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1. ABSTRACT 
 

Recent research in human and animal genomes, 
transcriptomes, proteomes, and antigen-omes has generated 
a large library of data and has led to the establishment of 
many experimental data-based searchable databases.  
Scientists now face new, unprecedented challenges to 
develop more systemic methods to analyze experimental 
data and generate new hypotheses. This review will briefly 
summarize our pioneering efforts in using new database 
mining methods to answer important questions in 
inflammatory and immune-related diseases. The new 
principles and basic methodologies of database mining 
developed in Dr. Yang’s laboratory will be delineated in 
the following studies: 1) a stimulation-responsive 
alternative splicing model for generating untolerized 
autoantigen epitopes; 2) a three-tier model for caspase-1 
activation and inflammation privileges of various organs; 
and 3) a group of anti-inflammatory microRNAs which 
inhibit proatherogenic gene expression during 
atherogenesis.  With technological advances, database 
mining has provided important insight into new directions 
for experimental research. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2. INTRODUCTION  
 
 Cardiovascular disease (CVD) continues to be a 
leading cause of morbidity and mortality in developed 
countries(1, 2).  Despite a vast amount of research that has 
characterized both traditional and non-traditional risk 
factors for CVD, some mechanisms for CVD onset have 
only recently been discovered.  Atherosclerosis is a 
chronic, inflammatory, autoimmune disease and its 
progression involves both innate and adaptive immune 
systems.  Improving our understanding of the molecular 
pathogenesis of the involved immune response may lead to 
the future development of novel therapies.      
 

Through much experimental research, an 
immense amount of untapped resources is available in 
biomedical literature and databases (3, 4).  Both traditional 
hypothesis-driven research and discovery-driven “-omics” 
research, including genomics, transcriptomics(5), 
proteinomics, metabolomics, glycomics, lipidomics, 
localizomics, protein-DNA interactome, protein-protein 
interactome, fluxomics, phenomics(6), and antigen-omics 
(http://www.cancerimmunity.org/links/databases.htm) (7-
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10) have generated and established many experimental 
electronic (redundant)databases.  These databases include 
PubMed and numerous protein and nucleotide databases 
generated by the National Institutes of Health 
(NIH)/National Center for Biotechnology Information 
(NCBI) (see the NCBI handbook at 
http://www.ncbi.nlm.nih.gov/books/NBK21101/) and other 
institutions. The development of these new resources holds 
many opportunities for biomedical scientists to develop 
more systemic approaches to analyze the data and generate 
new hypotheses. The discrepancy between the vast amount 
of experimental data in various databases and the fewer 
numbers of actual database-mining research papers (< 50 
papers on database mining in inflammatory and immune 
responses) indicates the technical and methodological 
difficulties and out of date concepts that biomedical 
scientists face.      
 

Traditionally, medical literature search using the 
Index Medicus was the only way to identify knowledge 
gaps and generate new hypotheses. Now, literature searches 
have been significantly enhanced using more systemic 
approaches such as 1) NCBI-PubMed search and Google 
Scholar search; 2) screening various arrays (nucleic acid 
arrays, protein arrays and metabolic arrays) (11-14); and 3) 
mining experimental databases(2, 15-19).  When compared 
to microarray data screening, which requires bioinformatic 
algorithms, and expertise, database mining offers many 
advantages. First, when compared to the generation of 
algorithms, database mining requires less bioinformatic 
assistance since for easily searchable purpose databases are 
established by bioinformatic experts. (20). Secondly, it 
provides extensive insight on existing knowledge gaps and 
allows the user to generate new hypotheses for further 
experimental research. Also, database mining enables 
maximum value extraction from costly experimental data. 
Despite these advantages, database mining still requires 
scientists to have a full understanding of its capabilities and 
limitations. Database mining is used to analyze 
experimental data that has been generated from numerous 
research projects, and does not predict theoretical results 
based on pure theoretical bioinformatic studies.  Due to its 
immense library of data, database minings are not limited 
to sequence comparisons of nucleic acids and proteins(21), 
sequence alignments, analysis of hydrophobicity indexes, 
and functional domain predictions of proteins. In addition, 
database mining is not usually a required course for 
graduate students or postdoctoral fellows, which poses a 
challenge to set up new course to train young investigators 
to use mining techniques for their future careers. Lastly, 
reviewers of database mining publications often incorrectly 
regard the electronic data found in databases as “non-
experimental or theoretical” and demand costly, redundant 
laboratory experiments to be performed, sometimes even 
requiring the use of outdated experimental methods.  
 

In the face of these challenges, bioinformatic 
scientists must work together with their colleagues to 
promote the significance of database mining projects in the 
biological sciences. It is encouraging to note that more 
database mining papers have already been published than in 
prior years. The 2011 (18th) database issue of the journal 

“Nucleic Acid Research” features descriptions of 96 new 
and 83 updated online databases covering various areas of 
molecular biology(22).  In addition to 32 databases of 
immunological interest that are now published(23), the 
Nucleic Acids Research online Database Collection, 
available at: http://www.oxfordjournals.org/nar/database/a/, 
now lists 1330 molecular biology databases.  Moreover, our 
recently published review lists 11 B cell antigen epitope 
databases and 13 T cell antigen epitope analysis 
resources(2).  All of the aforementioned suggests that a 
data mining approach has been accepted as an important 
mainstream tool used to analyze experimental data and 
generate new hypotheses (23).  

 
Specifically, Dr. Yang’s laboratory has 

successfully pioneered major advances in the use of 
database mining in understanding adaptive and innate 
immune responses and inflammation (2, 15-19, 24).  In this 
review, we will summarize the general approaches, 
principles, and databases used, as well as propose new 
working models for database mining research. Due to space 
limitations, we will not be able to discuss every database 
mining paper that Dr. Yang’s team has published. Our 
review will be particularly important and useful for 
biomedical scientists, since many are not involved in the 
generation of bioinformatic algorithms, but may desire to 
use database mining methods in their research either as 
parts of experimental studies or as free-standing projects.  
Of note, the database mining concept is not “brand new”. In 
fact, medical research has a long history of extracting data 
from costly experiments. For example, meta-analysis uses a 
statistical approach in order to combine the results of 
several epidemiological studies that address a set of related 
research hypotheses. In doing so, observations and 
conclusions may be made without using valuable funding.  
This practice of full value extraction began over 100 years 
ago and has been used across a wide variety of disease-
related researches(25, 26).  We believe that the use of 
database mining will become a routine part of experimental 
sciences used to generate new hypotheses from existing 
data. 
 
3. WHAT ARE THE PRINCIPLES OF DATABASE 
MINING? 
 

In recent years, many databases pertaining to 
biological immune responses and inflammation have been 
established(2, 16), which have not only expanded the scope 
and depth of publicly available online data, but have given 
birth to invaluable experimental analyses. Although 
research projects may vary in format, database mining 
approaches follow the same general principles (Figure 1): 
1) Hypothesis: A clearly-defined hypothesis based on the 
current biomedical literature search in a given field is 
required to initiate a database mining project; 2) Scope: 
Database mining scope in terms of gene numbers are far 
more extensive than that examined using experimental 
methods. For example, our research examines the mRNA 
transcript expressions of about 30 genes including all the 
reported toll-like receptors, NOD-like receptors, and 
inflammatory caspases in more than ten different tissues. 
This broad scope allows us to obtain a panoramic view on a 
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Figure 1. Database mining flow-chart and principles. 
 

complex pathway, and not limit ourselves to one gene or 
tissue; 3) Suitable databases: Databases that are suitable for 
examining the hypothesis must be available online; 4) 
Sizable experimentally verified data: In order to 
consolidate the results generated from database mining, a 
sizable amount of experimentally verified data  published 
by various laboratories must be used to generate 
statistically significant confidence intervals (24)(15); 5) 
Verifiable methods: Experimental methods must be 
available to verify the data generated by database 
mining(27); and 6) A new working hypothesis: Using this 
approach, a new hypothesis will be proposed to test fewer, 
but much more-focused genes. In the next section, we will 
illustrate these principles with our own publications(2, 15-
19, 24).    
 
4. EXAMPLE 1: STIMULATION-RESPONSIVE 
ALTERNATIVE SPLICING IS AN IMPORTANT 
MECHANISM IN GENERATING SELF-ANTIGEN 
EPITOPES  
 

As discussed in our review, the identification and 
molecular characterization of self-antigens expressed in 

human malignancies are capable of eliciting  an anti-tumor 
immune response in patients and thus, is an active field of 
research in tumor immunology(30).  More than 2,000 
tumor antigens have been identified to date, with most 
being self-antigens(30). Despite this research, how non-
mutated self-protein antigens, generated from both normal 
and tumor cells, gain immunogenicity remains  poorly 
understood (30).  Elevated immunogenicity underlying 
some tumor-specific antigens may be a consequence of 
mutations such as those seen in tumor suppressor proteins 
p53 and Ras, and chromosome translocation abnormalities, 
such as the expression of fusion oncogene Bcr-Abl in 
chronic myelogenous leukemia (31-34).  However, the 
mechanism underlying increased immunogenicity of most 
non-mutated self-tumor antigens is their abnormal 
overexpression in tumors(30).  Zinkernagel et al.(35) 
suggested that the overexpression of self-antigens in tumors 
overcomes the threshold of antigen concentration at which 
an immune response is initiated(36). In untolerized regions 
of certain antigen epitopes, this threshold may be lower.  
Overexpressed genes often encode tumor antigens, 
identified by serological identification of self-antigens by 
screening a cDNA library with patients’ sera (SEREX)(37). 
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This may reflect the inherent methodological bias for the 
detection of abundant transcripts (38). The overexpression 
of antigens seen in tumors may result from both 
transcriptional and post-transcriptional mechanisms. We 
recently demonstrated that the overexpression of tumor 
antigen CML66L in leukemia cells and tumor cells via 
alternative splicing is the mechanism for its 
immunogenicity in patients (27, 39). This discovery not 
only clearly illustrates overexpression, but also points to 
alternative splicing as the molecular mechanism by which 
antigen overexpression occurs (27). A large proportion of 
SEREX-defined self-tumor antigens are also autoantigens 
(40). Self-tumor antigen CML28, previously identified by 
our lab, is also known as autoantigen Rrp46p (41) in the 
library. Using this information from SEREX combined 
with the overexpression seen in tumor antigen CML66L, 
we hypothesized that alternative splicing is a general 
mechanism not only for the overexpression of untolerized 
self-antigen epitopes in tumors, but also in autoimmune 
diseases. To test this hypothesis, we used database mining 
techniques to search the NIH-NCBI AceView database for 
potential mechanisms of how non-mutated self-proteins 
gain new untolerized structures that trigger immune 
recognition (15).  AceView provides an organized, non-
redundant, and comprehensive sequence representation of 
all known public mRNA sequences (mRNAs from 
GenBank or RefSeq, and single pass cDNA sequences from 
dbEST and Trace 
(http://www.ncbi.nlm.nih.gov/IEB/Research/Acembly/). 
Previous analyses of 9554 randomly selected human gene 
transcripts showed an alternative splicing rate of 
approximately 42% (p<0.001). In comparison, our results 
showed that alternative splicing occurs in 100% of 
autoantigen transcripts. Within isoform-specific regions of 
autoantigens, MHC class I and class II-restricted T-cell 
antigen epitopes were encoded 92% and 88% of the time 
respectively, and 70% encoded antibody binding domains.  
Alternative splicing may be canonical or noncanonical. 
Canonical splicing removes introns that have 5’GT and 
3’AG consensus flanking sequences (GT-AG rule) (42).  
We found that 80% of the autoantigen transcripts undergo 
noncanonical alternative splicing, which is also 
significantly higher than the less than 1% rate observed in 
randomly selected gene transcripts (p<0.001). Thus, our 
studies suggest that noncanonical alternative splicing may 
the mechanism that generates untolerized epitopes, which 
ultimatelylead to autoimmunity.  Furthermore, a transcript 
product that does not undergo alternative splicing is 
unlikely to be a target antigen in autoimmune diseases (15).  
To further evaluate this finding, we examined the effect of 
proinflammatory cytokine tumor necrosis factor-α (TNF-α) 
on the prototypic alternative splicing factor (ASF)/SF2 in 
the splicing machinery.  Our results showed that TNF-α 
downregulates ASF/SF2 expression in cultured muscle 
cells, which correlates with our previous finding of reduced 
expression of ASF/SF2 in inflamed muscle cells in patients 
with autoimmune myositis (28).   

 
Based on our and others’ experimental results, 

we recently proposed a new model of stimulation-
responsive splicing for the selection of autoantigens and 
self-tumor antigens (16) (also see 

http://preview.ncbi.nlm.nih.gov/pubmed/16890493)).  Our 
new model theorizes that the significantly higher rates of 
alternative splicing seen in autoantigen and self-tumor 
antigen transcripts that occur in response to external stimuli 
like proinflammatory cytokines induce the extra-thymic 
expression of untolerized antigen epitopes, which result in 
autoimmune and anti-tumor responses. Using B cell and T 
cell antigen epitope analysis databases listed in the tables in 
our recently published review 
(http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2858284/p
df/JBB2010-459798.pdf) (2), we showed that the protein 
sequences encoded by alternatively spliced exons 
sufficiently allow antibody-binding antigen epitopes and 
MHC class I- and class II-restricted T cell antigen epitopes 
to stimulate B and T lymphocytes, respectively (15). Our 
newly proposed model not only applies to non-mutated 
self-tumor antigens associated with cancers and 
autoantigens associated with numerous autoimmune 
diseases, but also applies to the expansion of self antigen 
stem cells.  By using database mining, we have generated a 
new model of differential epitope processing for MHC 
class I-restricted viral antigen and tumor antigen epitopes 
(17). Our reports have demonstrated the principles of 
database mining in adaptive immune responses (15, 16, 27-
29).   
 
5. EXAMPLE 2: A THREE TIER MODEL FOR 
CASPASE-1 ACTIVATION AND INFLAMMATION 
PRIVILEGE ARE IMPORTANT MECHANISMS 
UNDERLYING THE DIFFERENCES IN THE 
INFLAMMATION INITIATION IN TISSUES 
 

Atherosclerosis remains the leading cause of 
morbidity and mortality in the developed world. Several 
“traditional” risk factors have been identified for 
atherosclerosis including smoking, diabetes, hypertension, 
hyperlipidemia, obesity (43), oxidized low density 
lipoprotein, and hyperhomocysteinemia (HHcy). It is now 
known that chronic vascular inflammation plays an 
important role in the progression of atherosclerotic disease 
(44).  Specifically, significant progress has been made in 
characterizing pathogen-associated molecular patterns’ 
(PAMPs) receptor families (PAMP-Rs) and 
inflammasomes (the protein complex for activation of 
caspase-1), which further emphasizes the importance of 
proinflammatory cytokine interleukin-1β (IL-1β) signaling 
in initiating inflammation (45).  However, constitutive 
expression levels and readiness of PAMP-Rs, 
inflammasomes, and proinflammtory caspases seen in 
cardiovascular tissues continues to be ill-defined. Our study 
hypothesized that PAMP-Rs, inflammasome components, 
and proinflammatory cytokines like IL-1 and IL-18 are 
differentially expressed in cardiovascular tissues.  To test 
our hypothesis, we searched the NCBI-UniGene database 
and analyzed cDNA cloning and DNA sequencing data 
from tissue cDNA libraries. In addition, we studied the 
expression profiles of Toll-like receptors (TLRs), cytosolic 
nucleotide binding and oligomerization domain (NOD)-like 
receptors (NLRs), inflammasome components, 
inflammatory caspases, and caspase-1 cleavable 
inflammatory cytokines. The UniGene database provides 
an organized view of the transcriptome, in which each 
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UniGene entry represents a set of transcript sequences 
based on information regarding protein similarities, gene 
expression, cDNA clone reagents, and genomic location 
(http://www.ncbi.nlm.nih.gov/unigene). Upon analyzing 
our data obtained from UniGene, we made several 
important findings. Among the 11 tissues examined, only 
vascular and heart tissues express fewer types of TLRs and 
NLRs compared to immune system tissues such as blood, 
lymph nodes, thymus, and trachea. Additionally, brain, 
lymph nodes, and thymus tissue do not express 
proinflammatory cytokines IL-1β and IL-18 constitutively, 
which suggests that these two cytokines need to be 
upregulated when induced by inflammation. Finally, based 
on the expression data of three characterized 
inflammasomes (NALP1, NALP3 and IPAF), the examined 
tissues can be categorized into three tiers: the first tier 
tissues include brain, placenta, blood, and thymus and 
express inflammasome (s) constitutively; the second tier 
tissues have inflammasome (s) in a nearly-ready expression 
status requiring only the upregulation of one component; 
and the third tier tissues, like heart and bone marrow, 
require the upregulation of at least two components in order 
to activate functional inflammasomes. Given the expression 
readiness of inflammasomes in various tissues, we 
proposed a new working three tier model of inflammasome 
expression, which highlights the differences of tissues in 
initiating acute inflammation. Our model theorizes that (a) 
first tier tissues with constitutively expressed 
inflammasomes initiate inflammation quicker than second 
and third tier tissues; and (b) second tier tissues (requiring 
one component of upregulation) like the vasculature and 
third tier tissues (requiring more than one component of 
upregulation) like the hear have  an inducible expression 
state of inflammasomes. Most likely, the inducible 
expressions of second and third tier inflammasomes are 
mediated through various signaling pathways and the 
interplay between these pathways must overcome a higher 
threshold than first tier tissues. Traditional concepts of 
immune privilege suggests that the lack of antigen-
presenting self- MHC molecular expression protects against 
autoimmune destruction (30). Self MHC’s lack of 
expression in immune privileged tissues, like testis, results 
in the failure of self-antigen presentation which stimulates 
the host’s immune system, thus protecting the tissue from 
autoimmune destruction. Our lab proposed a new concept 
of tissues’ immune privilege that focuses on a protective 
mechanism against tissue destruction which is mediated by 
inflammasome/IL-1β-based innate immune responses. In 
this new concept of immune privilege, vascular and heart 
tissue disproportionally express fewer types of TLRs and 
NLRs and may only inducibly express inflammasomes. In 
doing so, both heart and vascular tissues are protected 
against uncontrolled inflammatory destruction mediated by 
the inflammasome-based innate immune system (46).  Our 
new model also explains the potential differences between 
cardiovascular tissues and other tissues with regards to 
acute inflammation initiation. First tier tissues have a 
higher percentage of experiencing acute inflammation 
compared to second and third tier tissues.   

 
We and others showed that 

hyperhomocysteinemia (HHcy), elevated levels of plasma 

homocysteine (Hcy), is an independent risk factor for 
cardiovascular diseases (CVD) including coronary heart 
disease and stroke (47-49). Recently, we performed an 
additional database mining study to examine the expression 
of more than 20 enzymes found in over 20 human and mice 
tissues that are involved in homocysteine metabolism and 
methylation (19).  From the results, we proposed a new 
model of how hypomethylation (a post-translational protein 
modification) modulates the expressions of homocysteine-
metabolizing enzymes (19).  Taken together, our studies 
have demonstrated the usefulness of database mining in 
understanding innate immune reactions.   
 
6. EXAMPLE 3: ANTI-INFLAMMATORY 
MICRORNAS MAY PLAY CRITICAL ROLES IN 
INHIBITING THE EXPRESSION OF PRO-
ATHEROGENIC MOLECULES 
 

Research has established that numerous genes 
are upregulated in atherogenesis through  either epigenetic 
or genetic transcriptional mechanisms (50).  However, 
transcription-independent mechanisms have received far 
less attention.  Recent publications suggest that 
microRNAs, a newly characterized class of short (18-24 
nucleotide long), endogenous, non-coding RNAs (51), 
contribute to the development of certain diseases by 
regulating biological processes such as cell growth, 
differentiation, proliferation, and apoptosis (52). More than 
800 human microRNAs have been identified thus far, and 
up to 30% of human genes may be regulated by 
microRNAs (52, 53). Regulation is accomplished through 
post-transcriptional gene silencing (54) using Watson and 
Crick base-pairing predominately at the 3’-untranslated 
region (3’UTR) of messenger RNAs (mRNAs) (55, 56).  
Base-pairing can be further characterized as “perfect”, 
“near perfect”, leading to target mRNA cleavage and 
degradation, or “imperfect”, leading to the inhibition of 
mRNA translation (54).  Supporting evidence for 
microRNA involvement suggests that microRNAs function 
as key players during the critical stages of cell 
development, gene expression, and the maintenance of 
routine cellular functioning (57).  Furthermore, microRNAs 
act on regulatory transcription factors, which lead to a 
broad indirect cellular effect as a result of their widespread 
gene modulating nature. Recent research has also 
demonstrated that changes in microRNA expression 
patterns are linked to several diseases including 
cardiovascular disease and subsequently, atherosclerosis. 
These studies have primarily focused on characterizing the 
elevated expression of microRNAs in disease models (58, 
59).  Current microRNA research has failed to answer two 
important questions, how microRNAs regulate atherogenic 
inflammatory genes, and whether the upregulation of 
atherogenic inflammatory genes is the result of anti-
inflammatory microRNAs downregulation.To address these 
questions, our lab hypothesized that a group of anti-
inflammatory microRNAs regulates the expressions of 
proatherogenic molecules (24).  We developed a novel 
database mining approach using three databases including 
the online microRNA target prediction software TargetScan 
(http://www.targetscan.org/) (60-62), the Tarbase, an online 
database of experimentally verified microRNAs 
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(http://diana.cslab.ece.ntua.gr/tarbase/) (63, 64), and the 
online microRNA.org expression database 
(http://www.microrna.org/microrna/home.do) (65). By 
analyzing these databases using a statistical analysis 
strategy established in our previous database mining 
publications (15, 17-19, 66), our unique research yielded 
several key findings. First, we discovered that the 
expressions of 33 inflammatory genes (mRNAs) are 
upregulated in atherosclerotic lesions and second, that the 
mRNAs of those genes contain structural features in their 
3’UTR for potential regulation by microRNAs. These 
structural features are statistically identical to previously 
experimentally verified 3’UTR microRNAs binding sites.  
We also found that 21 out of the 33 inflammatory genes 
(64%) are targets of highly expressed microRNAs, while 
the remaining 12 genes (36%) are targeted by normally 
expressed microRNAs. In addition, we established that 10 
out of the 21 highly expressed microRNA-targeted 
inflammatory genes (48%) were targeted by a single 
microRNA, suggesting specificity of microRNA regulation. 
Meanwhile, 12 out of 25 highly expressed microRNAs (48%) 
targeted single inflammatory genes while the other 13 
microRNAs targeted multiple inflammatory genes. Finally, 
microRNAs targeting atherosclerotic inflammatory genes use 
significantly higher binding interactions than microRNAs in 
the control group.  Taken together, these results suggest that 
microRNAs regulating atherosclerotic inflammatory genes 
have unique features (24). 

 
MicroRNAs play an integral role in modulating 

atherosclerosis-related processes including hypertension 
(microRNA-155), hyperlipidemia (microRNA-33, microRNA-
125a-5p), plaque rupture (microRNA-222, microRNA-210), 
and atherosclerosis itself (microRNA-21, microRNA-126) 
(58).  Given this, one must postulate whether certain 
microRNAs play a preventative role in disease development. 
One of the most interesting findings from our study is that the 
25 microRNAs that are highly expressed under normal 
untreated conditions, target 21 out of the 33 atherosclerosis-
upregulated inflammatory genes (64%).  This finding suggests 
a novel mechanism by which a group of highly expressed anti-
inflammatory microRNAs have the ability to suppress 
proatherogenic inflammatory gene upregulation under normal 
physiological conditions.  While it is well established that 
microRNAs play important roles in the development of 
inflammation and cancer, our results are the first to suggest that 
microRNAs play a protective role by suppressing 
proatherogenic genes and by maintaining healthy arteries. Our 
conclusion is supported by other publications, which have 
shown that 7 out of the 20 microRNAs identified in this study 
were downregulated in studies using various proatherogenic 
factors (67-69).  Together, our studies demonstrate the use and 
important of database mining in studying inflammation.     
 
7. CONCLUSION 
 

Active research in human and mouse “-omics” in 
the past decade has generated a tremendous amount of data 
and established many experimental data-based searchable 
databases. This offers unprecedented opportunities for 
investigators to develop more systemic and panoramic 
approaches to examine the databases and generate new 

hypotheses.  In this review, we summarize our pioneering 
efforts in using new database mining methods to address 
important questions in inflammations and immunological 
diseases.  The new principles and basic methodologies of 
database mining developed in our laboratories are 
elucidated in several cases.  With recent technological 
advances, database mining has provided significant new 
insights and hypotheses in defining the novel directions for 
experimental research. 
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