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1. ABSTRACT 
 

The central nervous system has a very poor 
regenerative potential and is difficult to access. This partly 
explains why neurological diseases often lack appropriate 
therapeutic options and represent the most significant 
burden for healthcare systems. Progress in understanding 
the molecular background of neurological diseases requires 
innovative approaches offering new hope for the patients. 
One of the most intriguing and promising options is the 
combination of stem cells with gene therapy. Unlike 
fibroblasts, stem cells exhibit a high tropism for disease-
affected tissue and integrate into the nervous tissue. This 
makes them ideal candidates for the production and 
delivery of molecules of interest for treating the nervous 
system. This article reviews the methodology for obtaining 
pluripotent stem cells (iPSCs) as precursors for neuronal 
cells, glial cells and the current state of the art in 
applications of genetically modified stem cells in animal 
models of neurodegenerative diseases, stroke, axonal 
damage, tumors and epilepsy.  

 
 
 
 
 
 
 
 
 
 
 
2. INTRODUCTION 
 

It has been estimated that 25% of citizens suffer 
from some form of brain disorder which encompasses all 
mental health and neurological disorders, including 
neurodegenerative conditions (1). Although the mortality of 
stroke and neurodegenerative diseases is comparable to that 
of heart ischemia and malignant tumors, a high rate of life-
lasting disability is often a consequence of neurological 
diseases. Therefore, there is an urgent need for innovative 
therapeutic options aiming to bring new hope for still 
incurable pathological conditions. Among some of the most 
promising concepts is the possibility offered by genetic 
engineering, by which a cell can be instructed to produce 
therapeutic molecules of interest. At the same time, the 
scientific breakthroughs in the field of isolation of 
undifferentiated pluripotent cells and the possibility to 
control in vitro differentiation initiated the stem cell era. 
Due to their capacity for self-renewal, it is possible to 
deliver large quantities of stem cells in their naïve state to 
the injury site. If their proliferative capacity is maintained, 
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cells may be prompted by the microenvironment to 
differentiate into the required cell type. If cells are obtained 
from later developmental stages, they may exhibit more 
mature intrinsic properties to transform them to cells of 
their target destination. On the other hand, one needs to 
consider possible risks of stem cell therapy: there are 
concerns that stem cells could proliferate excessively in 
vivo causing solid tumors (2). The fact that the more 
advanced the cells' developmental stage prior to 
transplantation, the more restricted is their ability to 
proliferate and form tumors in vivo suggests that 
tumorigenesis can be avoided by using pre-differentiated 
cells with restricted potential. Stem cells have several 
characteristics which make them suitable for the 
regeneration of the nervous system (3): 1) the ability to 
self-renew and differentiate into new neurons or glial cells, 
2) easy propagation which allows genetic manipulations, 3) 
a high tropism for tissue affected by inflammation or by 
malignancies, which makes them ideal vehicles for the 
delivery of beneficial proteins, 4) the possibility to 
integrate into the host brain, and 5) the possibility to obtain 
autologous induced pluripotent stem cells (iPSCs), for 
example, from skin fibroblasts or from adipose tissue 
which can avoid both, rejection by the immune system and 
ethical problems. Together, the gene therapy approach and 
the developing stem cell field introduced the concept of 
regenerative medicine. Combining these two 
methodologies gives us a new powerful tool with high 
therapeutic potential. 
 
3. GENETIC MODIFICATIONS AS A TOOL TO 
OBTAIN STEM CELLS 

 Until recently, pluripotent stem cells originated 
exclusively from the pre-implantation embryo inner cell 
mass, from which permanent embryonic stem (ES) cell 
lines are derived. The use of this material faces numerous 
hurdles, including ethical controversies and immunological 
obstacles. Therefore, alternative strategies were explored. 
A breakthrough came in 2006, when the generation of 
induced pluripotent stem cells (iPSCs) through the 
reprogramming of murine (4) and of human (5) adult 
somatic cells by retroviral integration of pluripotency-
associated genes (Oct4, Sox2, Klf4, c-myc, Lin28 and 
Nanog) was reported. iPSCs, especially patient-specific 
iPSCs, share most features of human ES cells. They are 
molecularly and functionally quite similar (6), they 
circumvent immunological obstacles and they are less 
controversial than ES cells with respect to ethical 
considerations. Therefore, iPSCs offer unprecedented 
opportunities for biomedical research and clinical 
applications.  

 The major limitation of current reprogramming 
strategies with respect to medical applications is the 
chromosomal integration of viral vector genomes used to 
deliver the genes encoding reprogramming factors. This 
may cause insertional mutagenesis, unpredictable genetic 
dysfunction and residual expression of these genomes in 
the progeny of reprogrammed cells (5, 7, 8). Recently, it 
was shown that epigenetic reprogramming of somatic cells 
leads to appearance of mutations and aberrant 
reprogramming of DNA methylation (9, 10). Although it 

seems that iPSCs in culture select rapidly against mutated 
cells (11), extensive genetic screening should become a 
standard procedure to ensure cell safety before clinical use. 
A number of modified genetic methods have been 
developed and produced iPSCs with potentially reduced 
risks, including single viral cassettes, non-integrating 
adenovirus vectors, synthetic mRNAs, transient plasmid 
transfections, transposons, Cre-excisable vectors, and 
oriP/EBNA1-based episomal expression systems (12-17). 
However, these methods have very low reprogramming 
efficiencies and they still involve the use of genetic 
material and thus still are exposed to the risks associated 
with genetic modifications. To avoid genetic changes in 
reprogrammed cells, several groups identified small 
molecules that enhance re-programming and/or 
functionally replace some of the re-programming factors. 
Those factors include direct epigenetic modifiers, as well as 
signalling pathway modulators, such as MAPK inhibitors, 
GSK3beta inhibitors, and TGFbeta pathway inhibitors (18). 
So far, at least one transcription factor, Oct4, is still 
required to generate iPSCs (19). Another possible way to 
avoid introducing exogenous genetic material consists of 
the delivery of reprogramming proteins to target cells. 
These proteins can be conjugated to cell-penetrating 
peptides (CPPs) that represent suitable vectors for such 
purpose. The Antennapedia homeodomain, also called 
Penetratin, and the HIV Tat protein are CPPs formed of 
highly basic amino acid sequences that cross membranes. 
Other CPPs are artificially designed highly cationic and 
hydrophilic arginine-rich peptides (20). Two publications 
report successful reprogramming of primary mouse and 
human fibroblasts with proteins fused to CPPs (21),(22). 
However, these approaches require complicated cell culture 
conditions and suffer from very low efficiency. 
Nevertheless, proof-of-concept exists and we expect that 
these technical hurdles will be resolved soon. 
 
4. NEURONAL DIFFERENTIATION OF STEM 
CELLS 

 
 One of the key challenges for translating stem 
cell therapies into the clinic is devising robust protocols for 
differentiating stem cells to lineage-committed cells. 
During embryonic neurogenesis, neural induction is 
regulated by the coordinated actions of bone 
morphogenetic proteins (BMP) and Wnt-and fibroblast 
growth factors/insulin-like growth factors (FGF/IGF)-
signalling pathways. The neural plate is then patterned by 
extrinsic morphogens along the rostro-caudal and dorso-
ventral axis into discrete domains. In vitro, neural induction 
and specification of mouse ES cells follow the same cues to 
give rise to well-defined neuronal populations. Protocols 
reported the generation of several mouse neuronal subtypes 
including spinal motor (23), midbrain dopaminergic (24), 
hypothalamic (25) and cortical neurons (26, 27). 
Consequently, the same protocols were applied to generate 
these different neuronal subtypes from human ES and 
iPSCs, as these cells differentiate to neuroepithelial cells 
and neurons via the same transcriptional networks (28). 
However, the transfer of mouse protocols to human cells 
often necessitated some adjustments. So far, human iPSCs 
were successfully differentiated into spinal motor neurons 
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(29, 30), dopaminergic neurons (31), glutamatergic neurons 
(32) and neural crest cells (24). However, pure neuronal 
population is difficult to obtain. For example, published 
protocols for motor neuron induction yielded heterogenous 
cell populations with variable proportions of neural 
precursors, glial cells and motor neurons, the latter 
representing at best 40% of all cells (29, 30). Importantly, 
there is still some variability between human ES or iPSC 
lines. They mostly consist of differences in epigenetic 
markers, expression profiles and differentiation profiles. In 
particular, the transcriptional signature in the 
undifferentiated state and their ability to differentiate into 
neural tissue may vary significantly (28, 33), probably 
reflecting the heterogeneity in the way they were generated. 
The underlying molecular mechanism of reprogramming 
still remains unclear. This inconsistency needs to be taken 
into account in future studies. 
 
 Recently, it was demonstrated that it may be 
possible to generate neurons from other adult cells, without 
the intermediate iPSC state. Vierbuchen et al. (34) showed 
that a specific combination of neural-lineage-specific 
transcription factors allowed the conversion of fibroblasts 
into neurons. Only three factors, Ascl1, Brn2 and Myt1l, 
were sufficient to rapidly and efficiently convert mouse 
fibroblasts into functional neurons expressing a variety of 
neuronal markers and capable of firing action potentials. 
Whereas the iPSC approach necessitates the complete de-
differentiation of cells to an ES-cell-like state and re-
differentiation to an adult cell type, a time-consuming 
detour, trans-differentiation is rapid and induced neuronal 
(iN) cells are unlikely to form tumors. One can imagine 
that reprogramming into dopamine neurons or motor 
neurons could be possible via the addition of 
supplementary specific transcription factors. For example, 
we showed that genetic engineering with vectors encoding 
a specific combination of motor neuron transcription 
factors allowed the reprogramming and efficient 
differentiation of neural precursors into motor neurons in 
vitro and in vivo (35). Future studies will show whether it is 
possible to generate iNs from human cells, to produce 
specific neuronal subtypes and whether these neurons are 
sufficiently mature for transplantation. Another important 
step will be to generate iNs with transient and non-viral 
reprogramming methods similar to those used in iPSC 
generation. 
 
5. GENETICALLY MODIFIED CELLS FOR THE 
TREATMENT OF NEURODEGENERATIVE 
DISEASES 
 
5.1. Neurodegenerative diseases  

Neurodegenerative diseases (ND) are 
characterized by degeneration of neurons in various parts of 
the nervous system. Among the most prominent are 
Alzheimer disease, Parkinson’s disease, amyotrophic 
lateral sclerosis, and Huntington’s disease. Although the 
exact pathophysiological mechanisms are still elusive, it is 
known that they all share distinctive features: gradual 
accumulation of misfolded proteins, acceleration of 
aggregate formation and impaired autophagy which leads 
to neuronal death (36). 

Stem cell based therapy of neurodegenerative 
diseases has three main aims: 1) to replace dead and 
damaged neurons, 2) to decrease or prevent neuronal death 
(e.g. by secretion of neurotrophins which both reduce 
neuroinflammation and support neuronal survival), and 3) 
to enhance endogenous repairing process. Genetically 
modified stem cells furthermore boost these benefits by 
controlled overproduction of proteins of interest. Examples 
of application of genetically modified cells for the most 
common ND diseases are presented in Table 1. 
 
5.2. Parkinson’s disease 

Among all ND diseases, Parkinson’s disease is 
probably the most accurately understood. The fact that the 
symptoms are primarily caused by localized degeneration 
of dopaminergic neurons in the mesencephalic substantia 
nigra is suggesting that successful replacement of this 
cellular population may cure the patients. Since dopamine 
was required in the striatum, the first attempts in neuro-
regenerative medicine started by transplantation of fetal 
tissue into this region. Implantation of fetal ventral 
mesencephalic cells into the caudate and putamen of PD 
patients provided a marked improvement in their clinical 
course mainly in younger patients (37, 38). On the other 
hand, some failures and graft-induced side effects have as 
well been reported (reviewed by (39)). Interestingly, there 
is an evidence that grafts do survive for up to two decades, 
although their beneficial effects are jeopardized by the 
progressive disease which spreads throughout the 
transplanted cells (40). 
 

Therefore, apart from ethical and practical 
problems regarding the use of human fetal tissue, it has 
become obvious that there is a need for other approaches, 
e.g. involving transplantation of genetically modified stem 
cells. These transplants represent an alternative source of 
cells which produce dopamine or L-
dihydroxyphenylalanine (L-DOPA), the dopamine 
precursor. The most straightforward approach was focused 
on introducing genetically engineered cell lines that 
overexpress tyrosine-hydroxylase (TH), the rate-limiting 
enzyme in catecholamine biosynthesis. One of the first 
experiments with genetically modified cells was performed 
with fibroblasts (41) genetically modified to produce L-
DOPA. Numerous consecutive studies with stem cells have 
been based on either rat or human TH - transduced 
mesenchymal stem cells (MSCs) (42), TH- and guanosine 
triphosphate cyclohydrolase 1 (GTPCH1) - transduced 
NSC (43, 44), and they all reported significant 
improvements in animal motor condition.  
 
Another approach was based on genetically modified stem 
cells which produce neurotrophic factors that promote 
survival of dopaminergic cells. Again, inspired by 
pioneering experiments based on fibroblasts (45) some 
successful trials based on delivery of glial derived 
neurotrophic factor (GDNF) have been published: it has 
been showed that GDNF increases number of TH – positive 
fibers at the place of cell transplantation, which correlates 
to reduction of the symptoms (46). The third category of 
use of genetically modified stem cells in Parkinson’s 
disease encompassed the transfection with
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Table 1. Application of genetically modified stem cells in neurodegenerative diseases 
Animal model Cells Application Outcomes Reference 
Parkinson’s disease 
6-OHDA rats Human ESC overexpressing TH and 

GTPCH1 
Stereotaxic injection into the striatum, 
1x105 cells 

Reduced symptoms (44) 

6-OHDA rats Human MSC overexpressing GDNF Stereotaxic injection into the striatum, 
1x105 cells 
 

Reduced symptoms, tissue 
regeneration 

(46) 

6-OHDA mice Mouse NSC overexpressing WNT5a Stereotaxic injection into the striatum, 
1x105 cells 

Cellular and functional recovery (48) 

6-OHDA rats NSC 
overexpressing NURR1 

Stereotaxic injection into the striatum Histological and behavioral 
improvements 

(47) 

6-OHDA rats Rat BMSC overexpressing TH Stereotaxic injection into the ventricle, 
1x105 cells 
 

Reduced symptoms, increased 
quantity of brain dopamine 

(42) 

6-OHDA rats Human NSC overexpressing TH and 
GTPCH1  

Stereotaxic injection into the striatum, 
1x106 cells 

Functional recovery (43) 

Amyotrophic lateral sclerosis 
SOD1G93A rats  Human MSC overexpressing GDNF Intramuscular injection, 1.2x105cells, 2 

administrations 
Unchanged disease onset. 
Delayed disease progression up 
to 28 days 

(52) 

SOD1G93A rats  Human NSC overexpressing GDNF  Injections into L1-L4 lumbar spinal cord, 4 
sites, unilateral 1,2-1,8x105 cells/site 

No effect on survival. No 
improved locomotor function 

(54) 

SOD1G93A rats  Human NSC overexpressing GDNF  Injections into L1-L4 lumbar spinal cord, 2 
sites, bilateral 1.2x105 cells/site 

No effect on survival (53) 

SOD1G93A mice  Human UCB overexpressing VEGF165 
and FGF-2 

Intravenous delivery,  
1x106 cells 

Not studied (56) 

SOD1G93A mice  Human NSC overexpressing human 
VEGF 

Intrathecal delivery, 1x105 cells Delayed disease onset, 
prolonged survival by 12 days 

(108) 

SOD1G93Amice  Human NSC overexpressing BDNF, 
IGF-1, VEGF, NT-3 or GDNF 

Injections into cisterna magna or cerebral 
ventricles 

Unchanged or decreased 
survival  

(109) 

Huntington’s disease 
YAC 128 mice Mouse MSC overexpressing either NGF 

or BDNF 
Stereotaxic injection into the striatum, 
3x105 cells 

Improved motor scores (BDNF) (62) 

Quinolinic acid 
lesion rats 

Rat NSC overexpressing NGF Stereotaxic injection into the striatum Decreased cell loss and 
regenerative axon sprouting 

(63) 

Quinolinic acid 
lesion rats 

Rat NSC overexpressing either NGF or 
BDNF 

Stereotaxic injection into the striatum, 
9x105 cells 

Decreased cell loss and lesion 
size (NGF) 

(61) 

Alzheimer's disease 
3xTg – AD 
mice 

Mouse NSC and NSC BDNF -  Stereotaxic injection into the hippocampus, 
3x105 cells 

Improved hippocampal synaptic 
density and congnitive 
parameters 

(65) 

APPswe-
PS1DeltaE9 
mouse 

Mouse  BMC EP2 - Stereotaxic injection 
 

Improved clearance of amyloid 
plaques 

(66) 

16 months old 
rats 

Rat NSC overexpressing NGF Stereotaxic injection into the nucleus 
basalis and septum 

Decreased cell loss and 
improved behavior scores 

(64) 

 
genes driving an increased differentiation and improving 
functional integration of transplanted stem cells. As a 
consequence, a larger number of survived cells yielded 
increased levels of dopamine (47, 48). 

 
5.3. Amyotrophic lateral sclerosis 

Amyotrophic lateral sclerosis (ALS) is a fatal 
neurodegenerative disease affecting cortical and spinal 
motor neurons. Progressive cell loss leads to gradual 
paralysis and death of the patient most commonly only a 
few years after onset of the first symptoms. Different 
populations of stem cells including MSCs, NSCs and 
umbilical cord blood cells (UCBs) were successfully 
transplanted into SOD1 (superoxide dismutase 1) rodent 
models of ALS (49). They exerted beneficial effects 
through differentiation into astrocytes and neurons, 
reduction of astrogliosis and release of trophic factors such 
as GDNF, insulin-like growth factor (IGF-1) and vascular 
endothelial growth factor (VEGF). Stem cell 
transplantation was rapidly translated into human trials but, 
unlike their initial success in experimental models, a lot of 
discrepancies were highlighted regarding their outcome in 
the clinic. This discrepancy illustrates the need to analyze

 
in depth both experimental protocols and in particular, the 
pharmacokinetic parameters for drug delivery.  
 

First attempts to transplant MSCs in ALS patients 
at the level of the thoracic spinal cord was described by 
Mazzini et al. and recently gathered in a report of Phase I 
clinical trials (50, 51). It thus appears that transplantation of 
autologous MSCs is a safe procedure with no serious 
adverse effects. Later it was realized that stem cells may 
serve as “Trojan horses” to deliver neuroprotective factors. 
Using this approach it was recently shown that muscular 
delivery of hMSC-GDNF prevents motor neuron loss, 
delays disease progression and increases overall lifespan in 
the SOD1 animal model of ALS (52). Human NSCs 
engineered to deliver GDNF and intrathecal transplantation 
of human NSCs overexpressing VEGF also increased 
survival of ALS animals for several weeks (53, 54). Our 
group recently demonstrated that in vitro MSCs and NSCs 
possess the ability to express a large number of growth 
factors required for neuronal survival (BDNF, GDNF, IGF-
1, VEGF), once exposed to an ALS environment (55). 
These growth factors may act either in an autocrine manner 
by modulating the migration, survival and differentiation of 
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stem cells themselves or through a paracrine mechanism 
acting on damaged motor neurons in order to support cell 
survival and tissue regeneration. Illustrating this autocrine 
effect, Rizvanov et al. recently showed that unmodified 
human UCB cells differentiated into endothelial and 
microglial lineages after transplantation into SOD1 mice 
while the same cells genetically engineered to overexpress 
VEGF and FGF-2 exhibited preferentially an astrocytic 
differentiation (56).    
 
5.4. Huntington’s disease 

Huntington’s disease (HD) is a dominant 
neurodegenerative disorder, characterized by a 
polyglutamine expansion that leads to the production of 
mutant huntingtin protein. This results in the loss of 
medium spiny neurons (MSNs) within the striatum, 
progressive motor deficits and dementia. Similar to 
Parkinson’s disease, cell based therapy for Huntington’s 
disease started with transplantations of fetal tissue or stem 
cells in both, animal models (57, 58) and the patients (59, 
60). The majority of these experiments reported significant 
improvements in motor and cognitive functions. 
 

Genetically modified stem cells have been used 
in experiments for delivery of nerve growth factor (NGF) 
or BDNF via immortalized NSCs in the rat (61) and via 
MSCs in the mouse (62). Although both experiments 
reported significant motor improvements, the positive 
effects were assigned to the treatment with the growth 
factors, not to the integration of stem cells into the host 
brain. Some of the discrepancies could have been explained 
by the fact that in rats a quinolinic lesion model was used, 
while in mice the YAC genetic model for HD was applied. 
Nevertheless, both experiments reported reduced striatal 
degeneration and cell loss as well as a reduced activation of 
astrocytes and microglia. The positive effects of NGF in the 
quinolinic acid rat model have been reported by another 
group describing a significantly reduced volume of the 
lesion and regenerative sprouting of axons (63). 
 
5.5. Alzheimer’s disease 

Alzheimer’s disease (AD) is one of the most 
common neurodegenerative diseases characterized by 
disabling dementia, the appearance of senile plaques and 
neurofibrillary tangles in affected brain regions. From a 
therapeutic point of view, AD represents a huge challenge, 
as neuronal degeneration is widespread, beginning in the 
hippocampus, cortex, amygdala and progressing to many 
other regions of the brain. 
 

In one of the pioneering works, 16 month old rats 
received transplants of NGF-secreting immortalized neural 
progenitor cells, bilaterally in the nucleus basalis (Meynert) 
and in the septum. During the subsequent 9 months the 
animals with NGF-secreting grafts maintained a 
performance level not different from the 12-month-old 
control rats. In the same time the aged control animals 
developed the expected impairment in spatial learning in 
the water maze task (64). In the triple transgenic Alzheimer 
(3xTg-AD) mice NSC transplantation significantly rescued 
the spatial learning and memory deficits without altering 
Aß or tau pathology. The mechanism involved 

enhancement of hippocampal synaptic density mediated by 
BDNF. NSCs with a deleted gene for BDNF completely 
failed to improve cognition or restore hippocampal synaptic 
density (65). Recently, it was reported that transplantation 
of bone marrow stem cells devoid of microglial 
prostaglandin E(2) receptor subtype 2 into aged AD mice 
exhibited an improved clearance of amyloid pathology, 
suggesting alternative options for the application of 
genetically modified stem cells (66). 
 
6. GENETICALLY MODIFIED CELLS FOR THE 
TREATMENT OF STROKE 
 

Stroke is the leading cause of disability and the 
third leading cause of death in the western world following 
heart disease and cancer (1). Thus substantial advances in 
the prevention and treatment of stroke are of paramount 
importance. The possible therapeutic benefit of stem cells 
in stroke patients is substantiated by the post-stroke 
activation of endogenous NSCs in mice. These cells exit 
the rostral migratory pathway and are redirected toward the 
ischemic lesion (67). Moreover, the expected beneficial 
effects were reached even relatively late after the onset of 
the stroke. Cells were administrated not only within 3 days 
post-stroke (in the majority of pre-clinical studies), but sub-
acute (1 week post-stroke) and chronic (>3 weeks post-
stroke) delivery was demonstrated to be beneficial as well. 
The positive effects appeared not to be achieved by long 
term integration of stem cells as they could not be detected 
any longer in rat 6 months after grafting (68). 
 

In order to optimize and enhance the therapeutic 
effects of stem cells in stroke models, they were genetically 
modified to produce larger amounts of factors expected to 
contribute to different aspects of recovery after stroke. This 
approach was followed in various ways, for example, 
applying bone marrow derived MSCs, which already 
secrete endogenous beneficial molecules. NSCs were used 
as well with the hope of combining their neuronal 
phenotype with additional secreted molecules probably 
exerting neurotrophic and/or neuroprotective effects on the 
surrounding brain tissues. Among the various secreted 
neurotrophic and/or neuroprotective factors NGF and/or 
noggin (69), BDNF (70), GDNF (71), neurotrophin 3 (72) 
and erythropoietin (73) were used for genetic modification. 
Another aim of these studies was to enhance tissue 
recovery, through enhanced angiogenesis applying VEGF 
and/or angiopoietin-1 (74), PIGF (75), and Hypoxia-
inducible factor 1alpha (76). Invariably the published 
studies reported positive effects, which were more 
extensive than applying the corresponding non-modified 
stem cells alone. The studies report that ischemic lesions 
were smaller, functional recovery increased, survival and 
differentiation of stem cells improved and angiogenesis 
increased. In the surrounding tissue there was less 
apoptosis and the invasion of microglia was reduced.  
 

Although it is doubtful if neurogenesis 
contributed to the reduced loss of neurons, genetic 
modification was used to promote neuronal differentiation 
of stem cells. One of the aims was to drive MSCs toward a 
neural phenotype. For this purpose the cells were modified 
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to overexpress neurogenin 1 and Notch (77, 78). Neuronal 
differentiation was enhanced and consequences of the 
ischemic lesions were reduced in these studies. Moreover, 
the late application of the Notch-modified-MSCs in chronic 
stroke (i.e. 1 month or even 42 days after medial cerebral 
artery occlusion) resulted in better recovery of the treated 
animals (79). Furthermore, genetic modification was 
necessary to immortalize NSCs obtained from human fetal 
brain. The immortalization enabled researchers to produce 
indefinite numbers of these cells and to characterize them 
in detail, which was a prerequisite for the currently ongoing 
clinical trials. Oncogenes used included v-myc (80) and c-
myc, but also a conditional immortalizing gene, c-
mycERTAM(81).  The use of this vector results in cell 
proliferation only in the presence of a synthetic drug, 4-
hydroxy-tamoxifen (4-OHT), while in its absence the cells 
undergo growth arrest and differentiate into neurons and 
astrocytes. The beneficial effects of these modified cells 
were further enhanced by additional overexpression of 
BDNF (82) or VEGF (83). In other studies cell survival 
was enhanced by overexpressing Akt1, a serine/threonine 
kinase, promoting cell proliferation and exerting anti-
apoptotic functions (83). 
 
7. GENETICALLY MODIFIED STEM CELLS FOR 
TREATMENT OF AXONAL DAMAGE 
 

Spontaneous regeneration of function and 
structure rarely occurs following nervous tissue injury. The 
most relevant factors contributing to this lack of recovery 
include tissue damage, glial scarring and myelin-dependent 
inhibition of axonal regeneration (84). Neurotrophic 
proteins or antibodies against inhibitory molecules have 
been applied to overcome these limitations. However, to 
achieve long-term and site-specific delivery of proteins to 
the injured brain and spinal cord, ex vivo gene therapy has 
been suggested as the method of choice (85). This approach 
involves removal of Schwann cells, fibroblasts, glia or stem 
cells from the host followed by genetic manipulation of 
these cells in vitro. Cells successfully incorporating the 
transgene are selected, expanded in culture and then grafted 
into or close to the lesion site without taking a risk of 
immunological rejection. This treatment provides high 
levels of localized growth factor to the site of injury to 
induce, for example, robust axonal growth after spinal cord 
injury (86).  
 

Stem cells are attractive carriers for genes into 
the lesioned CNS to promote axon regeneration, for 
example, to enhance the level of chaperones or anti-
apoptotic molecules at the injury site (87). In response to 
lesions, stem cells start to divide, migrate to the site of 
injury and differentiate into glial elements (88). A study 
which used mouse embryonic stem cells transfected with 
the cell adhesion molecule L1 reported enhanced neuronal 
survival and neurite outgrowth (89).  
 

In addition to extracellular matrix or cell 
adhesion molecules, cytoplasmic proteins may be suitable 
targets for overexpression in neurons as well. For example, 
regeneration requires extensive microtubule 
assembly/disassembly dynamics. The total levels of 

severing proteins are lower in adult axons compared to 
growing axons, there are far fewer short microtubules and 
less robust microtubule transport. These findings imply that 
injured axons in the spinal cord cannot assemble their 
microtubules as readily as in the embryo (90). Restoring the 
levels of microtubule severing proteins to their juvenile 
levels through transplantation of genetically modified cells 
may be a fruitful avenue for augmenting regeneration of 
injured adult axons.  
 

Therapeutic approaches to improve CNS 
regeneration will likely benefit by adopting some of the 
favourable properties exhibited in peripheral nerve lesion 
models. In contrast to the CNS, peripheral nerve injuries 
result in spontaneous regeneration, mainly due to the 
intrinsically supportive properties of Schwann cells (91). 
They actively promote axon growth by phagocytosis of 
nerve debris, production of neurotrophic factors and 
secretion of extracellular matrix molecules that support 
axonal regrowth (e.g. laminin). However, even in situations 
of satisfactory physical contact between lesioned peripheral 
nerve stumps, axonal sprouting and aberrant axon growth 
hinder regeneration and functionally correct pathfinding 
(92). It is possible that the protracted loss of axonal contact 
renders Schwann cells unreceptive for directed axonal 
elongation. Therefore, the distal denervated nerve 
environment could be supported by replacing host cells 
with stem cells. 
 

Schwann cells over-expressing FGF-2 have been 
extensively investigated as tools to improve peripheral 
nerve regeneration, in particular, in combination with 
exercise which reinforced the beneficial effects of 
transplantation and FGF-2 gene therapy in peripheral nerve 
reconstruction approaches (93). Other studies utilize stem 
cells genetically modified to overexpress potent motor 
neuron growth factors, for example, GDNF. They are 
grafted into denervated nerves followed by cross-suture of 
regenerating nerves (94). These animals revealed improved 
regeneration of peroneal axons into the tibial nerve as 
revealed by axon counting and by the emergence of 
compound motor action potential in the foot muscles. Some 
of the most recent successes achieved include use of 
oligodendrocyte precursor cells transfected with ciliary 
neurotrophic factor (animals with injured spinal cord 
exhibited significantly improved remyelination and motor 
recovery (95)) and MSC transfected with neurotrophic 
factor (neuroprotective effect after optic nerve injury (96)).  
 
8.  GENETICALLY MODIFIED CELLS FOR 
TREATMENT OF OTHER NEUROLOGICAL 
DISEASES 
 

Apart from the aforementioned neurological 
diseases, there are some pathological conditions for which 
stem cell based therapy as well holds a respectable promise. 
Among them, brain tumors and epilepsy are the most 
prominent. Stem cells transplanted into brain neoplasia 
exhibit natural tropism for tumor tissue. They are found 
near malignant cells far from the site of transplantation 
(97). This finding initiated the promising approach of using 
stem cells as vehicles which are able to deliver drugs to 
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destroy malignant cells. Moreover, this finding revived the 
concept of gene therapy of brain tumors which was faced with 
the almost unsolvable obstacle of successful gene delivery into 
CNS. In the last decade several approaches based on stem cell 
delivery have been tested and they included lytic viruses (98), 
prodrug-converting enzymes (99), immunomodulatory 
cytokines (100) and proteins with anti-angiogenic activity 
(101). Despite some optimistic reports from clinical trials 
describing prolonged life of the patients, improved protocols 
are needed to obtain more significant progress (reviewed by 
(102, 103)).  
 

More than 30% of patients suffering from epilepsy 
do not have satisfactory therapeutic options (104). Cell 
transplantation therapy of such patients is based on the idea to 
transplant cells which will be instructed to produce molecules 
that exhibits anticonvulsant effects. So far, successful 
experiments in animal models with transplantation of 
genetically modified stem cells have been reported by using 
NSCs producing GABA (105) and embryonic/mesenchymal 
SC producing adenosine (106, 107). 
 
9. CONCLUSION 
 

Transplantation of stem cells as a strategy for the 
treatment of brain diseases has significantly evolved in the 
last decade. Exogenous embryonic or adult stem cells can 
be transduced to express a variety of genes and have been 
shown to promote functional recovery after transplantation 
into the lesioned brain, spinal cord or peripheral nerve. In 
addition, activation of endogenous stem cells apparently 
protect against inflammation, demyelination and neuronal 
degeneration. Translation of the first experiments on 
animals to the currently ongoing clinical trials has been 
achieved without major obstacles and the obtained results 
are promising. Further everyday progress in control of cell 
differentiation and improved protocols of cell 
transplantation are supporting a reasonable expectation: 
transplantation of genetically modified stem cells will in 
the following decades become a standard therapeutic 
procedure.  
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