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1. ABSTRACT 

 
Estrogens exert a plethora of actions conducted to 

brain preservation and functioning. Some of these actions 
are initiated in lipid rafts, which are particular 
microstructures of the plasma membrane. Preservation of 
lipid raft structure in neurons is essential for signal 
transduction against different injuries, such as Alzheimer’s 
disease (AD). These membrane structures appear to be 
disrupted as this neuropathology evolves, and that may 
largely contribute to dysfunction of raft resident proteins 
involved in intracellular signalling. This review includes a 
survey of some protein interactions that are involved in the 
structural maintenance and signal transduction mechanisms 
for neuronal survival against AD. Particularly relevant are 
the rapid mechanisms developed by estrogen to prevent 
neuronal death, through membrane estrogen receptors 
(mER) interactions with a voltage-dependent anion channel 
(VDAC) and other protein markers within neuronal lipid 
rafts. These interactions may have important consequences 
in estrogen mechanisms to achieve neuroprotection against 
amyloid beta (Abeta-induced toxicity). 

 
 
2. ESTROGEN ACTIONS TO PRESERVE THE 
BRAIN  
 
2.1. Diverse roles of estrogens in the brain 

Estrogens are versatile molecules that, acting 
through their binding to specific estrogen receptors (ERs) 
or other molecular targets, play important roles in the 
regulation of growth, differentiation and functioning of a 
wide variety of tissues, including not only the reproductive 
organs, but also the vascular endothelium, the 
cardiovascular system, the urogenital tract, intestinal 
muscle, and even the regulation of lipid and carbohydrate 
metabolism (1-5). In particular in the nervous system, 
estrogens develop crucial bioactivities to modulate 
homeostasis, synaptic plasticity and neurotrophic and 
neuroprotective mechanisms that modulate memory, 
cognitive and mood processes (6). Much of the work on the 
effects of estrogen on neurotrophism and neuroprotection 
have been conducted in cellular and animals models, and 
corroborated by different epidemiological data reporting a 
direct correlation of low values of estrogen after the 
menopause and acceleration of cognitive decline (7-8). 
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Although controversially, estrogen replacement therapy for 
women in postmenopausal periods has proven beneficial in 
protecting against cognitive deterioration in 
neurodegenerative diseases, such as Alzheimer’s disease 
(AD), Parkinson’s disease (PD), schizophrenia, depression 
and stroke (5, 9-17). Furthermore, estrogens have been 
proposed to decrease the risk, and to delay the onset, of AD 
(18-19). However, some large clinical trials have reported 
that hormone replacement therapies do not improve 
cognition, and even raised the risk of dementia (20-21), thus 
contradicting, both, preliminary clinical trials and experimental 
results on cellular and animal models. Some investigators have 
claimed that these controversies may be due to the time at 
which the therapy is applied (22), as estrogens efficacy in 
neuronal defence may depend on the cell capacity to elaborate 
beneficial responses. Consequently, initiation of estrogen 
treatment at the onset of menopause may provide protection of 
cognitive functions as well as cardiovascular benefit, whereas 
hormone administration following a considerable delay in 
menopause may not have significant results on cognition (23-
24). These facts are related to the dysfunction in the molecular 
availability required for establishing estrogen survival 
responses that may decline in the absence of the hormone as a 
consequence of aging. Despite the conflicting data from human 
studies, experimental in vitro investigations strongly support 
that estrogen treatment increases the viability, survival and 
differentiation of neuronal types from different brain regions 
(including amygdala, hippocampus, cortical areas, substantia 
nigra or hypothalamus) that may respond against a wide 
variety of toxicities, from oxidative stress to amyloid-beta 
(Abeta) toxicity, serum deprivation and excitotoxicity (13, 
25-26). Therefore, a deep understanding of estrogen 
mechanisms of action is necessary to solve these apparent 
conflicts, in the aim of obtaining optimal results for 
hormone therapies. 

 
2.2. Neuronal classical and alternative mechanisms of 
estrogen. 
 For more than 40 years, the classic genomic 
theory of estrogen action underpins that the hormone binds 
to specific estrogen receptors (ERs), which are nuclear 
transcription factors that modify target gene expression 
(27). These effects require a significant delay (hours) to 
observe a cellular response, and have been traditionally 
named genomic or classical mechanisms of action. In 
contrast, alternative non-genomic mechanisms are 
evidenced by their rapid onset of action (within seconds to 
a few minutes) which involves the activation of different 
signal transduction pathways (28-30). Thus, steroids 
rapidly modulate intracellular levels of second messengers 
such as cAMP, cGMP and calcium, which lead to the 
activation of a variety of kinases involved in different 
pathways, including mitogen-activated protein kinase 
(MAPK), c-Jun N-terminal kinase (JNK), 
phosphatidylinositol-3 kinase/Akt (PI3-K/Akt), protein 
kinase A and C (PKA, PKC), glycogen synthase kinase-
3beta (GSK-3beta), tyrosine kinase (Src) family, and 
calcium-calmodulin-dependent protein kinase II (4, 31-33). 
In addition to regulation of kinase activation, estrogens can 
exert rapid regulation of a variety of calcium and potassium 
channels in neurons from different brain areas involved in 
learning and memory (17, 31, 34). 

Over the last decade, much of the interest has 
been focus in understanding the mechanisms of estrogen in 
“non-reproductive” effects in the brain, specifically in the 
modulation of plasticity, cognition and protection following 
induction of different injuries related to inflammation, 
ischemia, AD and PD neuropathologies, which have been the 
topic of numerous and interesting reviews (4, 13, 26, 35-37). A 
crucial aspect of these beneficial actions in the central nervous 
system is the involvement of rapid alternative mechanisms of 
estrogen action, promoting hormone interaction with different 
targets present at the plasma membrane.  

 
Substantial experimental work has been carried out 

to decipher the membrane molecular markers in various brain 
regions which may participate in cognitive and survival 
processes. These actions may be versatile and complex, since 
estrogens are known to bind to a variety of membrane proteins 
in hippocampal, septal, cerebellar, neostriatal and cortical 
neurons, including ion channels, neurotransmitter receptors, 
membrane estrogen receptors (mER) and unidentified ligand 
receptors (17, 26, 31, 38-40). The cumulative evidence argues 
for the existence of membrane-associated ERs which, through 
its binding to estrogens for a short period of time, may 
importantly contribute to brain preservation (38). The identity 
of ERs at the neuronal membrane has been a matter of 
intense investigation due to the technical difficulties to 
characterize these dynamic molecules. Some evidences, 
based upon the high similarities in immunoreactivity to 
antibodies raised against classical ERs, support that at least 
some membrane estrogen targets have a similar structure to 
canonical ERalpha and ERbeta (41, 42). 

 
Membrane ERs have been shown to have a 

pivotal role in neuroprotection in response to different 
damages including Abeta exposure, glutamate toxicity, 
serum deprivation and oxidative stress (26, 33, 38, 43-47). 
In addition, other data have reported the presence of 
estrogen-binding receptors unrelated to classical ERs, 
which appear to play a physiological role against 
neurodegeneration. Thus, Toran-Allerand’s group has 
postulated the existence of an ER-X at the neuronal 
membrane of cortical neurons that preferentially binds to 
the enantiomer 17-alpha estradiol (48), and is regulated 
during development and after ischemia (49). More recently, 
it was also discovered a transmembrane G-protein-coupled 
receptor called GPR30, which is distributed in various 
regions in the brain, and has a potential role in rapid 
estrogen actions (4, 17, 50). Furthermore, other mERs 
exhibiting distinct electrophoretic properties have also been 
reported in different experimental models (51-54), although 
their physiological relevance in cell preservation has not 
still been elucidated. Overall, these findings support the 
view that ER neuroprotective actions triggered at the 
plasma membrane represent a widespread phenomenon in a 
complex scenario.  

 
One of the controversial aspects of membrane 

estrogen receptors have been the manner these molecules 
without hydrophobic, membrane-spanning regions, may be 
inserted into the plasma membrane, enabling extracellular 
estradiol to interact. This phenomenon has been in part 
elucidated by the recent findings of the anchoring of ERs to 
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lipid rafts (55, 56). Lipid rafts are membrane compartments 
of the plasma membrane showing a particular lipid 
composition, where numerous signalling proteins are 
recruited (57). Indeed, these domains are keys to neuronal 
development, functioning and degeneration (58, 59). 
Interestingly, increasing evidences indicate that the 
rearrangement of ERs in lipid rafts may be important in the 
modulation of signalling for neuronal defence, as further 
discussed below.  
 
3. LIPID RAFTS: KEYS TO SIGNALLING 
PLATFORMS IN NEURONS 
 
3.1. Lipid interactions with raft integral proteins 
 Intracellular signal transduction is initiated by a 
plethora of protein interactions, including receptors, kinases 
and channels that are crucial for the correct neuronal 
communication and functions, and whose modifications 
determine cognitive and neurological impairments. An 
important concept is that cognitive decline that occurs with 
normal aging and is exacerbated in neuropathologies, is 
mainly related to functional changes in signal transduction 
cascades and cellular communication that modify neuronal 
responses, rather than to morphological modifications 
which are not evident during aging (60). Although a set of 
cell surface proteins are found in liquid disordered regions 
of the plasma membrane, a large fraction of signalling 
proteins are located in liquid-ordered domains, or lipid 
rafts, which are the preferential locations for these proteins, 
due to the particular physico-chemical properties of these 
microdomains. In this regard, Lisanti and coworkers (61) 
were the first to put forth the “caveolae/raft signalling 
hypothesis”, that is, the compartimentalization of proteins 
involved in transduction signals to provide a mechanism for 
the regulation and interaction between different 
intracellular pathways (61). These macromolecular 
complexes may be considered specialized signalling 
platforms, or “signalosomes” (61). In particular in neurons, 
signalling molecules preferentially located in lipid rafts 
include transmembrane proteins and lipid-modified 
proteins, as well as intracellular signalling intermediates, 
such as trimeric and small GTPases, Src tyrosine kinases 
(STKs) family, lipid second messengers and a variety of 
cytosolic signal transducers (58, 62), known to participate 
in neuronal growth, differentiation, preservation and 
survival.  
 

Furthermore, proteins in these microdomains also 
interact with resident lipids, suggesting that specific lipids 
may also take part in the processes developed by signalling 
molecules. In fact, lipid rafts are presently considered 
dynamic microenvironments where proteins and lipids can 
move and interact with different kinetics, changing their 
size and composition in response to a variety of intra- or 
extra-cellular stimuli that may ultimately favour specific 
protein interactions and signalling cascades (57). Therefore, 
the intrinsic composition and distribution of lipid hallmarks 
of rafts that modulate membrane fluidity, such as 
cholesterol, gangliosides and polyunsaturated fatty acids 
(PUFA), may affect movement of proteins and presumably 
alter their function and signal transduction. Thus, many raft 
intrinsic proteins preferentially contain lipid-modified 

structures that may contribute to their stabilization and 
correct functioning. In this sense, one of the earlier 
discoveries was the localization in these domains of 
glycosylphosphatidylinositol (GPI)-anchored proteins that 
generally have saturated acyl chains and are preferentially 
anchored in the outer leaflet of the cell membrane (63). 
Although the GPI anchor does not completely cross the 
plasma membrane, it is crucial to initiate signalling events, 
probably through its association with other transmembrane 
proteins involved in intracellular signalling (64, 65). 
Among the GPI-anchored proteins involved in 
neuropathology, one of the better characterized is the 
cellular prion protein (PrPc) implicated in the pathogenesis 
of prion disease (66). Prion disease is an amyloid disease 
characterized by the formation within neurons and other 
brain cells of protein plaques leading to cell death, which 
involves the conformational modification of normal PrPc in 
a pathogenic scrapie form, PrPSc (67). PrPc is constitutively 
expressed in neurons as a GPI-anchored protein localized in 
lipid rafts, and depletion in cholesterol but not 
sphingolipids, affects its distribution in these microdomains 
(68). Interestingly, there is an increasing body of evidence 
that lipid raft environment plays a direct role in PrPc 
conversion into PrPSc (67). The downstream signalling of 
PrPc is dependent on its localization to rafts, which induces 
the activation of some STKs, possibly Lyn, Src, Lck or Fyn 
(69, 70). Thus, PrPc may be part of a multimolecular 
signalling complex which may be important in neuronal 
function (71).  

 
Additional lipid modifications of signalling 

proteins inserted in rafts take place by binding to 
alternative saturated-chain lipids, such as palmitoylation 
and myristoylation. These modifications are found, among 
others, in STKs, scaffolding proteins, steroid receptors and 
GPI-anchored proteins that may contribute to their 
stabilization and correct functioning in these 
microstructures (72-76). In addition, hallmark proteins of 
lipid rafts such as caveolin and flotillin undergo 
palmitoylation (77) and, in the case of caveolin, this 
requirement allows the coupling of Cav-1 to c-Src tyrosine 
kinase (73). These evidences suggest that lipid-modified 
nature of proteins integrated in lipid rafts may serve not 
only to target them to these domains but also to modulate 
the protein interactions occurring within rafts. 
 
3.2. Estructural proteins of neuronal lipid rafts 

Together with GPI-anchored proteins, scaffolding 
proteins are the most abundant integral molecules of lipid 
rafts. They represent a particular group that have the 
intrinsic capacity to form lipid shells around themselves 
including, apart from caveolins and flotillins, the 
proteolipid MAL, stomatin, and some transmembrane 
proteins, such as presenilin-1 (78-82). These structural 
proteins not only provide stabilizing scaffolds for lipid raft 
maintenance, but also participate in vesicular trafficking 
and signal transduction that modulate the final cellular 
response. Numerous demonstrations have concluded that 
the members of caveolin family (caveolins 1, 2 and 3) serve 
to compartmentalize specific signalling molecules within 
lipid rafts, or caveolae, with the prospect of rapidly and 
selectively modulating cell signalling events, thereby 
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proposing a “caveolae signalling hypothesis” (61). In this 
regard, caveolins are known to regulate a variety of key 
signalling elements, including G-proteins, STKs and some 
components of PI3K and MAPK pathways (83, 84). 
Although the structure of caveolae and caveolin isoforms 
have not been fully elucidated in the nervous system, 
evidences suggest that neuronal lipid rafts may serve as 
docking points for numerous cell surface receptors which are 
recruited to this microdomain when bound to their specific 
ligands, activating numerous intracellular processes related to 
neuronal functioning. Among these receptors known to interact 
with caveolins are membrane estrogen receptors (ERs), which 
are regulated by interactions with these proteins (85). Recent 
evidences suggest that, at least caveolin-1 (Cav-1), may play a 
crucial role in membrane ER function in the brain, which in 
turn determines many nervous system activities related to its 
preservation and maintenance (54, 86). Also, Cav-1 has been 
claimed to be involved in Abeta processing, suggesting that 
Abeta generation depends on the interactions of Cav-1 with the 
amyloid precursor protein (APP) (87). Furthermore, Cav-1 
expression is increased in senescent cells and AD brains, 
suggesting an involvement of this resident protein of lipid rafts 
in brain degeneration (88, 89).  

 
Flotillins belong to the so-called SPFH 

(stomatin/prohibiting/Flotillin/ HflK/C) protein family 
forming specialized rafts that, similar to caveolae, provide 
stable platforms for multiprotein complexes assembly (80). 
Flotillins not only are important for coordinated 
recruitment of the machinery for regulation of cytoskeletal 
remodeling but they have also been linked to the 
pathogenesis of Alzheimer’s disease. Indeed, flotillins 
appear to be up-regulated in the cortex of patients with AD, 
where they accumulate at sites of amyloid beta peptide 
(Abeta) production and secretion (80, 90). However, further 
studies are required to fully elucidate the role of flotillin-1 
in the progression of AD pathology. 
 
3.3. Neurotrophic signalling and neurotransmission in 
lipid rafts. 

A large body of evidence have demonstrated that 
lipid rafts are also platforms for neurotrophic signalling 
under the control of neurotrophins and glial-derived 
neurotrophic factor (GDNF)-family ligands which are 
essential for synaptic transmission, axon guidance and cell 
adhesion (58). Src kinase activity is one of the main 
signalling proteins required to elicit GDNF-bioactivity 
related to neurite outgrowth and neuronal survival (91). 
Numerous receptor tyrosine kinases are located in lipid 
rafts, including TrkA, insulin receptor (IR), EGFR 
(epidermal growth factor receptor) and PDGFR (platelet-
derived growth factor receptor) (83, 92-94). Accordingly, 
we have found the enrichment of IGF-1R (insulin growth 
factor-1 receptor) in lipid rafts from human cortex and 
hippocampus, in a complex with ERalpha and caveolin-1, 
suggesting that this receptor may also take part of 
multimolecular complexes in lipid rafts (as discussed 
below).  

 
Emerging evidence also indicates that such rafts 

are important for neuronal synaptic transmission, and 
different neurotransmitter receptors and ion channels, e.g. 

the voltage-gated K+ channel Kv2.1., nicotinic 
acetylcholine receptor (nAChR) and GABAbR receptor are 
biochemically located in lipid rafts (58, 95-97). 
Localization of ion channels to these microstructures 
appears to vary depending upon the specific channel, a fact that 
modifies channel properties (95). In this order of ideas, our 
recent work in neuronal cell lines, and human and mouse brain 
cortex and hippocampus have demonstrated that the pro-
apoptotic plasma membrane voltage-dependent anion channel 
(VDAC) is located in lipid rafts in physical contact with Cav-1 
and ERalpha (55, 56), a fact that might be relevant in AD 
neuropathology, as discussed in the next sections. 

 
 Thus, lipid rafts not only represent structurally 
components of neuronal membranes, but also integrate 
protein signalling platforms which are crucial for the 
development of neuronal physiological activities related to 
neuroprotection. 
 
4. MEMBRANE ESTROGEN RECEPTORS WITHIN 
MACROMOLECULAR PLATFORMS INVOLVED 
IN NEUROPROTECTION 
 
4.1. Molecular components of macrocomplexes 
interacting with mERs in lipid rafts 

The finding of ERs in neuronal lipid rafts 
suggests that the receptor may be part of dynamic 
structures formed by interactive lipid and protein 
associations in these membrane compartments. 
Coordination of estrogen signalling in lipid rafts has 
already been demonstrated in cardiomyocytes, breast 
cancer and platelet regulation (98-100), but there is still 
very little information related to neuronal bioactivities. 
Since raft platforms are formed from fluctuating assemblies 
of lipid and protein oligomers that interact in response to 
extracellular signals (101), then signalling platforms 
integrated in lipid rafts may be crucial for the development 
of neuronal physiological activities related to 
neuroprotection. Therefore, a key to understand the 
motility, modulation and activities of mERs in neurons is 
the identification of partners associated with these receptors 
that may contribute to estrogen coupling to signal 
transduction.  

 
Raft-located ER has been evidenced in cerebral 

cognitive areas, such as human frontal cortex and 
hippocampus, and in murine septal and hippocampal 
immortalized neurons, where a mER similar to ERalpha 
was found to participate in prevention of cell death 
following Abeta treatment (44, 55-56). In raft human and 
murine membrane fractions as well as in microsomal 
fractions from different mouse brain areas (42), mER 
physically interacts with caveolin-1, which may serve as a 
docking point to recruit the receptor to this microdomain. 
In addition, this association appears to be necessary for 
steroid rapid signalling in neurons (85, 86), and it has been 
demonstrated that caveolin expression is also a requirement 
to compartmentalize, both, ERs and membrane glutamate 
receptors into functional signalling microstructures (39).  

 
Some bioinformatic studies have indicated that a 

plausible possibility is that interaction of the receptor with 
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caveolin-1 may take place at the caveolar scaffolding 
domain (CSD), a sequence motif present in numerous 
signalling proteins that has also been found in the ligand 
binding domain (LBD) of ERalpha (42). In addition, this 
domain is the place where ERalpha is reversibly 
palmitoylated in Cys447 residue, a requirement for the 
receptor to locate within membrane subdomains (74, 102).  

 
Furthermore, other identified molecules forming 

part of a complex with mER in lipid rafts are the insulin 
growth factor-1 receptor (IGF-1R), recently identified in 
lipid rafts from the human frontal cortex in association with 
caveolin-1 and ERalpha (103), and plasmalemmal voltage-
dependent anion channel (pl-VDAC) (55, 104). IGF-1R 
activation is essential for different actions of estradiol in 
the brain, including neuronal survival and differentiation, 
synaptic plasticity, the regulation of ER mediated gene 
expression, and the control of cholesterol homeostasis 
(105-106). It is important to underline that ER and IGF-1R 
pathways cross-talk with each other to promote 
neuroprotective events, and that this association may be 
affected with aging (107-108). Then, it is plausible that 
ERalpha/IGF-1R interaction in membrane subdomains may 
be differentially activated by the extracellular availability 
of distinct ligands of these receptors, therefore adapting the 
neuronal response through their interactive signalling 
machinery (105).  

 
4.2. Relevance of mER association with a voltage-
dependent anion channel to palliate Abeta-induced 
toxicity 

A recent finding is the association of VDAC with 
mER in lipid rafts, a phenomenon that has been observed in 
both cultured neurons and extracts from different murine 
and human brain areas (55, 56). In this channel, a CBD 
susceptible of binding to caveolin-1 has been identified in 
the second intracellular loop of its structure (42), thereby 
reinforcing the participation of VDAC in this raft signalling 
platform. VDAC is a porin located at the mitochondrial 
membrane, where its role has been related to intrinsic 
apoptotic pathway (109). The porin is also found at the 
plasma membrane of many cell species (named pl-VDAC) 
where it is involved in cellular ATP release and volume 
control, NADH:ferricyanide reductase activity, tumoral 
processes and apoptosis (reviewed in 110). In neurons, pl-
VDAC plays a role in redox homeostasis and initiation of 
extrinsic apoptosis pathway (111, 112) that can be induced 
by different injuries including excessive glutamate release 
(113), and Abeta-induced toxicity (55). These latter 
observations suggest that VDAC participation is cardinal in 
the mechanisms related to AD pathology. In support of this, 
VDAC highly accumulates surrounding the main hallmarks 
of AD neuropathology, i.e. senile plaques and 
neurofibrillary tangles, in murine and human brains 
affected by this disease (56, 114). In addition, the channel 
increases its expression in either murine amyloidogenic 
models of AD or following Abeta exposure in cultured 
neurons (115). VDAC is also overexpressed in 
mitochondria related to autophagic processes enhanced 
during AD (116). Since the foregoing data indicate that pl-
VDAC activation may contribute to AD development, then 
it is plausible that pl-VDAC/ER interaction in lipid rafts 

may be important for the rapid estrogen mechanisms to 
palliate neuronal death against Abeta toxicity (103).  

 
Overall, these findings indicate that ER in 

neuronal lipid rafts may be part of macromolecular 
complexes formed by several signalling molecules involved 
in the control of neuronal maintenance, whose dynamic 
interaction may be at the basis of the complex 
neuroprotective responses against different toxicities. In 
these signalosomes, anchoring proteins such as caveolin-1 
and different lipid-lipid, lipid-protein and protein-protein 
interactions may supply stability for the integration and 
functionality of ERalpha, thus facilitating its associations 
with other signalling proteins in the raft microstructure. 
These interactions may be also affected by the availability 
of extracellular ligands binding to the different components 
of these platforms. In agreement with this hypothesis, 
emerging data suggests that estrogens modulate pl-VDAC 
activation, as discussed in the following section. 
 
5. ESTROGEN SIGNALLING PATHWAYS 
AGAINST ALZHEIMER’S DISEASE 
NEUROPATHOLOGY 
 
5.1. Membrane estrogen strategies to palliate AD 
parameters of neurotoxicity 
 Estrogens can mitigate important events related 
to AD neuropathology acting at different intracellular 
levels. In this order of ideas, numerous studies have 
demonstrated that estrogens exert their neuroprotective 
actions through different mechanisms leading to 
modulation of amyloid precursor protein (APP), regulation 
of Abeta formation and clearance, reduction of tau 
hyperphosphorylation, modulation of anti-apoptotic agents 
and preservation of mitochondrial integrity, among others 
(37, 117). Some of these estrogen actions take place via the 
activation of different signal transduction pathways. At this 
level, one of the most studied effects is related to estrogen 
protective role against Abeta-induced toxicity, with the 
participation of several kinase cascades. In this sense, two 
main pathways have been associated with these actions, 
MAPK signalling (through Raf/MEK/ERK activation), and 
PI3-K signalling (through PI3-K/Akt/GSK3 activation) (17, 
26, 37). These pathways, triggered by estrogens within 
minutes, have been shown to be important in palliating 
Abeta neurotoxicity in neurons from different brain areas, 
such as hippocampus, septum, cortex and hypothalamus 
(26). Moreover, MAPK signalling is involved in APP 
processing promoting non-amyloidogenic products (37) 
although alternative pathways, such as PKC signalling, also 
appear to be part of this process (118, 119). Other data has 
demonstrated that estrogens binding to ER can reduce 
Abeta-induced neuronal apoptosis through the inhibition of 
c-Jun N-terminal kinase (JNK) pathway, which 
subsequently attenuates pro-apoptotic agents and 
upregulates anti-apoptotic agents (120).  
 

Some particularly relevant results are related to 
the inhibition of tau hyperphosphorylation promoted by 
estrogens through the modulation of GSK3 activity (121). 
Tau is a microtubule-associated protein that is aberrantly 
hyperphosphorylated by kinases such as GSK3, then 
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provoking microtubule destabilization and neurofibrillary 
tangle formation during AD. It appears that the hormone 
regulates the interaction of tau with different components 
of PI3-K pathway, including GSK3 and beta-catenin (122, 
123). Also, modulation of GSK3 by estrogens may be 
related to ER activation (124). Furthermore, estrogen 
attenuates elevation of cAMP and overactivation of PKA, 
two relevant steps of tau hyperphosphorylation, thereby 
preventing phospho-Tau increase (125).  
 
5.2. Modulation of pl-VDAC by estradiol and its 
relevance against Abeta-induced cell death 

In addition to the rapid effects of estrogen 
involving the regulation of Abeta clearance, APP 
processing and tau phosphorylation, part of the strategies to 
palliate AD may involve the regulation of putative 
modulators of Abeta-induced toxicity, such as VDAC 
(127). Thus, some recent data have shown that estrogens 
regulate pl-VDAC activation through the control of post-
translational modifications of the porin. In septal and 
hippocampal cells, short exposures to estradiol resulted in 
the maintenance of the pl-VDAC phosphorylation status 
(127), a fact that may preserve the inactivation and closing 
state of the channel. Similarly, VDAC phosphorylation has 
been observed at the neuronal membrane from mouse 
frontal and parietal cortices (128), and in human brains 
(unpublished results), suggesting that the presence of a 
phosphorylated VDAC isoform at the neuronal membrane 
may be a general phenomenon. Further analysis in cultured 
neurons has demonstrated that estradiol induces VDAC 
phosphorylation by the activation of, both, PKA and Src-
kinase (127). In support of these observations, VDAC was 
also found phosphorylated by PKA in mitochondria of rat 
liver, thereby provoking the closure of the channel (129-
130). Moreover, although still unexplored, GSK3 may also 
be a candidate to modulate VDAC at the plasma membrane 
since this kinase phosphorylates the mitochondrial form of 
the porin following inhibition of Akt (131).  

 
Therefore, one could hypothesize that Abeta may 

physically interact with VDAC in lipid rafts thereby 
contributing to the channel opening, ultimately leading to 
intracellular apoptosis (126). In line with this possibility, 
binding of this peptide to gangliosides, lipid raft 
components, is thought to induce the assembly of Abeta 
proteins involved in the formation of senile plaques (93, 
132-133). An alternative possibility is that VDAC might be 
activated by membrane depolarization as a result of 
intracellular Ca2+ levels increase provoked by Abeta 
interacting with the neuronal membrane. In agreement with 
this hypothesis, some data have reported that Abeta peptide 
may induce cellular toxicity by regulating Ca2+ 
homeostasis, based on its property to activate Ca2+ channels 
(134). It should also be mentioned that a large number of 
studies have proposed that cell exposure to Abeta peptide 
results in unregulated flux of Ca2+ through the plasma 
membrane, upon disruption of plasma membrane integrity 
(reviewed in 135). In addition, several studies have 
highlighted the importance of the specific interaction of 
Abeta (and other protein) amyloids with glutamate 
receptors (AMPA and NMDA). Notably, a rise in 
intracellular Ca2+ induced by Abeta decreases the 

availability of AMPA receptors at the synapses, thereby 
affecting synaptic plasticity (125, 136). Abeta also affects 
NMDA receptor activation culminating in intracellular Ca2+ 
overload, which disrupts neuronal transmission (137). 
 
5.3. Antagonist effects of selective estrogen receptor 
modulators on pl-VDAC regulation 

An interesting fact is that maintenance of pl-
VDAC phosphorylation /inactivation may be specific for 
physiological estradiol concentrations. Indeed, tamoxifen, a 
selective estrogen receptor modulator (SERM), has been 
observed to provoke the antagonist effect on the channel, 
increasing its dephosphorylation through the activation of 
either serine-threonine protein phosphatase 2A (PP2A) or 
tyrosine phosphatases (127). These findings are in line with 
previous electrophysiological outcomes on neuroblastoma 
cells and NIH3T3 fibroblasts, where brief exposures to 
different SERMs (i.e. tamoxifen, toremifen) were found to 
open Maxi-Cl- channel through a mechanism involving 
PP2A activation (138-139). It is worth mentioning that 
VDAC is considered the molecular correlate of the plasma 
membrane Maxi-Cl- channel (140). On the contrary, 
another set of electrophysiological experiments in cells 
treated with estradiol resulted in the inactivation (closing) 
of this channel (138). Interestingly, the antagonist effects of 
estrogen and tamoxifen in pl-VDAC modulation correlates 
with the different efficacy of these molecules in neuronal 
defence against Abeta-induced neurotoxicity. Indeed, in 
septal and hippocampal neurons, a high degree of estrogen-
induced cell survival has been observed following exposure 
to the amyloid, whereas no significant cell viability has 
been detected in the presence of tamoxifen (128). 

 
These findings support the notion that a main 

non-genomic mechanism of estrogen to achieve 
neuroprotection may be through the modulation of VDAC 
phosphorylation to maintain the channel in a closing state. 
The preservation of phosphorylated VDAC may be a 
crucial parameter of neuronal survival, since data in the 
temporal, frontal and occipital cortex of AD brains have 
evidenced that changes in VDAC phosphorylation pattern 
may be related to synaptic loss (141). Indeed, this porin has 
been found in a nitrated form in hippocampus of AD 
brains, as an alternative isoform modification, and this may 
produce an irreversible dysfunction of the channel (142).  

 
In summary, the reported data indicate that 

estrogens acting at the neuronal membrane may trigger 
different intracellular signalling pathways converging in 
neuronal survival. Adding more complexity to these 
mechanisms, it is probable that an additional parameter to 
develop the final cellular response may depend on the 
dynamic associations of ER and other estrogen targets, 
such as VDAC, in neuronal membrane subdomains. 
 
5.4. Disruption of mER signalling complex in lipid rafts 
of AD brains 
 It has been speculated that changes in the lipid 
composition of lipid rafts may contribute to AD pathology 
(143). Thus, multiple lines of investigation have 
demonstrated the role of cholesterol, one of the major lipid 
constituent of lipid rafts, in amyloidogenic processing of 
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APP (67, 144), suggesting a dynamic interaction of APP 
with lipid rafts. Apart from cholesterol, gangliosides are 
other lipid raft components that appear to be involved in 
Abeta peptide formation and processing (87), and have also 
been observed to be modified in lipid rafts of AD patients 
(145). In addition, other lipid classes such as phospholipids 
have been claimed to either mediate or modulate key 
pathological processes associated with AD in relation to 
phospholipase D activity (146). Moreover, although less 
characterized, polyunsaturated fatty acids may also play an 
important role in lipid raft stability and its deficiency has been 
associated with AD pathology (147). In particular, 
docosahexanoic acid (DHA) has been shown to be highly 
enriched in neuronal membrane phospholipids (148). Indeed, 
we have recently demonstrated that AD lipid rafts obtained 
from brain cortex at late stages exhibited significant reductions 
in DHA when compared with age-matched controls (149). 
These abnormal low levels of PUFA are in consonance with 
previous observations in whole membranes from different 
brain areas of AD patients, and are correlated with reduced 
unsaturation and peroxidability indexes (149-150). Overall, 
these observations suggest that changes in brain lipid 
composition are important determinants of AD progression. 
 

Taking into account these findings, it can be 
suggested that anomalies in lipid composition of lipid rafts 
may presumably result in a profound modification of the 
physico-chemical properties of these structures, such as 
increase in membrane viscosity and rigidity, which may 
largely affect the activities and interactions of raft resident 
proteins (149). This possibility is gaining considerable support 
as content alterations in lipid classes such as sterols, 
gangliosides and polyunsaturated fatty acids (PUFA) largely 
contribute to the development of AD and other neurological 
impairments (59, 151).  

 
A support of signalling complex disfunction in 

neuronal lipid rafts have recently been demonstrated, 
observing the dissociation of pl-VDAC/ER/caveolin-1 
complex in lipid rafts in cortical areas at late stages of this 
disease (56). In these membrane fractions, pl-VDAC 
increased its concentration and interaction with caveolin-1 
in lipid rafts of AD patients, whereas ERalpha levels in 
these fractions was reduced. In fact, and in agreement with 
previous data (152), ERalpha was mostly observed in 
astrocytes, suggesting a role of this receptor in estrogen 
protective effects related to these glial cells. Therefore, it is 
conceivable that anomalies in the composition of lipid rafts 
may interfere in pl-VDAC/mERalpha interactions and 
consequent modulation (i.e. phosphorylation) of the porin 
by estrogens, thus contributing to reduce the defenses 
facing Abeta-induced toxicity. These disrupted interactions 
may also affect other proteins participating in this 
signalling complex, such as IGF-1R. Furthermore, an 
additional parameter to consider is the proper ability of 
estradiol to alter the fluidity of phospholipids in membrane 
bilayers, a fact that is directly related to hormone effects on 
integral proteins of this structure, although these effects 
have been observed at supraphysiological conditions (153). 

 
Overall, these findings indicate that ER in 

neuronal lipid rafts may be part of macromolecular 

complexes formed by several signalling molecules involved 
in the control of neuronal maintenance, whose dynamic 
interaction may be at the basis of the complex 
neuroprotective responses against different toxicities. In 
these signalosomes, anchoring proteins such as caveolin-1 
and different lipid-lipid, lipid-protein and protein-protein 
interactions may supply stability for the integration and 
functionality of ERalpha, thus facilitating its associations 
with other signalling proteins in the raft microstructure. 
These interactions may be also affected by the availability 
of extracellular ligands binding to the different components 
of these platforms.  
 
6. PERSPECTIVES 
 
There is a general agreement on the importance of 
lipid/protein and protein/protein interactions in lipid rafts as 
crucial parameters for the integrity of these membrane 
microstructures, which may be profoundly modified in 
different neuropathologies including Alzheimer’s disease. 
Raft protein interactions in dynamic signalling platforms 
may have a pivotal role in the regulation of distinct cellular 
responses directed to neuronal preservation. Among the 
relevant protein complexes related to neuroprotection, 
emerging data suggest that ERs, through its binding to 
estradiol followed by interaction with proteins integrated in 
lipid rafts, may have a pivotal role in the regulation of 
distinct cellular responses directed to neuronal integrity. 
Thus, membrane compartmentalization related to 
neuroprotection against Abeta neurotoxicity may include 
mER, pl-VDAC and IGF-1R together with caveolin-1, as a 
part of a multimolecular signalling complex involved in 
neuronal survival. It is important to keep in mind that these 
molecular clusters may combine both, survival and 
apoptotic modulators, whose dynamic modulation in 
particular microenvironments may ultimately give rise to 
the final orchestrated response. Indeed, VDAC and 
caveolin-1 are known to participate in the mechanisms of 
Abeta generation and processing (55, 87, 127), suggesting a 
role of these raft proteins in brain degeneration. 
Undoubtedly, other participants of this macromolecular 
complex remain to be identified. In addition, mER 
involvement in other signalling platforms with significant 
effects on neurological processes is starting to be revealed. 

 
Furthermore, mER-related actions of estradiol 

may play a crucial role in the maintenance of VDAC in a 
phosphorylated/inactivated state, a fact that may largely 
contribute to a reduction of apoptotic effects triggered by 
the amyloid. Therefore, the potential post-transductional 
modifications of this porin at the neuronal membrane may 
be at the basis of estrogen mechanisms leading to brain 
preservation. In line with this, it is enticing to speculate that 
disruption of VDAC association with mER observed in AD 
may induce irreversible post-transductional changes in this 
channel, such as nitration and carbonylation, thereby 
contributing to oxidative stress and lipid raft impairment. 

 
In addition, lipid composition of membrane 

subdomains may have a pivotal role in the interactions and 
activities of mER at this level. In this order of ideas, it is 
known that palmitoylation of ER is a requirement for its 
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trafficking to the plasma membrane (102), and it has been 
assessed that this lipid modification may regulate raft 
affinity in integral proteins (154). In addition, modification 
of physico-chemical properties of lipid rafts as a result of 
alterations in lipid composition may profoundly affect the 
associations and functionality of proteins integrated in 
these structures that may underlie some of the 
neuropathological parameters. An example of this 
phenomenon is the observed disruption of 
ER/VDAC/caveolin-1 signalling complexes in the cortex of 
AD brains as a result of a reduction in PUFA levels (149). 
Therefore, identification of lipid markers as part of 
signalling platforms in lipid rafts may also give some hints 
to elucidate the parameters of neuronal impairments.  

 
Future investigation on the participation of ERs 

in membrane microenvironments to initiate intracellular 
signalling may certainly provide some clues to elucidate the 
complex strategies of neuronal survival triggered by 
estrogens. Undoubtedly, understanding the complex 
dialogue of lipid-lipid, lipid-protein and protein-protein 
interactions occurring in signalling compartments involved 
in estrogen neuroprotective mechanisms will contribute to 
the development of novel strategies on early diagnoses to 
prevent from devastating brain impairments occurring in 
AD.  
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