
[Frontiers in Bioscience E4, 1157-1169, January 1, 2012] 

1157 

Hepatocellular carcinoma stem cells: origins and roles in hepatocarcinogenesis and disease progression  
 
Yi Shen1, Deliang Cao1 
 
1Department of Medical Microbiology, Immunology, and Cell Biology, Simmons Cancer Institute, Southern Illinois University 
School of Medicine. 913 N. Rutledge Street, Springfield, IL 62794, USA 
 
TABLE OF CONTENTS 
 
1. Abstract 
2. Introduction 
3. Stem cells and liver development and regeneration 

3.1. Liver development 
3.2. Liver regeneration 
3.3. Effects of liver regenerating process on tumor growth 

4. Liver stem cells and hepatocellular carcinoma 
4.1. Cellular origins of hepatocellular carcinoma  
4.2. Malignant transformation of liver stem/progenitor cells 

4.2.1. Hepatocytes 
4.2.2. Hepatic progenitor cells (oval cells) 
4.2.3. Bone marrow stem cells 

4.3. Precursor lesions in the evolution of hepatocellular carcinoma 
5. Hepatocellular carcinoma stem cells   

5.1. Cancer stem cells  
5.2. Deregulation of cell cycle during hepatocarcinogenesis 
5.3. Cell surface marker and tumorigenicity of hepatocellular carcinoma stem cells  
5.4. Cancer stem cell signaling in hepatocellular carcinoma 

5.4.1. Angiogenic signaling 
5.4.2. Wnt/β-catenin pathway 
5.4.3. Hedgehog signaling 

6. Therapeutic implications  
7. Acknowledgement 
8. References 
 
 
 
 
 
 
 
 
 
 
1. ABSTRACT 

 
Hepatocellular carcinoma (HCC) is a treatment-

resistant malignancy with an increasing incidence 
worldwide. More than 500,000 individuals suffer from this 
disease annually. Risk factors for human HCC include 
hepatitis B and C infections, dietary aflatoxin, alcohol 
abuse, smoking, and oral contraceptive use. Accumulating 
evidence suggests that liver stem cells play a critical role in 
HCC development and progression. Dedifferentiated 
hepatocytes, hepatic oval cells and bone marrow cells are 
the three major types of liver stem cells, and CD133, 
CD90, and EpCAM are identified as specific antigenic 
markers for HCC stem cells. Wnt, Hedgehog, and the 
angiogenic signalings are main pathways that regulate the 
HCC stem cell self-renewal and pluripotential, and may be 
potential targets for novel therapeutic strategies of this 
malignancy. This review article provides an update in the 
studies of live and HCC stem cells. 

 
 
 
 
 
 
 
 
 
2. INTRODUCTION  
 

Primary liver cancer is a global health concern 
with over 500,000 new cases diagnosed annually. This disease 
is the third leading cause of cancer deaths throughout the 
world, and is ranked at the fifth most frequent cancer in men 
and the eighth in women (1, 2). Primary liver cancer is 
comprised of two major types, hepatocellular carcinoma 
(HCC) and cholangiocarcinoma (CC). HCC is a main 
pathological subtype, accounting for 80% of total primary liver 
malignancy. HCC incidence is highly correlated with 
geographical areas, and more than 80% of cases are claimed in 
South Asia, such as Japan and China (1, 3, 4). Although HCC 
is relatively rare in the United State, its incidence is almost 
doubled during the past 3 decades. Similar tendency is seen in 
Canada and Western Europe (5).  

 
Dietary aflatoxin, excessive alcohol intake, 

cigarette smoking, and oral contraceptive use are identified 
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Figure 1. The lineage of hepatocarcinogenesis in vivo. Livers are derived from pluripotent embryonic stem (ES) cells that 
proliferate and differentiate to two major cell types, hepatocytes and cholangiocyte. The liver is vulnerable to various pathogens 
and toxic factors, such as hepatitis B virus, hepatitis C virus, alcohol, and dietary aflatoxin. Stem cells, hepatic-originated and 
non- hepatic-originated, participate in the hepatocarcinogenesis. Chronic inflammatory microenvironment favors the 
transformation of normal liver stem cells to cancer stem cells (CSC) through the deregulation of self-renewal pathways. 

 
as risky factors for HCC, but in most prevalent countries, 
up to 80% of HCC arise in hepatitis B (HBV) or C (HCV) 
infections and cirrhosis (1, 4, 5). Globally, about three-
quarters of liver cancer cases and half of mortalities are 
attributed to chronic hepatic viral infection (2). HBV and 
HCV are both prevalent in developing countries and are 
frequently transmitted through blood or body fluids. They 
are also passed from parental to filial generation during 
pregnancy.  

 
Although the etiology and pathogenesis of 

primary liver cancer remains unclear, recent studies have 
shown that liver stem cells play a critical role in 
hepatocarcinogenesis and disease progression. This review 
updates recent studies on normal and cancer stem cells 
(CSC) of the liver, in terms of their role and regulation in 
liver development and regeneration and 
hepatocarcinogenesis. Signalings that regulate the CSC in 
HCC are discussed and therapeutic approaches targeting 
CSC are reviewed. Notably, current efforts on CSC studies 
in HCC have significant clinical implications in its 
diagnosis, prevention, and treatment. 

 
3. STEM CELLS AND LIVER DEVELOPMENT AND 
REGENERATION 
 
3.1. Liver development 

Liver development undergoes three key stages: 
specification, budding, and differentiation (6). Through 
liver embryogenesis, pluripotent embryonic stem (ES) cells 
raised from inner cell-mass differentiate into three principal 
germ layers: ectoderm, mesoderm, and endoderm (Figure 
1). Anterior segment of definitive endoderm specifies into 
foregut endoderm, from which the endodermal cells start to 
proliferate and bud into the septum transversum 
mesenchyme (STM) (6, 7). By performing fate-mapping, it 
is understood that two parts of the embryonic endoderm 
give rise to the liver, i.e., the lateral domains in the ventral 
foregut and a small pack of cells along with the ventral 
midline (8).  During the fusion of medial and lateral 
domains, the tissue-specific foregut endodermal 
stem/progenitor cells sense the developmental signals and 
specify to a hepatic fate. During the course of liver 
development, hepatoblasts are bipotential and able to 
differentiate into either hepatocytes or cholangiocyte (bile 
duct cells), through a process of immature or transitional 

hepatocytes to mature hepatocytes (Figure 1) (9, 10). 
Overall, the development of fetal liver is a systematic 
process that requires many cellular signals, which are 
crucial and may be derived from multiple cellular origins, 
including STM, cardiac mesoderm, hematopoietic stem 
cells (HSCs), and endothelial cells, as well as extracellular 
matrix (ECM) (11, 12). 

 
Liver development also requires the participation 

of normal hepatic stem cells that are characterized with 
self-renewal and multilineage differentiation potential (11, 
13). It has been reported that mouse primitive hepatic 
progenitor cells seeded in the recipient spleen can migrate 
to the liver and undergo differentiation into liver 
parenchymal cells (13, 14). Further evidence indicates that 
in the development of the liver, the differentiation of 
hepatic stem cells to hepatocytes and cholangiocytes 
provides cell materials for the reconstitution of the liver 
and bile ducts (13, 15).  

 
3.2. Liver regeneration: 

The normal adult liver plays an important role in 
governing physiologic homeostasis in the body and is 
widely involved in various metabolic processes, such as 
synthesis, storage and redistribution of nutrients. The liver 
is also an important detoxicant organ, protecting the body 
from various xenobiotic lesions by metabolic conversion 
and biliary excretion (16, 17). Therefore, the liver is 
featured with considerable self-regeneration capacity in 
response to hepatectomy and toxic/ viral infection damage 
(16, 18). In other words, the lost hepatic mass can be 
compromised by the proliferation of mature hepatocytes 
and/or other hepatic progenitor cells, such as hepatic 
stem/progenitor cells and bone marrow stem cells (7, 16, 
18, 19).   

 
In an adult liver, mature hepatocytes account for 

over 80% of the cell population, which remains quiescent 
and seldom proliferate in normal conditions. When a liver 
experiences partial hepatectomy or undergoes moderate 
toxic injury, hepatocytes re-enter cell cycle, undertake a 
serial growth and proliferation from dormant hepatocytes 
and cholangiocytes to hepatic stellate cells and endothelial 
cells, and eventually restore the original mass and functions 
of the liver (7, 17). Studies in rodent models have 
demonstrated that the restoration of the normal mass can be 
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accomplished within 3 days after standard partial 
hepatectomy. In the case of extensive two-thirds 
hepatectomy, remaining cells could reconstruct adequate 
numbers of preoperative cells within 10 days of post-
resection (7, 17).  

 
Hepatocyte regenerative capacity could be 

substituted by liver facultative epithelial progenitor cells 
(hepatic stem/progenitor cells), referred to as “oval cells” in 
rodents, when the liver undergoes severe chronic injury and 
normal hepatocytes are inadequate to proliferate and regain 
organ function (20). Studies in injured rodent models have 
indicated that oval stem/progenitor cells are a reserved 
compartment that positions on the smallest branches of the 
intrahepatic biliary tree. These cells possess bipotential 
capability of differentiating into both small basophilic 
hepatocytes and biliary epithelial cells. It is understood that 
the differentiation level from oval stem/progenitor cells to 
mature hepatocytes is directly correlative to the degree of 
chronic inflammation and fibrosis in the disease liver (6, 7, 
17). What is interesting is that when rodents are fed with 
peroxisome proliferators, certain carcinogens, or 
methionine-deficient diet, the differentiation potential of 
oval cells is not restricted to the hepatocyte lineage, but 
also to intestinal glandular epithelium or pancreatic-like 
tissues in the liver (21). 

 
Numerous signaling pathways are involved in the 

regulation of wound healing processes during liver 
regeneration. For example, tumor necrosis factor (TNF)-α 
and interleukin-6 are key cytokines that trigger the 
signaling pathways for DNA synthesis of hepatocytes and 
initiate liver remodeling. Studies in the expression of 
immediate early genes during hepatocyte proliferation have 
demonstrated that IL-6 and TNF-α can restore the 
sensitivity of the liver to growth factors, such as hepatocyte 
growth factor (HGF), heparin-binding epidermal growth 
factor-like growth factor, epidermal growth factor, and 
transforming growth factor (TGF)-α (22). Interestingly, the 
rebuilding of liver is also contributed by Kupffer cells that 
participate in regeneration process with or without the 
regulation by the TNF-α pathway, and the preference is 
mostly dependent on the stages of the liver regeneration 
(23-26). In the initiation phase of liver regeneration, 
Kupffer cells are capable of stimulating hepatocyte 
proliferation via producing TNF-α. However, the 
increasing levels of TNF-α are compromised by TGF-β 
which induces a negative feedback to the regeneration 
process and lead to the termination phase of liver 
regeneration. It is believed that certain subpopulation of 
Kupffer cells may invoke the termination phase of liver 
regeneration through modulating the levels of TGF-β and 
IL-1β (23-25, 27). 

 
3.3. Effects of liver regenerating process on tumor 
growth 

Although liver regeneration is an important 
curative strategy for damage, animal studies suggest that 
molecular factors that facilitate the liver regeneration 
process may also favor tumor growth and metastases (28-
33). Clinical data also shows that metastatic tumors have 
eight times higher  growth rates in the patients who had 

liver hepatectomy than in normal liver parenchyma (34). 
As discussed above, Kuppfer cells participate in the liver 
regeneration process by producing pro-inflammatory 
cytokines and growth factors, all of which are also 
stimulators of metastases and growth of tumors in the liver 
remnant (35). For instance, HGF stimulates hepatocyte 
proliferation in normal liver regeneration, but it is also a 
promoter of angiogenesis and cell motility, inducing 
alterations of tumor cell matrix. It has been found that HGF 
overexpression is correlated to motility and invasive 
characteristics of malignant cells (36-38). It is noteworthy  
that the cytokines TNF-α and TGF-β may show an opposite 
function in cancer cell growth and proliferation, serving as 
tumor suppressors. It has been reported that TNF-α inhibits 
the liver cell proliferation and promotes apoptosis, and 
studies on Kupffer cells have proposed that the depletion of 
this cell type results in an immunosuppression via the TNF-
α pathway in liver metastases (39, 40). The timing and 
dosage of TNF-α administration, as well as the stages of the 
liver remodeling process, significantly influences the 
progression of tumor metastases (39, 41, 42). 

 
4. LIVER STEM CELLS AND HEPATOCELLULAR 
CARCINOMA 
 
4.1. Cellular origins of hepatocellular carcinoma 

The concept of cellular origins of HCC is 
controversial. In the early 1980s, scientists proposed that 
the de-differentiation of mature liver cells is the cause of 
liver cancer. In chemical-induced HCC rat models, 
investigators found that chemical exposures of animals led 
to the formation of abnormal foci of hepatocytes and 
preneoplastic nodules in the liver (43). This theory is 
further supported by studies on alpha-fetoprotein (AFP) 
and its correlation with hepatic cancer progress and 
prognosis (44, 45). AFP is a fetal-specific glycoprotein that 
is synthetically repressed in the normal adult liver. 
However, an increased serum level of AFP is observed in 
many HCC patients, and AFP-positive proliferating oval 
cells are successfully isolated from carcinogen-exposed 
liver tumors, suggesting the hepatic origin of HCC (43, 45, 
46). Currently, AFP is used as a key diagnostic marker of 
HCC.  

 
In recent years, extensive animal modeling of 

chemical hepatocarcinogenesis raises a novel hypothesis 
that maturation arrest of liver stem cells may be the cellular 
founder of primary hepatic malignancies, such as HCC, 
teratocarcinoma, and cholangiocarcinoms (43, 47, 48). This 
idea was first articulated by Van Rensselaer Potter and 
colleagues in the early 1970s, who proposed that primary 
liver cancer would rather be due to blockage during the 
development of immature liver cells than de-differentiation 
of mature cells (49-51). However, this concept was 
challenged by the fact that in addition to HCC, fetal type 
liver enzymes are also present in preneoplastic nodules 
(52). Currently, the cells in nodules are no longer 
considered to develop cancer, but rather act as protectors to 
remove toxicity of carcinogens (43). Interestingly, chemical 
carcinogenic studies of hepatoblastoma suggest that other 
than ES cells, periductular oval cells and adult ductal liver 
progenitor cells give rise to HCC in adult animals. 
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Hepatoblastoma is most prevalent in young animals or 
human infants, characterized histologically with less 
differentiated cell phenotypes, which suggests an early 
proliferation stage of HCC developmental lineage, known 
as infant liver stem cells.  

 
4.2. Malignant transformation of liver stem/progenitor 
cells 

It is now accepted that liver cancer is a disease 
derived from malignant transformation of stem/progenitor 
cells. However, the identification of the founder cells for 
the two major liver cancers, HCC and CC, is a challenge 
because other than the continually renewing tissues such as 
gastrointestinal epithelium, hepatic progenitor cells (HPCs) 
and mature hepatocytes possess both longevity and longer 
repopulating potentials (47). Studies in 
hepatocarcinogenesis have shown that at least three distinct 
cell types, hepatocyte, oval cells (HPCs) and bone marrow 
cells, may ‘inherit’ the genotoxic injury and lead to 
neoplastic transformation in the liver (53). Animal 
modeling has indicated that the injury of mature 
hepatocytes can give rise to HCC, and oval cells are the 
target of highly risk carcinogens. Bone marrow-originated 
cells are more characterized in the process of periductular 
cell liver damage (54).  

 
4.2.1. Hepatocytes 

Hepatocarcinogenic studies have indicated the 
direct involvement of hepatocytes in HCC. In rat models, 
by tracing the β-galactosidase-expressing cells labeled by 
retroviral vector, Gourna and Bralet’s groups (55, 56) have 
both noticed the β-galactosidase-positive hepatocytes at the 
completion stage of liver regeneration after a two-thirds 
partial hepatectomy. More specifically, in 
diethylnitrosamine (DEN)-induced HCC, Bralet and 
colleagues found that 17% of tumor cells were β-
galactosidase positive, suggesting that the mature 
hepatocytes serve as a random colonial origin of HCC. In 
addition, animal studies have also shown that liver injury 
promotes the effect of genotoxic carcinogens, especially 
when liver tissues are undergoing a proliferation where 30-
40% of hepatocytes are in S phase or during partial 
hepatectomy, necrogenic insult, or postnatal growth (57). It 
is noteworthy to know that hepatocytes are a major cell 
type that immediately responds to liver damage and 
therefore, it is more likely to become the origin of 
malignant transformation. 

 
4.2.2. Hepatic progenitor cells (oval cells) 

Increasing evidence suggests that hepatic 
progenitor cell (oval cells) activation (ductular cell 
reaction) is inextricably linked to hepatocarcinogenesis. 
Oval cells are known as the least bipotent cells among the 
three potential cancer stem cells (mature hepatocytes, oval 
cells, and bone marrow cells) for HCC, and are able to 
proliferate into hepatocytes and cholangiocytes (58). The 
oval cells may be a more plausible cell target for most HCC 
models because a mixture of mature cells and the cells 
phenotypically similar to oval cells is observed in many 
hepatic tumors (47, 48). Such cells include a population of 
small oval-shaped cells with OV-6, CK7 and CK19 
expression and/or cells that undergo morphological 

changes, transforming from normal hepatic progenitor cells 
to malignant hepatocytes (59). In addition, oval cells are 
the major cell type that is infected by HBV during the 
chronic liver damage, which may increase the possibility of 
being a cellular target of carcinogens (55).  

 
The key role of oval cells in the development of 

HCC is further illustrated by a CDE dietary (a diet deficient 
in choline and supplemented with 0.5% ethionine) mouse 
model. In this modeling, pre-treatment of animals with 
imatinib mesylate, an anticancer drug for c-Kit mutation 
cancer, reduces liver tumors and this may be ascribed to the 
blockage of oval cell expansion (60). This finding is 
consistent with the concept of stem cell maturation arrest 
(47, 48). Factually, a range of oval cells are found in HCC 
to be arrested in the ‘transitional stage’ with neoplastic 
phenotypes, not fully differentiated into hepatocytes (61). 

 
4.2.3. Bone marrow stem cells 

Early studies of bone marrow stem cells in liver 
diseases have shown their potential in improving the fatal 
metabolic liver damage (62). Although the mechanism 
remains unclear, the role of bone marrow-derived 
multipotent adult progenitor cells (MAPCs) in the 
histogenesis of HCC has been evident experimentally. 
When cultured with grow factors, such as FGF4 and HGF, 
MAPCs differentiate into functional hepatocytes with 
expression of several liver-specific markers, such as 
epithelial cell adhesion molecule (EpCAM) and AFP (63-
65). However, Lee and co-workers found that different 
from the normal hepatoblast-derived hepatocytes, bone 
marrow-derived hepatocytes have only the capability of 
uptaking low-density lipoprotein (LDL) (64). An 
interesting finding, however, was reported by Ong, et al. 
(66). Co-culture of human bone marrow mesenchymal stem 
cells (BM-MSCs) with rat liver slices derived from 
gadolinium chloride (GdCl3)-treated rats led to alterations 
of hepatocyte function, such as albumin and urea 
production. This fact may suggest the benefit of some pro-
inflammatory cytokines, such as TNF-α, in promoting 
differentiation. In fact, two separate reports exhibited the 
therapeutic effect of BM-MSCs in liver injuries induced by 
CCl4 and N-nitrosodimethylamine (DMN) (67, 68). BM-
MSCs improve the function of injured liver in rats, such as 
albumin and glutamic-oxaloacetic transaminase (GOT) 
production.  

 
4.3. Precursor lesions in the evolution of hepatocellular 
carcinoma 

Similar with the development of other types of 
cancer, hepatocarcinogenesis is a chronic process that 
always requires the progressive accumulation of genetic 
mutations and alterations, and is followed by angiogenesis 
and metastasis. Besides the normal tumorigenic routine, 
however, HCC may be derived from a serial malignant 
transformation of liver parenchymal cells. Clinical data 
shows that hepatocarcinogens, such as HBV, HCV and 
alcohol abuse with chronic liver inflammation, regeneration 
and fibrogenesis, could accelerate the cancerous 
progression (69). During this inflammatory process, 
morphological changes of liver tissues are significant and 
are widely accepted as ‘preneoplastic lesions’. Two major 
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abnormal structures are prevalently observed in these 
lesions and referred as dysplastic foci and dysplastic 
nodules, respectively (70).  

 
Dysplastic foci are microscopic lesions (<1mm) 

that are comprised by groups of deformed hepatocytes. 
Two major subsets of dysplastic foci are identified, known 
as small cell dysplasia (SCD) and large cell dysplastic foci 
(LCD), respectively (70, 71). The SCD is highly associated 
with HCC from cirrhotic liver diseases (72). The SCD and 
LCD are identified by morphology of hepatocytes that exist 
in the structure. For example, hepatocytes in SCD have 
relatively small volumes of cytoplasm and nuclear 
polymorphisms, but a larger nucleo-cytoplasmic ratio 
compared to the hepatocytes in LCD (70, 73). Both SCD 
and LCD are convinced of the preneoplastic lesions of 
HCC (3-54, 55), and induce cirrhotic liver damage through 
regulating DNA contents in the cell proliferation cycle (70, 
74-76). It is understood that the DNA contents are 
decreased in SCD foci, but increased in LCD, and thus 
SCD may serve as early precursor lesions, while LCD are 
the direct precursor lesions of HCC (77). 

 
On the contrary, dysplastic nodules are the 

moderated morphological changes during the development 
of HCC in cirrhotic liver tissues (78, 79) and are defined as 
macroscopic lesions in liver malignant progress. Dysplastic 
nodules are divided into low grade (LGD) and high grade 
(HGD) types (80). Similar to dysplastic foci, chromosomal 
abnormalities are directly involved in the nodular 
regeneration and progression (81, 82). In both animal and 
clinical studies, HGD has been proved to recapitulate the 
resemblance of vascular and metastatic features for HCC 
(83). 
 
5. HEPATOCELLULAR CARCINOMA STEM 
CELLS 
 
5.1. Cancer stem cells 

In 1855, Rudolph Virchow first proposed the 
concept of “embryonal-rest” in the study of stem cell 
differentiation (84).  However, not until the past decade, 
more compelling evidence has emerged in support of 
cancer stem cells (CSC) for carcinomas, including 
hematological malignancies and breast, liver, prostate, 
colon and brain cancers (85).  

 
Cancer stem cells are regarded as the germinal 

center of tumor evolution, and possess similar features to 
normal adult stem cells, such as self-renewal capacity and 
differentiation potential (86). CSC isolation can be 
approached by their distinct immunogenic and functional 
properties from other cell types. Using antigenic 
assessments, several CSC markers have been identified for 
evaluating the involvement of CSC in cell morphological 
changes, anchorage-independent growth, asymmetric 
division, chemo-resistance, and pluripotency. However, the 
knowledge of CSC markers is still limited, and a single 
marker is not sufficient to characterize CSC, and both 
antigenic and functional properties need to be taken into 
consideration for the identification of CSC in different 
types of cancers.   

5.2. Deregulation of cell cycle during 
hepatocarcinogenesis 
 To understand the role of CSC in 
hepatocarcinogenesis, it needs to be answered how the CSC 
are deregulated and eventually lead to the tumor initiation, 
metastasis and relapse. Studies in hepatic CSC have shown 
an increase in the expression of proliferative E2F factors 
during the priming phase of a cell cycle (87, 88). E2F 
proteins are key mediators for the G1/S progression of the 
cell cycle, and their transcription activity is regulated by 
binding with pocket proteins, pRb and p130, in early G1 
phase and quiescent cells. Phosphorylation of pocket 
proteins by cyclin D1/ cyclin-dependent kinases (CDK) 4 
and 6 or cyclin E/ CDK2 complexes releases the E2F 
proteins that sequentially activate their downstream gene 
expression, forwarding cell cycle (89). During liver 
carcinogenesis, this feed-forward loop is extremely 
activated in the early stage and the increased E2F in turn 
upregulates cyclin D1, forming a vicious loop (90, 91). 
Another protein that catches eyeballs of researchers is 
Foxm1b. This protein is a forkhead transcription factor 
controlling G2/M transition, and is also upregulated in 
human HCC (92). Recent studies revealed that Foxm1b 
disrupts the ongoing of DNA synthesis and mitosis in the 
late G1 phase, stabilizes p21, and reduces cdc25A and 
cdc25B (93, 94).  
 

Genes associated with mitosis are also frequently 
attacked in HCC, leading to the de-regulation of mitotic 
spindle assembly, defects in chromosome segregation, and 
ineffectiveness of cell cycle checkpoints. Modern 
molecular bio-techniques have identified a cluster of 
transcriptional factors involved in the G2/M and S phases 
of the hepatocyte cell cycle, such as Aurora kinases, bul1b 
and survivin (95-97).  Mutations or overexpression of these 
factors results in a cytogenetic insult called aneuploidy, due 
to inappropriate segregation of chromosomes during 
mitosis (98). This defect is specially characterized in 
human HCC (69, 95, 96), and an accelerated liver 
carcinogenesis is observed in the diethylnitrosamine-
induced mouse model that is aimed to clarify the 
importance of accurate chromosome segregation (97-99). 

 
 Hepatocyte proliferation is self-terminated 
through a negative feedback when the liver reaches the size 
and sufficient functional capacity, and p53, p21, p27 and 
p18 are important suppressors to halt cell cycle progression 
(19, 90). It has been reported that p53 inactivation induced 
by hepatitis B x (HBX) protein stimulates 
hepatocarcinogenesis in an HBx transgenic mice (100). 
Recent studies have shown that p53 mutation may not only 
accelerate the tumor progression, but also stimulate the 
regeneration of nodules (101, 102).  
 
5.3. Cell surface marker and tumorigenicity of 
hepatocellular carcinoma stem cells 

Studies on liver CSC have identified CD133, 
CD90, and EpCAM as specific antigenic markers. CD133 
was first discovered as a hematopoietic marker, but its 
value in liver CSC has been recently confirmed (103, 104). 
CD133 is positive in up to 65% of HCC cell lines, and may 
contribute to the tumor initiation. The CD133+ cancer cells 
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exhibit many stem cell characteristics. They are capable of 
self-renewal and forming colonies in vitro, differentiate 
into anigomyogenic cells (a non-hepatocytic lineage), and 
sustain to high chemotoxic dosage (105). CD90-positive 
rate is much lower in human HCC cells compared to 
CD133. CD90 was proposed as mesenchymal stem cell 
marker in early studies, but tumorigenic property of CD90+ 
HCC cells has been proved in recent studies (106-108). In 
addition, CD90+ cells with or without co-expression of 
additional surface markers demonstrate more progressive 
phenotypes of HCC. For example, CD90+/CD45- cells are 
prevalent in human HCC tumors and blood samples (69, 
106), and CD90+/CD44+ cells induce more severe 
metastatic lesions (107, 108). Using EpCAM as a cell 
surface marker, Yamashita’s group classified HCC into two 
subtypes with different expression levels of AFP and 
EpCam. Wnt/b-catenin signaling pathway participates in 
CSC-like characteristics and tumorigenicity of EpCAM+ 
cells, and antibody-induced blockade of EpCAM+ cells 
diminishes the formation of tumors and metastasis (109, 
110).  

 
5.4. Cancer stem cell signaling in hepatocellular 
carcinoma 

Two predominate pathogenic events are involved 
in hepatocarcinogenesis. One stands for the cirrhotic 
lesions, and the other indicates important gene mutations. 
Hepatitis viral infections, toxins, and metabolic disorders 
induce cirrhosis and focal regeneration; and tumor 
oncogene or suppressor gene mutations lead to mitotic 
abnormalities and abnormal cell growth and proliferation 
(111-114). Both pathogenic mechanisms associate with 
disruptions in signaling pathways, ushering 
hepatocarcinogenesis. Among these growth factors that 
mediate angiogenic signaling, the tyrosine kinase receptor 
and Wnt/b-catenin pathways are most important in 
maintaining adult stem cells and liver CSC, which may 
serve as potential prognostic biomarkers and targets for 
new therapeutic strategies to HCC (7, 76, 115-118).  

 
5.4.1.  Angiogenic signaling  

Tumor growth and metastasis highly rely on 
effective angiogenesis (119). Liver is the most vascular 
organ that requires sufficient angiogenesis for regeneration. 
Normal liver angiogenesis is maintained by a balance 
between pro- and anti-angiogenic factors, but this balance 
is interrupted in HCC (119-121). In addition, vascular 
microenvionment is remodeled through autocrine and 
paracrine interactions among tumor cells, vascular 
endothelial cells and pericytes (122). Angiogenic factors 
produced by these cells lead to vascular hyperpermeability 
that often associates with a serial processes, including 
reconstruction of cellular matrix, recruitment and activation 
of endothelial cells and pericytes, and formation and 
stabilization of new blood vessels (122).  

 
Upregulated angiogenic growth factors in 

surgical HCC specimens includes vascular endothelial 
growth factors (VEGF-A), angiopoietins (Ang2), platelet-
derived growth factors (PDGF), transforming growth factor 
(TGF)-α and β, and basic fibroblast growth factors (FGF) 
(120). These growth factors and cytokines activate cascades 

of angiogenic signalings, including ERK, PI3K, AKT, 
mTOR, RAF and Janus kinase (JAK) (123). It is 
understood that the expression of VEGF links with the 
disease relapse, massive vascular invasion and poor 
survival rate (124, 125). 

 
5.4.2. Wnt/β-catenin signaling 

Novel evidence suggests that Wnt/β-catenin 
pathway is not only involved in colorectal cancer, but also 
in HCC (126, 127). Wnt signaling abnormalities could be 
induced by mutational and non-mutational events, and 
result in the disruption of embryonic development (128). In 
the colon, abnormalities of Wnt pathway result from APC 
(adenomatous polyposis coli) inactivation and subsequent 
nuclear localization of β-catenin (129, 130). On the 
contrary, APC mutation is rare in HCC, whereas β-catenin 
mutation is more frequent (131, 132). Interestingly, 
increased Wnt/β-catenin signaling and its downstream 
mediators have been observed in CD133+/EpCAM+ liver 
CSC (103, 109), suggesting its fundamental role in 
hepatocarcinogenesis.  

 
5.4.3.  Hedgehog signaling 

Hedgehog pathway is also involved in liver 
diseases. Like Wnt/β-catenin signaling, Hedgehog pathway 
was first identified as a critical signaling in controlling the 
homeostasis of gastrointestinal system (133), and the 
activation of this signaling was observed in 
CD44+/CD24+/EpCAM+ pancreatic CSC, particularly at the 
invasive stage of the disease (134). The binding with 
Hedgehog receptor of ligand, Patched, favors the nuclear 
translocation and accumulation of Gli and induce 
transcription of genes that are involved in cell cycle, such 
as cyclin B1, D1, and E, insulin-like growth factor-2 (IGF-
2), and β-catenin (133). Study on human HCC samples 
have shown that Gli is upregulated in more than 60% of 
tissues, and the blockage of this singling pathway 
downregulates the expression of Gli-related downstream 
genes (135, 136). 

 
Clearly, signaling pathways play an important 

role in nearly every aspect of liver CSC and regulate their 
differentiation, proliferation and regeneration capacities. 
However, how to wisely take advantages of these cellular 
signalings in the clinical liver cancer treatment is a more 
serious challenge that needs to be overcome in future 
studies. 

 
6. Therapeutic implications 
Effective therapeutic strategies for liver diseases, including 
acute liver failure, cirrhosis and HCC, are still limited to 
liver transplantation, but the poor repopulation of new 
transplants in recipient liver enforces the development of 
more efficient curative strategies, particularly for end-
staged patients. Due to the complexity, targeted therapy has 
become a plausible approach for cancer management. Up to 
date, several targeted therapies have been developed for 
HCC (Table 1). Among them, Apatinib, Bevacizumab, and 
Vatalanib have shown the capability of improving the 
progression-free survival time of HCC at an advanced stage 
(137-140), and Sorafenib is regarded as a new standard of 
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Table 1. Targeted cancer therapies 
Compounds Targets Clinical Trials 
Apatinib a  VEGFR-2 Phase II 
Bevacizumab a VEGF-A Phase II 
Cediranib a VEGF Phase II 
Linifanib a VEGFR, PDGF  Phase II/III 
Vatalanib a VEGFR (-1, -2, -3), PDGFR, c-KIT Phase I 
Brivanib a VEGFR-2 Phase III 
Cetuximab b VEGFR (-1, -2, -3)  Phase II 
Erlotinib b EGFR  Phase II 
Gefitinib b EGFR Phase II 
Lapatinib b EGFR, HER-2 Phase II 
Brivanib c  VEGFR-2, FGFR-1 Phase II/III 
Sorafenib c  VEGFR (-1, -2, -3), PDGFR (-α, -β),  

c-KIT, p38MAPK, FLT-3, RET 
Approved for treatment of HCC 

Sunitinib c  VEGFR (-1, -2, -3), PDGFR-β,  
c-KIT, p38MAPK, FLT-3, RET 

Phase II/III 

Gemcitabine DNA replication Phase II 
Capecitabine  DNA synthesis Phase II 
Locoregional treatments Metastasis progression Phase III 
AEG35156 (XIAP antisense) XIAP (anti-apoptotic protein) Phase I 
LC Bead loaded with doxorubicin Liver-dominant Metastases Phase II 
OSI-906 IGF-1R Phase II 
ARQ 197 c-MET Phase I 

aAnti-VEGF/VEGFR; bAnti-EGF/EGFR; and cMultikinase inhibitors. VEGF, vascular endothelial growth factor; VEGFR, VEGF 
receptor; EGF, epidermal growth factor; EGFR, EGF receptor; IGF-1R, insulin-like growth factor-1 receptor. Data are cited from 
www.clinicaltrials.gov 

 
are in advanced HCC (141, 142). However, the clinical 
outcomes of the HCC patients remain poor, and novel 
effective therapies are needed. 

 
The identification and investigation of 

hepatocellular carcinoma stem cells may provide a novel 
exploration of developing more clinically effective 
treatment of HCC (143-145). Via interrupting principal 
pathways regulating their self-renewal and 
radiochemoresistance, therapies targeting the tumor stem 
cells may successfully suppress the growth, metastasis and 
recurrence (146, 147). In fact, the CSC-specific markers 
have been tested for new therapeutic targets, and in vitro 
studies have shown that silencing of EpCAM using RNAi 
techniques significantly reduces CSC population, 
tumorigenicity and invasiveness of HCC cells, and in the 
case of EpCAM expression cells, the downstream signaling 
Wnt/β-catenin is also a ‘hot spot’ of cancer targeting 
therapies (109). Currently, therapies targeting the surface 
markers CD133, CD90, EpCAM and CD44, as well as their 
related signaling pathways, are being actively investigated 
(148). 
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