To reduce inter-
assay variability, all assays were batch-analyzed after study 
completion. All blood samples were collected at 
approximately the same time of day (between 0800h and 
0100 h ) in order to minimize the contribution of circadian 
variation to the fluctuation of immune parameters. 
 
3.2.1. Peripheral blood mononuclear cell (PBMC) 
immunophenotyping for immune cell subsets 

Blood was separated into platelet poor plasma and 
PBMC using a density gradient (Ficol-hypaque, Amersham, 
Uppsala, Sweden).  Plasma samples were stored at -70 ºC, 
and PBMC were stored in liquid nitrogen. 
Immunophenotyping of PBMC was performed by flow 
cytometry using FITC- and PE-conjugated antibodies to 
CD3, CD4, CD8, CD16, CD56, CD62L, CD69, TIM3 (T-
cell immunoglobulin domain and mucin domain 3), CD294, 
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HLA-DR, CD11c, CD123, CD14, CD197, CD206, and B7-
H1 (Becton-Dickinson, Franklin Lakes, NJ).  In addition, 
intracellular staining for FoxP3 (BioLegend, San Diego, CA) 
was performed according to the manufacturer’s instructions. 
Data were processed using Cellquest software (Becton-
Dickinson, Franklin Lakes, NJ).  PBMC bio-specimens were 
analyzed for the frequencies of T cells (CD3+), T helper cells 
(CD3+4+), CTL (CD3+8+), natural killer cells (NK, 
CD16+56+), T helper 1 (Th1) cells (CD4+TIM3+), Th2 cells 
(CD4+294+), T regulatory cells (Treg, CD4+25+FoxP3+), type 
1 dendritic cells (DC1, CD11c+HLA-DR+), type 2 dendritic 
cells (DC2, CD123+HLA-DR+), type 1 macrophages (M1, 
CD14+197+), type 2 macrophages (M2, CD14+206+) and for 
the activation status of these cell types. In order to access the 
Th1/Th2 balance we stained PBMC with anti-human CD4, 
CD294, and TIM-3. The stained cells were analyzed on the 
LSRII (Becton Dickinson Franklin Lakes, NJ). The CD4 
positive population was gated and the percent of CD4 cells 
positive for either CD294 or TIM-3 was determined. Our 
preliminary data suggests that CD4/CD294 positive Th2 cells 
exclusively produce IL-4 and not IFN-gamma upon PMA and 
ionomycin stimulation (data not shown). Conversely, 
CD4/TIM-3 positive Th1 cells exclusively produce IFN-gamma 
and not IL-4 following the same in vitro stimulation. 
Enumeration of Treg was performed using intracellular staining 
for FoxP3 of CD4/25 positive lymphocytes. 

 
3.2.2. Plasma cytokine profiling 

Protein levels for 29 cytokines, chemokines, and 
growth factors, including IL-1beta, IL-1r alpha, IL-2, IL-4, IL-5, 
IL-6, IL-7, IL-8, IL-9, IL-10, IL-12(p70), IL-13, IL-15, IL-17, 
basic fibroblast growth factor (FGF), Eotaxin, granulocyte 
colony-stimulating factor (G-CSF), granulocyte-macrophage 
colony-stimulating factor (GM-CSF), interferon gamma (IFN-
gamma), 10 kDa interferon-gamma-induced protein (IP-10), 
macrophage chemoattractant protein 1 (MCP-1), migration 
inhibitory protein 1alpha (MIP-1alpha), MIP-1beta, platelet-
derived growth factor (PDGF), Regulated upon Activation 
Normal T-cell Expressed and Secreted (RANTES), tumor 
necrosis factor alpha (TNF-alpha), vascular endothelial growth 
factor (VEGF) were measured using the BioRad human 27-plex 
cytokine panel (Cat # 171-A11127, Bio-Rad, San Diego CA) as 
per manufacturer's instructions. Transforming growth factor beta 
(TGF-beta1) was measured separately using a quantitative 
ELISA test and CRP concentration was measured in real time 
using a clinical laboratory test (20). All plasma cytokine 
measurements were performed in duplicates. Normal values for 
plasma cytokine concentrations were generated by analyzing 30 
plasma samples from healthy donors (blood donors at the Mayo 
Clinic Dept. of Transfusion Medicine). A set of three normal 
plasma samples (standards) were run alongside all batches of 
plasma analysis in this study.  If the cytokine concentrations of 
the “standard” samples differed by more than 20%, results were 
rejected and the plasma samples re-analyzed. 

 
3.3. Statistical considerations  

The current study was designed to assess the anti-
tumor activity of timed administration of TMZ.  A two-stage 
Simon design was chosen so that for a significance level of 
0.10 there would a 90% chance of detecting that the 
objective tumor response rate (as defined by the RECIST 
criteria) is at least 20% when the true objective tumor 

response rate is at least 5%.  The clinical trial was stopped 
prior to achieving its accrual goals due to slow enrollment 
rate.  Thus, the reported clinical results are only descriptive.  
Progression-free survival was defined as the time from 
registration to documentation of disease progression or death 
without disease progression documented.   

 
3.4. Data analysis  

Serially measured peripheral blood biomarkers 
were analyzed using CurveExpert 1.4 software (Daniel G. 
Hyams Hixson, TN) and GraphPad Prizm 4.0 software 
(GraphPad Software Inc. La Jolla CA) to construct time-
dependent profiles of plasma cytokine/immune cell counts 
by fitting data points to selected mathematical functions. 
Technical reproducibility was assessed by the coefficient of 
variation (CV) among duplicates (average CV was 5.13% 
for 1593 data points). We used the correlation coefficient 
calculated by CurveExpert as the first criterion for 
goodness-of-fit, where St considers the distribution around 
a constant line and is calculated as  and Sr 

considers the deviation from the fitting curve 

and is calculated as . Using GraphPad  

Prizm we obtained R2 values, 95% confidence intervals for 
the parameters of the fitted functions, and 95% confidence 
bands for the fitted curves. R2 is calculated as R2=1- (Sr/St). 
These parameters were used as selection criteria in different 
steps of the analysis as described in the results section.  

 
Most patients discontinued testing once the required 

number of data points needed for sine curve fitting and 
prediction of the CRP peak was obtained. Consequently, we 
extrapolated the value for cytokines/immune cell counts on the 
day of treatment. We also calculated the first derivative (FD) of 
the fitted function; this shows whether the function increases 
(positive value), decreases (negative value) or is steady (zero), 
and the magnitude of FD reflects the magnitude of the trend. 
The range of plasma cytokine concentrations and cell counts 
varied significantly among study subjects and they were 
converted into relative values with the following formula: (Cmax- 
Cex)/(Cmax- Cmin), where Cmax is the maximum concentration 
within the observed time period, Cmin is the minimum 
concentration within the same period, and Cex is the extrapolated 
concentration on the day of treatment. The same conversion was 
applied to FD values. In cases in which both maximum and 
minimum FD were negative we applied the formula:  -1*(1-
(Dmax- Dex)/(Dmax- Dmin)), where Dmax – maximum FD within 
the observed time period, Dmin – minimum FD within the same 
period, Dex – FD of the function for the extrapolated point 
corresponding to the day of treatment, in order to compensate 
for the subtraction of two negative numbers. Secondary data 
analysis and visualisation was done using Partek GS 6.5 
software (Partek Inc. Saint Louis, MO). 
 
4. RESULTS 
 
4.1. Patient characteristics and clinical outcomes 

Twelve patients with unresectable stage IV 
malignant melanoma were enrolled in the study 
between June 2006 and November 2008 (Table 1). One 
patient canceled participation in the trial prior to starting 
TMZ therapy. Median age at enrollment
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Table 1. Clinical and demographic characteristics of the 11 patients with metastatic melanoma enrolled in the study 
 Sex/ 

Age,y 
Original diagnosis/ 
Anatomic site 

Metastatic  
Disease 
 

Nr. of  
prior 
treatments1 

Treatment  
start  
(# days after  
enrollment) 

Nr. of 
TMZ cycles 
on study 

PFS 
(days) 

Patient 
#1 

M/67 Nodular melanoma  
/ ear 

Lung 
Paratracheal LN 

0 18 35 916 

Patient 
#2  

M/55 Desmoplastic 
melanoma/scalp 

Lung; liver 
Spleen; pancreas 
bone 

0 12 1 37 

Patient 
#3 

M/42 Nodular melanoma  
/ limb 

Subcutaneous limb/ 
trunk; adrenal glands 
bone 

0 7 2 74 

Patient 
#4 

M/82 Nodular melanoma  
/ scalp 

Soft tissue scalp/ 
neck/ upper limbs 

0 11 24 841 

Patient 
#5 

M/52 Cutaneous melanoma  
/ scalp 

Liver;  
Retroperitoneal LN 

2 14 2 91 

Patient 
#63 

F/71 Cutaneous melanoma  
/ scalp 

Lung 1 17 4 132 

Patient 
#7 

M/71 Cutaneous melanoma  
/ limb 

Lung; liver; 
pelvic LN 

3 14 2 68 

Patient 
#8 

M/51 Choroidal melanoma 
 

Liver; bone 0 18 2 71 

Patient 
#9 

F/72 Choroidal melanoma 
 

Liver; spleen 0 20 2 74 

Patient 
#10 

F/51 Cutaneous melanoma  
/ scalp 

Lung; soft tissue 
abdominal wall 

2 15 2 70 

Patient 
#11 

F/56 Acral melanoma Lung; liver; soft tissue trunk; 
bone 

4 2 0  

Patient 
#12 

F/72 Amelanotic melanoma 
/ limb 

Lung; liver; soft tissue 
trunk; mesentery; mediastinal & retroperitoneal LN 

0 20 2 77 

1 Refers to prior chemotherapy, biochemotherapy (IL-2, IFN), GM-CSF, or melanoma vaccine, 2 Patient required hospitalization 
for complications secondary to metastatic disease soon after enrollment and did not receive any further therapy, 3 Insufficient 
number of peripheral blood samples obtained prior to initiation of treatment. 
 

 
 

Figure 1.  Time-dependent profiles of plasma cytokines and immune cell subsets fitted to 9 different mathematical models 
(functions) in 10 patients with metastatic melanoma. Function codes: F0= No Fit/No data, F1= Linear function y=ax +b; F2= 
Exponential function: y=ae^(bx); F3= Exponential Association: y=a(1-exp(-bx); F4= Logistic function: y=a/(1+b*exp(-cx)); F5= 
Quadratic function: y=a+bx+cx^2; F6= Cosine function: y=a+b*cos(cx+d) ; F7= Rational function: y=(a+bx)/(1+cx+dx^2); F8= 
Gaussian function: y=a*exp((-(b-x)^2)/(2*c^2)); F9= MMF Model: y=(a*b+c*x^d)/(b+x^d); The goodness-of-fit was estimated 
using the correlation coefficient (CC) calculated by CurveExpert 1.4 software. The frequency distribution of the correlation 
coefficient was computed across all profiles and all patients and the value of the 75th percentile (0.86) was accepted as a cut-off to 
eliminate profiles which did not fit a model well. Black boxes represent the range of values from 25th to 75 th percentiles and 
whiskers represent the range from 10th to 90th percentiles. 
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Figure 2. Flowchart of data selection process. Time-dependent patterns and dependencies satisfying selection criteria were 
identified. The flowchart demonstrates the filtering algorithm used for data analysis and the results obtained at each step of this 
analysis with references to the figures in the manuscript.  
 
was 66 years (range 42 to 82 years). The median number of 
TMZ cycles administered was 2 (range 1 to 35). Two 
complete tumor responses were documented; both patients 
have since discontinued the study drug after 35 and 24 
cycles respectively, and remain disease-free at 39 and 31.5 
months since study entry. All of the remaining 9 patients 
have discontinued treatment due to tumor progression and 
have subsequently died. Overall, the median progression-
free survival (PFS) time and the median overall survival 
(OS) times were 74 days and 12.5 months, respectively.  

4.2. Dynamic changes of systemic immunity in 
metastatic melanoma 

We analyzed the time-dependent profiles of 51 
longitudinally measured immune biomarkers (see 
immunological studies above) prior to initiation of TMZ 
therapy. Ten of the 12 patients enrolled in the study were 
studied; one patient canceled participation in the trial prior 
to starting TMZ therapy and another patient had an 
insufficient number of peripheral blood samples obtained 
prior to initiation of treatment. Serially measured data 
points were fitted to mathematical functions using 
previously described algorithms (21,22). Curve-fitting was 
performed based on 6 to 7 sequential measurements (time 
points) for each variable and each patient over a period of 

14 days. The distribution frequencies of the 9 different 
mathematical models employed in the analysis showed that 
most time-dependent profiles fitted sinusoidal or rational 
functions implying that these immune parameters oscillate 
repeatedly in an apparent predictable fashion (Figure 1).  

 
Next, we evaluated whether an ordered versus disordered 
pattern of fluctuation correlated with clinical outcome. In 
order to reveal this trend we applied a set of selection 
criteria aimed at filtering out insignificant dependencies 
(associations) (Figure 2). The criteria were set to verify 
that: i) experimental data fit a mathematical model (CC ≥ 
0.86); ii) an ordered pattern is consistent across patients 
(indexing and ranking described below); iii) each of the 9 
mathematical models is consistent across patients (same as 
(ii), but only for one specific model). Each curve fitting 
attempt was assigned an index of fitness. The index was 1 
if the experimental profile fitted a model function well (CC 
≥ 0.86) and the function was biologically possible. 
Functions with infinite growth or infinite decline were 
considered biologically implausible as their extrapolation 
produces biologically impossible values (e.g. < 0) for 
cytokine concentrations or cell counts, and they were 
assigned an index of zero (0).  Finally the index was -1 if a 
profile did not fit any function. The sum of indices
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Table 2.  The rank of measured immune biomarkers based on the likelihood of fitting a mathematical function 
 Variable Rank  Variable Rank 
1 IL-10 7 27 CD3-/CD16- 3 
2 IL-12p70 7 28 TIM3:CD294 3 
3 G-CSF 7 29 DR/11c (DC1) 3 
4 IL-9 6 30 DR/123 (DC2) 3 
5 VEGF 6 31 B7-H1(DRhi) 3 
6 CD206 6 32 IL-7 2 
7 IL-1ra 5 33 FGF 2 
8 IL-13 5 34 IFN-g 2 
9 CD4/294 5 35 IP-10 2 
10 CD11c/14 5 36 CD3/4 2 
11 CD197/CD206 5 37 CD3/8 2 
12 DR(hi) 5 38 CD4/TIM3 2 
13 IL-15 5 39 B7-H1(DRlo) 2 
14 IL-17 5 40 Treg (% total) 2 
15 IL-6 4 41 CRP pmol/L 1 
16 IL-8 4 42 IL-1b 1 
17 Eotaxin 4 43 IL-2 1 
18 TGF-b (ng/ml) 4 44 RANTES 1 
19 CD11c/CD123 4 45 TNF-a 1 
20 Treg (% gated) 4 46 CD3/62L 1 
21 IL-4 3 47 CD197 1 
22 IL-5 3 48 MCP-1 0 
23 GM-CSF 3 49 PDGF 0 
24 MIP-1a 3 50 CD3 0 
25 MIP-1b 3 51 DR(lo) 0 
26 CD3-/16+56 3 52 CD3/69 -1 

 
was then calculated for each variable per individual patient. 
Patients were ranked by the sum of indices and the rank list 
was compared with the clinical outcome for each patient. 
Data suggest that patients in whom the fluctuation of 
measured immune parameters followed a well organized 
rhythm experienced the best clinical outcomes (PFS of 916 
and 841 days for ranks 29 and 28, respectively) while the 
subjects with the lowest (-5 and -9) ranks (entirely random 
fluctuation of all measured immune variables) identified by 
this method had a PFS of 71 and 74 days, respectively 
(Figure 3). The latter were the only two patients in our 
cohort who had metastatic ocular melanoma.  These 
patients not studied further given the disordered pattern of 
fluctuation and inability to fit them to any mathematical 
model.  

 
Our analysis showed that CRP (empirically 

selected biomarker of immune oscillation) fit a time-
dependent profile in less than 50% of the patients, and we 
found no correlation between PFS and CRP concentration 
and the first derivative (FD) of the fitted function on the 
day of treatment (Figure 4).  Consequently, we selected for 
further study only the immune variables which fit a 
function in more than 50% of patients. In order to do this, 
we assigned a score to each immune variable which was 
obtained by summing up the indices across the remaining 8 
patients with metastatic cutaneous melanoma (Table 2). 
Therefore, as the maximum theoretical score of a variable 
was 8 (8 patients), the score of 5 was chosen as cut-off 
because it selects variables which fit a function in more 
than half the patients. These included IL-1ralpha, IL-9, IL-
10, IL-12(p70), IL-13, IL-15, IL-17, G-CSF, VEGF, Th2 
T-helper lymphocytes (CD4/294), CD11c+ monocytes 
(CD11c/14), the ratio of polarized M1/M2 macrophages 
(CD197/CD206) and DR(hi) (cells that highly express 
HLA-DR). Since a large proportion of time dependent 
profiles were fitted to cosine curves using a somewhat non-

 
stringent criterion (correlation coefficient), we further 
selected only data which fitted cosine curves with an R2 
>  75th percentile. The percentile value was calculated 
from the distribution of R2 for curve fitting of all 
experimental profiles to the 9 mathematical functions 
across all patients. As a result, seven profiles for which 
the cosine function period was longer than the 
observation time (14 days) were eliminated. This 
yielded distinct time-dependent rhythms for the 
following immune parameters: the ratio of polarized 
M1/M2 macrophages (CD197/CD206), CD4/294, IL-
12p70, IL-17, and CD11c+ monocytes (Figure 5). For 
multiple variables in 5 out of 8 patients these rhythms 
followed a predictable pattern which was a multiple of 3 
days (3, 6, 9 and 12 days, respectively). A 4-day period was 
observed in one patient each for IL-12p70, IL-1ra and 
CD4/294. To better understand how the concentration or 
cell count and the trend for increase or decrease of these 
variables (FD of the fitted function) relate to clinical 
outcome, we compared the value of these variables in 
patients with different PFS. A fitted cosine curve was 
computed with all four parameters of the cosine function (a, 
b, c, and d: amplitude, period, phase shift and vertical shift) 
representing average values of the corresponding parameter 
across patients being compared and a variable being 
analyzed. The resulting curve represented averaged 
concentrations/cell count dynamics for several patients on a 
relative concentration scale (described above). First 
derivatives of the fitted function on the treatment day were 
also plotted on a relative scale for patients with different 
PFS. Concentration/cell counts and FD plots were 
constructed for CRP (Figure 4B), IL-12p70 and 
CD197/CD206 ratio (Figure 6 B, D) for those patients in 
whom these variables fitted a cosine function. The 
figures demonstrate that clinical outcome (PFS) is 
related to the concentration/cell count or the value of the 
FD of the given measurements (Figure 6).   
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Figure 3. Patient ranking based on ordered versus disordered pattern of fluctuation of serially measured immune parameters as 
related to clinical outcome (PFS). The ranks represent the sum of indices across 51 serially measured cytokine concentrations and 
immune cell counts for each patient over time; the maximum possible index value is 51. 
 

 
 
Figure 4. (A) The extrapolated relative CRP concentration (right axis, dashed bars) and relative first derivative (FD) of the fitted 
function on the day of treatment (left axis, black bars) as related to PFS. “NF” marks cases where the time-dependent pattern of 
the variable dynamics did not fit any of the 9 mathematical functions. (B) Synthetic virtual curve of the averaged concentration 
dynamics of CRP for patients in whom data points fitted a cosine function. The curve represents a function where each of the 
four function parameters (amplitude, period, phase shift and vertical shift) were averaged for one variable across patients. Bars 
represent the relative value of the first derivative of the fitted function on the day of treatment. The numbers in callouts represent 
the PFS for each corresponding patient. 
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4.3. Identification of immunologically favorable time 
point in the immune response cycle (rhythm) for 
chemotherapy administration based on fluctuating 
systemic immune biomarkers 

In terms of clinical application, our goal was to 
define a parameter which would encompass both the 
magnitude of change and the trend of fluctuation of a given 
variable at any time point in the immune response cycle, 
therefore describing time-dependent fluctuation of  immune 
biomarkers more accurately than the protein concentration 
or cell count alone. For that purpose, we defined a new 
parameter (S) that was calculated as the sum of the relative 
concentration and FD with the formula: S= D+C where D 
is the relative first derivative and C is the relative 
concentration. In order to find the variables with the highest 
correlation between S and PFS on the day of treatment 
(with TMZ), we ranked the parameter S in descending 
order for each measured variable and estimated the 
association between the rank of each of the 14 variables 
which fit a function in more than half the patients and PFS. 
If a variable did not fit a biologically possible function, 
then the product could not be calculated (e.g.: infinity); 
since we analyzed 14 variables and the lowest rank for a 
product was 14, the next lowest rank for a product which 
could not be calculated was 15. Because this rank is 
weighted by the proportion of non-fitted variables in a 
given patient, we used a weighted rank calculated as 
15*(number of variables which do not fit a function)/(total 
number of measured variables). Two variables, the 
concentration of IL12p70 and the ratio of CD197/CD206 
positive cells (ratio of polarized M1/M2 macrophages) had 
the best association with PFS, which was further supported 
by estimation of association between the sum of ranks for 
these two variables and PFS (Figure 4). Fifty percent of 
patients (4/8) with the sum of ranks of IL12p70 and M1/M2 
below 15 had an average PFS of 466 days, whereas the 
other 50% with a sum of ranks above 15 had an average 
PFS of 68 days, suggesting that the value of the parameter 
S on the day of treatment correlated favorably with clinical 
outcome in this limited data set.  The parameter S on the 
day of treatment was 5.5 for the patient with the highest 
PFS (916 days) and 2.5 for the patient with the lowest PFS 
(37 days) suggesting that treatment administration at a time 
point in the cycle when S is elevated results in superior 
clinical response to therapy.  
 
 4.4. Full data integration and correlation with clinical 
outcome (clustering analysis) 

Our preliminary data suggested that application 
of treatment at a time point when the parameter S is 
elevated may be associated with an improved clinical 
outcome. This trend was derived from the time-dependent 
profiles of 13 variables across 8 patients. The observed 
periodical pattern was consistent across profiles and 
implied the existence of periodicity of systemic immunity 
in patients with metastatic melanoma. However, the 
relationship between clinical outcome and the specific time 
point in the oscillation of each specific variable when 
treatment was applied varied. We therefore used a modified 
K-means clustering algorithm in order to develop more 
robust integral criteria for assessing the state of the immune 
system at a specific time point in the immune response 

cycle. With this method, the number of groups is 
determined from the number of full function periods which 
fit into one observation period. The algorithm computes the 
number of clusters for the entire range of integers from 
maximum to minimum numbers and outputs time points 
when the parameter S has the maximum value for each 
iteration (number of clusters) and for each variable. These 
time points are used as centroids for K- means clustering. 
Since the clustering results depend on the order of initial 
centroids, our modification performs clustering for all 
possible combinations of centroids and computes the date 
when the sum of indices for all clustered cosine profiles is 
maximal. Next, the algorithm computes the dates with 
maximum sums of relative S values across all possible 
combinations of centroids and numbers of clusters. These 
dates are outputted as optimal dates for chemotherapy 
application for a given patient and a given set of immune 
variables. 

 
The algorithm divides the range of progression-

free survival times into a number of bins ten times less than 
the number of patients. For each bin the algorithm counts 
the profiles of variables with R2  above the cut-off value, 
and calculates the sum of S values on treatment start date 
for these variables. Next, linear regression analysis is 
performed both on the counts and on the sums, and the 
slope of the regression line is computed. Variables with 
high positive value of the sum of slopes have a positive 
correlation (PC) with PFS, variables with high negative 
value, a negative correlation (NEC), and variables with 
slopes close to zero have no correlation (NOC) with PFS. 
The cut-off for PC variables is the75th percentile (mean+ 
0.67 x Standard Deviation) of all sum values and for the 
NEC the cut-off is the 25th percentile (mean - 0.67 x 
Standard Deviation). In this study we considered only the 
positive correlates. 

 
In order to validate this approach, we next 

applied modified K-means cluster analysis to our clinical 
data and compared the optimal treatment time identified by 
this method with the actual timing of therapy delivery and 
the clinical outcome. The time profiles for IL12p70, IL-1ra, 
and CD206 satisfied the selection criteria from our pilot 
clinical trial data and were used for clustering. However, as 
only profiles which fit cosine functions with a correlation 
coefficient greater than 0.86 were used, IL-1ra was eliminated 
from clustering for patients #1, 4 and 7, and IL-12p70 profile 
was eliminated for patient #10. Since only 6-7 data points were 
obtained prior to treatment initiation, we extrapolated 3 to 4 
additional time points to match the same number of points (10) 
analyzed in the simulated data set (see below). The 
extrapolated values were computed using Fourier analysis. 
Clustering produced 1- 3 days with maximum cumulative 
values of the parameter S for each patient (Figure 8). The 
optimal time for chemotherapy application predicted by the 
clustering algorithm fell within the 5-day period of actual 
chemotherapy delivery in the two patients with the longest 
PFS; in all other patients except one (patient # 12, in whom 
chemotherapy was started 4 days before the date that would 
have been predicted by this method), chemotherapy was 
applied several days before or after the optimal days 
predicted by our clustering algorithm (Figure 9). 
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Figure 5.  Periodicity patterns of sinusoidally fluctuating immune parameters. Representative curves for CD197/CD206 ratio, 
CD4/294, IL-17, IL-12p70, and the CD11c/14 are shown.  

 
4.5. The simulation model 

In clinical practice it is often difficult to collect 
blood or tissue samples for long periods of time or 
frequently enough to obtain a time series of data points 
which unambiguously satisfy stringent curve fitting criteria 
and allow for mathematical modeling of clinical data. 
Therefore, given the maximum possible number of data 
points, we needed to determine the sampling frequency, 
observation period, curve amplitude and period (for 
periodical function) which fit a function with high 
probability and not only by chance alone. Consequently, we 
simulated time series of data points with input parameters 
derived from our pilot data. We considered 3 different 
observation periods (10, 15 and 20 days), 3 sampling 
frequencies (every day, every other day and 1-2 days), 100 
amplitudes, and 20 periods. The variables in our study that 
fitted cosine curves by our selection criteria and had 
periods equal or shorter than 12 days were CD197/CD206 
and IL12p70 (5 patients each),  CD4/294 and IL-15 (4 
patients each), CRP, IL-10, CD11c/14, CD206, IL-17, IL-

13 (3 patients each); IL-1ra, IL-9, G-CSF and VEGF (2 
patients each) and DR(hi) (one patient). Taking this into 
account, the amplitudes for a given variable were simulated 
as follows: the parameter B average (which defines the 
amplitude of the cosine function) was calculated across all 
patients in whom the time series for a particular variable 
fitted a cosine curve and the interval Bavg  +/- two standard 
deviations was calculated and divided into 100 bins (Figure 
10). Each of the 100 bin average was used in the cosine 
equation to produce profiles with particular amplitudes. 
Twenty different periods were simulated using the same 
technique; each data series was simulated with and without 
experimental error which was calculated using the 
coefficient of variation and maintaining the same 
distribution of error values as obtained in our clinical 
experiment. The error was added to or subtracted from the 
simulated values in random order. We simulated time series 
for the 16 variables which fitted cosine curves with R2 
above the 80 percentile cut-off in at least 7 out of 8 
patients. Two sets of time series were simulated according 
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Figure 6.  (A, C) The extrapolated relative concentration (right axis, dashed bars) and relative first derivative (FD) of the fitted 
function on the day of treatment (left axis, black bars) as related to PFS. (A) IL-12p70; (C) CD197/CD206 ratio. “NF” marks 
cases where the time-dependent pattern of the variable dynamics did not fit any of the 9 mathematical functions. (B, D) Synthetic 
virtual curves of averaged concentration dynamics of IL12p70 (B) and CD197/CD206 (D) for patients in whom data points fitted 
a cosine function. The curve represents a function where each of the four function parameters (amplitude, period, phase shift and 
vertical shift) were averaged for one variable across patients. Bars represent the relative value of the first derivative of the fitted 
function on the day of treatment. Numbers in callouts represent the PFS for each corresponding patient. 

 
to the described design. In the first set (Cosine profiles), the 
concentration/cell count values were calculated by the 
cosine formula. In the second set (Random profiles) values 
were produced by generation of random numbers within the 
set amplitude range. As a result, we obtained 576,000 data 
series of cosine profiles and 576,000 data series of random 
profiles, which were then fitted to the following five 
mathematical functions: logistic, quadratic, cosine, rational, 
Gaussian, and MMF function (Morgan-Mercer-Flodin) 
with R2 recorded for each fitting. Next, we computed and 
analyzed the distribution of R2 of the curve fitting in 
random and cosine data sets (Figure 11A). The analysis of 
the R2 distribution for cosine function allows identification 
of the conditions (period, amplitude, sampling frequency, 
observation period, etc.) which predominantly produce true 
positive and true negative solutions, as well as those that 
produce false positive and false negative solutions. Of note, 
a solution is the conclusion whether or not the time series 
of data points fits a cosine curve based on the value of R2. 
Simulated profiles computed by the cosine formula 
produced true positive and false negative solutions when R2 
was high or low correspondingly. Likewise, random 
profiles produced false positive and true negative solutions. 
Therefore, the ranges of  R2 values corresponding to high 
sensitivity and specificity  of the solutions can be 
determined. This was necessary as one of the goals of our 
simulation study was to determine the cutoff values of R2 
which would allow us to achieve the best combination of 
specificity and sensitivity. A small number of time series 

(10185 profiles= 0.0088% of the total number of profiles) 
formed straight lines and were excluded from further 
analysis.  For the cosine profiles, 81.7% (461998 out of 
565821) of R2 values were in the range 0.980 – 1.0; 50% of 
these profiles were obtained by fitting data series without 
introducing error and in the other fifty percent a simulated 
value of technical error was introduced. The 90th percentile 
of the R2 values for the cosine profiles was 1.0 and 0.905 
for the random profiles. The overall 90th percentile of the 
R2 values in the range from 0 to 0.98 was 0.87. We then 
considered R2 values in the range of 0.87 to 1.0. (Figure 
11B) and accepted the 90th percentile of R2 subset as the 
cut-off criteria for discriminating between a random set of 
data points and those calculated by the cosine formula. This 
cutoff (rather than the more stringent 0.98 cutoff) prevents 
obtaining a high number of false negative results. The 
resulting subset of R2 values contains ambiguous solutions 
(false positive and false negative), the majority of which 
are introduced by profiles generated with observation 
periods of 10 days and every other day blood sampling 
frequency. When all profiles generated with both of these 
conditions were removed, only simulated cosine profiles fit 
cosine function with R2 in the interval 0.870 to 0.995 
(Figure 11C).  No other tested observation period or 
sampling frequency produced a significant number of  R2 in 
this interval from random profiles. As expected, the 
proportion of R2 above the 90th  percentile cut-off  obtained 
from fitting cosine profiles is higher for the profiles that 
have a higher number of time points, obtained through 
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Figure 7. The relationship between PFS (days) and the sum of weighted ranks of IL-12p70 and CD197/CD206 ratio.  

 

Figure 8. Clustering analysis identifies the optimal time for chemotherapy delivery. The association between the 5-day period of 
TMZ oral chemotherapy delivery (orange bars) in relationship to the optimal time predicted by the clustering algorithm (black 
arrows) and PFS. 
 
longer observation periods or more frequent sampling, 
which is often a limiting factor in clinical practice. As a 
result, we used simulation studies to define the best clinical 
trial design that meets both the demands of curve fitting 
methods and clinical constraints. A schedule satisfying 
these conditions is 5 sequential days of blood sample 
collection followed by 2 days of rest and another 5 days of 
collection, which gives 6 degrees of freedom for data fitting 
to a cosine function. Further in the text we will refer to this 
schedule as 5-2-5. We next simulated time series for this 
schedule. All R2 values (56,119 out of 56,128) above 0.980 
were generated by fitting simulated cosine profiles (Figure 
12 A, C). The R2 obtained from fitting random profiles to 

cosine functions were largely in the range 0.000 to 0.980.  
The distribution of R2 in this range is quasi- normal (Figure 
12B) and the 90th percentile of this subset of R2 values is 
0.8055. Therefore,  if 90th  percentile is selected as a cut-off 
criteria for discriminating between the random set of data 
points and those calculated by the cosine formula, the 
ambiguous solutions will lie in the R2 value range from 
0.8055 to 0.980 (Figure 12D). When we performed the 
receiver operating characteristic (ROC) analysis of 16 
variables for this interval of R2 values, the best 
performing variable was IL-1ra (area under the curve 
(AUC) = 0.955) and the worst performing variable was 
CRP (AUC= 0.734).  
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Figure 9. Clustering of time-dependent profiles for IL-12p70 (red) and IL-1ra (black). The parameter S was calculated for each 
variable and clustering was performed by modified k-means clustering (see section 4.4) to find the optimal time for 
chemotherapy delivery on the days when the sum of the parameter S for the two variables was highest (vertical black lines). The 
day when chemotherapy was actually applied is represented by a yellow line. The analysis for patient # 1 (PFS= 916 days) is 
shown.  
 

 
 
Figure 10. Data simulation design. 100 amplitudes (A) and 20 periods (B) were derived from the average values and standard 
deviations (SD) of measurements of these parameters in 5-7 patients for each of 16 variables (F). Data sets were simulated for 
cosine and for random distribution of data points. The simulation was performed for three different sampling frequencies (C), 
three observation periods (D), and with or without technical error of the measurement (E). 
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Figure 11. The frequency distribution (log base 10) of R2 obtained in the simulation study. The red bars represent frequencies for 
simulated cosine profiles; blue bars represent frequencies for simulated random profiles. (A) – Overall distribution of R2 for 
cosine and random profiles. (B) - Frequency distribution of R2 in the range between 0.87 (90th percentile) and 1. (C) - Frequency 
distribution of R2 in the range between 0.87 and 1 excluding profiles generated for observation period of 10 days and every other 
day sampling frequency. 
 
5. DISCUSSION  
 

The presence of “biorhythms” in medicine has 
been a topic of extensive study for many years (23-25). The 
discovery that hormonal secretion is an episodic process 
opened a new era in endocrinology and revolutionized the 
way we now measure hormones. Rhythmic phenomena are 
typical for all levels of biological organization, with 
periods ranging from centuries and decades (evolution of 
species and ecological systems), to milliseconds of 
electrical potential in nerve and cardiac cells (26). Similar 
episodic changes have been described in immunobiology 
with patterns that follow a circadian (24 hour) (22), 
infradian (greater than 24 hours) (27), seasonal, or 
circannual (yearly) rhythm (23). Certainly, the pronounced 
circadian variation in T cell subpopulations in human blood 
during the 24-hour sleep-wake cycle is now well-
documented (22,28) and seems to be controlled by the 
release of cortisol and catecholamines, the body’s major 
endocrinologic stress-hormone systems. Likewise, 
peripheral blood immune effectors (T cells and natural 
killer cells) fluctuate during normal menstrual cycle in 
healthy women, which may be critical for embryonic 
implantation and pregnancy (27). Our study describes 

similar time-dependent (dynamic) periodical fluctuations of 
systemic immunity in response to cancer in patients with 
metastatic melanoma. Our data also suggests that these 
immune biorhythms may be therapeutically relevant with 
respect to timing of chemotherapy administration and can 
have a dramatic impact on therapeutic outcome.  

 
The idea of biorhythm-based delivery of therapy 

(chronopharmacology) has been a topic of interest for 
oncologists for many years (29,30). Chronotherapy implies 
that, by administering chemotherapy at the “right time of 
day”, one can take advantage of asynchronies in cell 
proliferation between malignant and normal cells, thereby 
minimizing chemotherapy toxicity and increasing treatment 
efficacy. However, despite the fact that most trials showed 
a difference in tolerability in favor of chronotherapy, so far 
the two largest randomized trials (31,32) showed no benefit 
in treatment efficacy. In the current study we extrapolated 
the principle of chronotherapy to utilize spontaneously 
developed immune infradian rhythms and this resulted in 
improved clinical response to chemotherapy, as predicted 
in the mouse models (18). The potential explanation is that 
application of chemotherapy at an immunologically 
favorable phase may selectively ablate the cycling 
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Figure 12. The frequency distribution of R2 obtained in the simulation study for the 5-2-5 schedule. Red bars represent 
frequencies for simulated cosine profiles; blue bars represent frequencies for simulated random profiles. (A) – Overall 
distribution of R2 for cosine and random profiles shows that all R2 above 0.98 were obtained from simulated cosine profiles.  (B) 
- Frequency distribution of R2 in the range between 0 and 0.99 shows normal distribution of  R2 obtained from random profiles. 
(C) - Frequency distribution of R2 in the range between 0.98 and 1 demonstrates that the number of  R2 obtained from random 
profiles is insignificant in this range. (D) - Frequency distribution of R2 in the range between 0.8055 (90th percentile) and 0.98 
demonstrates that ambiguous solutions (false positive and false negative) are frequent in this range. 

 
suppressive elements of immunity and release the patients’ 
immune system from down-regulation. The fluctuation of 
CRP concentration was an attractive candidate for timing of 
chemotherapy given its well established quantification 
methodology (33,34) and previously described periodic 
fluctuations in healthy individuals (35), patients with 
chronic viral infections (36) or cancer (10).  However, our 
data suggested that this approach may be overly simplistic, 
as it did not take into account the complex and dynamic 
interaction among the multiple fluctuating biomarkers that 
define the systemic anti-tumor immune response. The 
accurate prediction of the optimal time for chemotherapy 
administration likely requires a global analysis of the 

changes of systemic immunity over time for each 
individual patient. Using mathematical modeling and curve 
fitting analysis we defined the parameter (S) that 
encompasses both the magnitude of change in 
concentration or cell count and the trend for increase or 
decrease of a given immune biomarker at a particular time-
point in the anti-tumor immune response cycle. Our 
preliminary data suggested that application of treatment at a 
time when maximum numbers of immune variables have 
maximum cumulative value of the parameter S could result 
in improved clinical outcomes. This hypothesis was 
corroborated by the application of modified K-means 
clustering analysis to our clinical trial data. We found that 
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the time of chemotherapy application predicted by the 
clustering algorithm fell within the 5-day period of actual 
chemotherapy application only in the two patients with the 
longest PFS, while virtually all other patients received 
chemotherapy several days before or after the optimal days 
predicted by clustering. The two patients (25%) that were 
accurately selected for timing of therapy by our method had 
a complete response (CR) to treatment delivered based on 
the studied immune biorhythms. This response rate is much 
higher than the CR rate of 3 % of TMZ treated historical 
controls (37). 

 
It has been know for some time that disruption of 

biological rhythms may have clinical consequences. For 
instance, carefully designed observational studies have 
shown that people whose circadian rhythms are chronically 
disrupted are more prone to developing cancer (e.g. night-
shift workers and breast cancer risk) (38, 39). Likewise, 
cancer growth may disturb biorhythms in the host (40, 41). 
These observations are consistent with our findings that 
patients with a disorganized (non-curve-fitting) anti-tumor 
immune response experienced a decreased disease-free 
survival (average PFS of 69 days), relative to those in 
whom the measured immune parameters followed a 
predictable biorhythm (average PFS of 465 days). 
Surprisingly, the subjects with an entirely random 
fluctuation of cytokine concentrations/cell counts identified 
by this method were the only two patients with metastatic 
ocular melanoma enrolled in this study. Ocular melanoma 
has previously been shown to differ markedly from other 
melanoma subtypes both in clinical behavior and molecular 
makeup and our findings raise the question whether these 
patients may have a distinctive immunological signature as 
well. On the other hand, the best clinical responses were 
observed in the two patients who maintained a well 
synchronized anti-tumor immune response, possibly 
overcoming the global immune dysfunction of malignancy. 
Timed delivery of chemotherapy in that context may have 
allowed for a more precise therapeutic intervention leading 
to putative depletion of immune down-regulatory signals in 
favor of effective anti-tumor immunity.  

 
While cytotoxic anticancer drugs are intended to 

primarily affect cancer cells directly, many such agents also 
exhibit “side effects” impacting cells of the immune system 
(bone marrow).  Hematologic (bone marrow) toxicity of 
cytotoxic chemotherapy is the most common side effect of 
modern anti-cancer therapy and the principal determinant 
of the design of cancer chemotherapy treatment schedules.  
This common (nearly universal) side effect of 
chemotherapy is seldom considered in the interpretation of 
clinical efficacy for a given anti-cancer agent.  Although 
the underlying rationale is not yet certain, it is possible that 
the common hematologic toxicities of TMZ yield 
alterations of systemic immunity which may influence 
clinical outcome, as has been previously suggested (42). 
This effect appears to be related to Treg function (17, 42). 
Pharmacokinetic studies have demonstrated that PBMC 
exposed to five subsequent TMZ treatments (concentration 
and schedule comparable to that obtainable in the clinic) 
exhibited a significant inhibition of their proliferative 
response (43). Although TMZ administration would 

theoretically inhibit desirable effector T cells as well, we 
propose that timed administration of this agent may 
selectively suppress Treg who lag behind T effectors in 
their clonotypic expansion (17). By that time, effector T 
cells would have proliferated and become activated and 
may be therefore less susceptible to the effects of TMZ 
chemotherapy.  Clearly, administration of the same agent 
(TMZ) at the same dose/schedule only delivered at a 
different time in the “immune biorhythm” of the patient 
may have an entirely different cumulative effect (depletion 
of clonotypic tumor specific CTL) on immune homeostasis 
and possibly on clinical outcome.   

 
Albeit intriguing and suggestive, our present data 

can only be interpreted as hypothesis generating due 
primarily to the small number of patients and specimens 
studied.  At the time of the original design of this study we 
had no appreciation of the underlining immune biorhythms 
and therefore had to design a clinical trial in which we 
empirically selected an arbitrary pre-treatment observation 
period (14 days) in which we would collect an arbitrary 
number of blood samples (5-8) collected at arbitrary 
intervals (every 2-3 days).  The presented data have now 
given us the necessary information to design a follow-up 
clinical trial that will be better suited to truly test the 
hypothesis proposed herein.  The development of a strong 
mathematical model, central to our understanding of 
dynamic processes requires an adequate number of serial 
measurements. Fitting of 6 or 7 data points to a function 
with four parameters (sinusoidal and rational functions) can 
be ambiguous even if the goodness-of-fit metrics are 
satisfactory (R2 and coefficient of variation are close to 1.0, 
confidence interval is narrow.). Therefore, in order to 
design a sample collection schedule which permits 
obtaining a sufficient number of time points but keeps the 
blood collection burden as low as possible for our patients, 
we used simulation and modeling studies for different 
observation periods and sampling frequencies. The goal 
was to identify a clinical trial design which meets both the 
analytical (mathematical modeling) and clinical (burden to 
patient) requirements.  The result of these analyses 
suggested that a schedule satisfying these conditions is 5 
sequential days of blood sample collection followed by 2 
days of rest and another 5 days of collection (5-2-5 schedule) 
yielding sufficient statistical power to address the question at 
hand. Based on these findings we were able to design a clinical 
trial that directly tests the hypothesis generated by our 
presented data which suggests that synchronizing conventional 
chemotherapy delivery with pre-existing, patient-specific 
(individualized) biorhythms, may yield improved clinical 
outcomes using mechanisms believed to only be a toxic side-
effect of therapy (lymphodepletion).  Said validation study is 
currently under way.    
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