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1.  ABSTRACT 
 

Genomic imprinting plays a pivotal role in early 
stage development in plants. Linkage analysis has been 
proven to be useful in mapping imprinted quantitative trait 
loci (iQTLs) underlying imprinting phenotypic traits in 
natural populations or experimental crosses. For correlated 
traits, studies have shown that multivariate genetic linkage 
analysis can improve QTL mapping power and precision, 
especially when a QTL has a pleiotropic effect on several 
traits. In addition, the joint analysis of multiple traits can 
test a number of biologically interesting hypotheses, such 
as pleiotropic effects vs close linkage. Motivated by a 
triploid maize endosperm dataset, we extended the variance 
components linkage analysis model incorporating 
imprinting effect  proposed by Li and Cui (2010) to a 
bivariate trait modeling framework, aimed to improve the 
mapping precision and to identify pleiotropic imprinting 
effects. We proposed to partition the genetic variance of a 
QTL into sex-specific allelic variance components, to 
model and test the imprinting effect of an iQTL on two 
traits. Both simulation studies and real data analysis show 
the power and utility of the method. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
2.  INTRODUCTION 
 

With the availability of linkage map and 
molecular markers in many species, coupled with the 
development of statistical and computational methods, 
enormous progress has been made in the identification of 
novel genes or quantitative trait loci (QTL) underlying 
various complex traits of interest (e.g. 1). Recent advances 
in biotechnology have enabled the generation of high 
throughput genome-wide dense single nucleotide 
polymorphism (SNP) data. Even though there have been 
large successes in genome-wide association studies 
(GWAS), GWAS still cannot substitute QTL mapping due 
to high false positive and false negative rates compared to 
linkage mapping (2). In linkage mapping, when multiple 
correlated traits are available, a number of studies have 
shown that jointly modeling correlated traits can 
significantly improve the power and mapping precision to 
detect QTLs (3-5). For a gene with a pleiotropic effect, 
often it might code for a product which has a signaling 
function on various targets. This is practically important as 
the gene might belong to a signaling pathway and could be 
a potential target for further functional validation. This 
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makes linkage mapping with multiple traits particularly 
attractive as it can test the pleiotropic effect of a QTL (6). 

 
Genomic imprinting is an epigenetic 

phenomenon in which the expression of the same alleles 
could be different, owning to their parental origin (7). It 
plays a critical role in early stage development in many 
species, which makes it practically important to identify 
imprinted genes underlying various traits of interest (8). In 
addition to Mendelian traits, genomic imprinting has been 
routinely considered in genetic mapping, with the aim to 
identify genes with sex-specific expression due to 
epigenetic modification. So far, various statistical attempts 
have been made to map imprinted QTLs (iQTLs) 
underlying complex traits (e.g. 9-16). 
 

In current applications, statistical methods for 
iQTL mapping are predominantly focused on single trait 
analysis, termed univariate iQTL mapping. In real 
application, it is frequent to observe multivariate traits 
which are potentially controlled by imprinted genes. For 
example, the percentage of endoreduplication and mean 
ploidy level in maize endosperm are two highly correlated 
traits (17). The two traits describe the level of 
endoreduplication in endosperm, which is thought to be 
genetically controlled by imprinted genes (18). We have 
previously developed a variance components statistical 
framework for mapping iQTLs underlying the single 
endosperm trait (see 16). Considering the advantage of 
joint analysis of multiple traits in QTL mapping, in this 
study we propose a multivariate variance components 
model in mapping iQTLs underlying multivariate imprinted 
traits, and further determine if there is a pleiotropic iQTL 
effect (6, 19). 
 

Our work is based on a published endosperm 
mapping data set, and the biological application makes the 
study particularly attractive (17). Endosperm is a triploid 
tissue resulting from a unique double fertilization process 
in angiosperms. As a result, the endosperm genome carries 
two copies of chromosomes inherited from female parent 
and one copy from male parent. Maize endosperm cells 
undergoing endoreduplication are generally larger than 
other cells, which consequently results in larger fruits or 
seeds and is beneficial to human beings (20). It is thus 
particularly important from the breeding point of view to 
identify which genes control the endoreduplication process 
and where they are located in the genome. To our best 
knowledge, no study has been conducted to map iQTLs 
underlying the imprinting process with multivariate traits. 
 

Variance components models have been shown to 
be powerful tools in multi-trait linkage analysis for an 
outbred or human population (e.g., 3, 4). Due to the special 
inbreeding structure and unique genetic make-up of the 
endosperm genome, the current multi-trait linkage analysis 
methods cannot be directly applied to the endosperm 
genome. We have previously shown that the variance 
components model can be applied to an inbreeding 
population to identify imprinted QTLs underlying a 
univariate endosperm trait (16). As an extension to our 
previous method, in this work we propose a bivariate iQTL 

mapping method to target iQTLs with potential pleiotropic 
effects. This study will fill the gap in genetic mapping 
iQTL underlying multiple endosperm traits by considering 
the imprinting property of a QTL. 
 
3.  STATISTICAL METHOD 
 
3.1. The genetic model and parent-specific allelic 
sharing 

We consider a backcross design initiated 
with two inbreeding parental lines with a large 
contrast in the phenotype of interest. Denote the 
genotype of two parental lines as 

AA
 a n d  

aa
.  W e  t h e n  u s e  the F1 

lines ( Aa ) as the maternal parents to backcross with 
both parental lines to generate two backcross 
segregation populations. In terms of the endosperm 
genotype, the backcross offspring is denoted 

as m m fA A A
, m m fa a A

and m m fa a a
, where the 

subscript m or f implies that the corresponding allele 
is inherited from the maternal or paternal parent, 
respectively. Similarly, we can use the two parental 
lines as the maternal parent and backcross with the 
F1 line to generate two different backcross 
populations which contain the same sets of genotype 
as the other two crosses. For a detailed description of 
the backcross design, readers are referred to table 1 
in Li and Cui (16). Note that the endosperm 
genotypes resulting from the backcross design 
contain two identical gene copies from the maternal 
parent and are different from a regular diploid 
mapping population. 

 
Consider two phenotypic traits of interest. 

Let 11 1 1( ,..., )
k nk

Ty y=y
and 12 2 2( ,..., )

k nk

Ty y=y
 

be two vectors of observed trait values for trait 1 and 

2 in the kth backcross family, where kn
 is the 

number of observations in family ( 1,..., )k K= . We 
assume a multivariate normality for the joint 

distribution of 1k
y

 and 2k
y

. Denote the genotype-

specific cytoplasmic maternal effects as ( 1k
β

, 2k
β

), 

additive genetic effects at a QTL as ( 1k
a

, 2k
a

), 

polygenic additive effects as ( 1k
g

, 2k
g

), and random 

environmental effects as ( 1k
e

, 2k
e

) for the two traits 
in a bivariate model. To consider the imprinting 
effect of a QTL, the additive genetic effects are 
further partitioned into parent-of-origin effects due to 
the maternal alleles with respect to each trait 

(denoted as 1mk
a

, 2mk
a

), and effects due to the 

paternal allele (denoted as 1 fk
a

, 2 fk
a

). The genetic 
model underlying two endosperm traits can be 
expressed as: 
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1 1 1 2 1 2 1 2

1 2 1 2

( , ) ( , ) 2( , ) ( , )

   ( , ) ( , )
k k k k mk mk fk fk

k k k k

a a a a

g g e e

β β= + +

+ +

y y
                                   

 

Equation (1)  
 
where the coefficient of the maternal allele effect is set as 2 
due to the two identical copies. 
 

For the proposed backcross design, there are a 
total of three possible maternal genotypes, denoted as AA , 
Aa  and aa . Thus ( 1k

β  and 2k
β ) denote mean 

parameters of two traits with respect to three maternal 
genotypes, i.e., 1k

β = ( 11k
µ , 12k

µ , 13k
µ ) T , 2k

β = ( 21k
µ , 

22k
µ , 23k

µ ) T . The random effects corresponding to trait 

( 1,2)j =  are 
mkja , 

fkja , 
kj

g and 
kj

e  which are 

normally distributed, i.e., 2
|~ (0, )

mk jj m k ma N σ∏ , 
2

|~ (0, )
fk jj f k fa N σ∏ , 2~ (0, )

k jj k gg N σΦ  and 

2~ (0, )
k jj k ee N I σ , where 2

jmσ  and 2
jfσ are the additive 

genetic variances at a QTL for the maternal and paternal 
alleles respectively; |m k∏  and |f k∏  are identical-by-

descent (IBD) sharing matrices that are derived from the 
maternal and paternal alleles among sib-pairs, respectively; 

2
jgσ  and 2

jeσ  are the additive polygenic and residual 

variances, respectively; kΦ is the expected proportion of 

alleles shared IBD; and kI  is the identity matrix. The 
above model is similar to a bivariate variance components 
model described in Almasy et al. (4), except that here we 
incorporate the parent-specific allelic effects. For two 
correlated traits, the covariances of random effects are 
expressed as ( ) 121 2 |Cov a ,a

mk mk m k mσ= ∏ and 

( ) 121 2 |Cov a ,a
fk fk f k fσ=∏ for the additive genetic effects 

at a QTL; ( ) 121 2Cov g ,
k k k gg σ= Φ for the polygenic 

effects; and ( ) 121 2Cov ,
k k k ee e I σ=  for the residual 

effects. 
 
The above variance components model is built 

upon the basis of IBD sharing at a QTL. For a triploid 
inbreeding population, a unique decomposition of parent-
specific allele sharing is illustrated in figure 1 of Li and Cui 
(16). Following the definition given in Li and Cui (16), the 
phenotypic variance-covariance corresponding to trait j 
(=1, 2) in family k can be expressed as: 

2 2 2
| / | |

2 2         I
j j j

j j

kj m k m m f k mf f k f

k g k e

σ σ σ

σ σ

=∏ +∏ +∏

+Φ +

∑
, where / |m f k∏  

is the IBD sharing matrix due to cross-sharing of allele 
derived from different parents and 2

jmfσ  is the variance 

term due to allele cross-sharing for an inbreeding 
population (16). Note that 2

jmfσ = 0 for an non-inbreeding 

population, but it could be non-zero for a partially 
inbreeding population (21). The covariance of two 
phenotypic traits is expressed as  

 

12 12 12

12 12

12 | / | |

          I
k m k m m f k mf f k f

k g k e

σ σ σ

σ σ

∑ =∏ +∏ +∏

+Φ +
.  

 
With the above notation, the phenotypic 

variance-covariance matrix of two phenotypic traits within 
the kth backcross family can be expressed as 
                                                                           

1 12

2

k k
k

k

 
=  
 

∑ ∑
∑

∑
    Equation (2) 

 
The IBD sharing probability mentioned above is 

calculated assuming that a QTL is located at a marker 
position. Unless markers are dense enough, a QTL can be 
anywhere in the genome bracketed by two flanking 
markers. Here we assume a QTL can be anywhere in the 
genome and calculate the IBD sharing probability based on 
the recombination information between a putative QTL and 
two flanking markers. In a genome-wide linkage scan, we 
search a QTL every 1 or 2cM throughout the entire genome 
and the conditional probability of a QTL conditional on 
two flanking markers can be calculated (see 22). These 
conditional probabilities are then considered when 
calculating the IBD probability of a putative QTL at a 
given genome position (see 16 for more details). 

3.2.  Parameter estimation 
Let 1 2( , )

k k

T
k y y=y . Assuming multivariate 

normality of ky  and independence between different 

families, the log-likelihood function for K  families can be 
expressed as 
                                                               

( ) { }
1
log ( ; , )

K

k k
k

f β
=

Ω = ∑∑ yl    Equation (3) 

where ( , )β θΩ =  and 11 12 13 21 22 23( , , , , , )β µ µ µ µ µ µ=  
contains the genotype-specific maternal effects, and 

1 12 2 1 12 1 1

1 12 2 1 12 2

2 2 2 2 2
2

2 2 2 2 2
2

( , , , , , , , ,

         , , , , , , )
m m m f f f mf mf

mf g g g e e e

θ σ σ σ σ σ σ σ σ

σ σ σ σ σ σ σ

=
contains  

different random variance components. The parameters can 
be estimated with either maximum likelihood (ML) method 
or the restricted maximum likelihood (REML) method. In 
our previous investigation, we did a comprehensive 
comparison of the two methods in estimating variance 
components based on a diploid mapping population (15). 
The results indicated that the ML method is faster than the 
REML method, but the REML method gives less biased 
results, which is consistent with the work of Corbeil and 
Searle (23). The less biased results make the REML 
estimation method more attractive. In the following, we 
briefly outline the REML estimation procedure and 
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more details about the REML algorithm can be found in 
the Appendix. 
 

All data in K  families form one big vector 
denoted as y with dimension 

1
1 ( 2 )K

kk
N N n

=
× = ∑ . The 

vector y can be further partitioned into three vectors 

1 2 3 = ( , , )Ty y yy , where phenotype 1y  corresponding to 

families with maternal genotypes AA , 2y  corresponding 

to families with maternal genotypes Aa  and 3y  
corresponding to families with maternal genotypes aa  in 
different backcross families. Similarly, β  can be expressed 

as β ={ }1 2 3, ,β β β = 1311 12

2321 22

, ,
µµ µ
µµ µ

      
     
       

. With this 

partition, the REML log-likelihood function can be 
expressed as 
                                             
( )

{ }

3

1
3

' 1 '

1

log[ ( | )]

1 log | | log(| |)
2 r

r
r

r r r r r r
r

f y

X X y P y

∗

=

−

=

Ω = Ω

∝ − ∑ + ∑ +

∑

∑

l
                     

Equation (4) 

where
1

1

1
1

1

111

1 1
21

1
~ , ...

1

l
kk

l
kk

n

n
l

y N
µ

µ
=

=

  ∑   ∑  ∑ =      ∑ ∑    

; 

11 2
11

1 2
11 1 2

112

2 1
22

1
~ , ...

1

l l
kk l

l l
kk l

l
n

n
l l

y N
µ

µ

+

= +

+

= +

+

+

 ∑   ∑    ∑ =      ∑ ∑    

; 

1 2
11 2

11 2

113

3 1
23

1
~ , ...

1

K
kk l l

K
kk l l

l l
n

n
K

y N
µ

µ
= + +

= + +

+ + ∑   ∑    ∑ =      ∑ ∑    

;

1 2 3l l l K+ + = ;  ( 1,2,3)rl r =  denotes the number 
of families generated from the backcross with 

maternal genotype AA  ( 1r = ), Aa  ( 2r = ) and 

aa  ( 3r = ); r∑ 's are block diagonal matrices; and 
1 1 ' 1 1 ' 1( )r r r r r r r r rP X X X X− − − − −= ∑ −∑ ∑ ∑ . Then the 

Fisher scoring algorithm can be derived for parameter 
estimation. The details are given in the Appendix. 
 
3.3.  Hypothesis testing 

We propose to search for iQTLs across the 
genome by assuming a putative QTL every 1 or 2cM 
by partitioning the whole linkage map into small 
intervals. At each putative QTL position, we test if 
there is a significant QTL effect on the bivariate 
traits by formulating the following hypotheses 

 

1 2 12 1 2 12

1 2 12

2 2 2 2
0

2 2

1 0

:  

0

:   is not true

m m m f f f

mf mf mf

H

H H

σ σ σ σ σ σ

σ σ σ

 = = = = =


= = = =



                   

  

Hypothesis (5) 
 

The significance of the above test is assessed through 

the likelihood ratio test (LRT). Let Ω%  and Ω̂  be estimates of the 

unknown parameters under 0H  and 1H , respectively, then the 
likelihood ratio statistic is evaluated by 
                                                                 

ˆLR=-2[ log ( | ) log ( | )]L y L yΩ − Ω%                                                 
Equation (6) 
 
which, under the null hypothesis, is distributed as a mixture 
chi-square distribution with the form  
 

2 2 2 2 2
9 7 6 5 46 6 6 6 6

2 2 2 2
3 2 1 06 6 6 6

6 6 6 6 61 4 3
0 1 2 2 35 5 5

: : : : :
2 2 2 2 2

6 6 6 6 62 1 4
3 4 4 5 65 5 5

: : :
2 2 2 2

χ χ χ χ χ

χ χ χ χ

         
         
         

         
+         

         

 (24). Due to 

correlations of tests across the genome, permutations can 
be applied to determine the genome-wide significance 
threshold. 
 

Once a QTL is identified at a genomic position, 
its imprinting property for both phenotypic traits is assessed 
by the following imprinting hypothesis 

                                                                  

1 1 2 2 12 12

2 2 2 2
0

1 0

: , ,

:   is not true                         
f m f m f mH

H H

σ σ σ σ σ σ = = =



                                  

Hypothesis (7) 
 

Again, the likelihood ratio test is applied and the 
test statistic (denoted as impLR ) asymptotically follows a 

chi-square distribution with 3 degrees of freedom. If the 
null is rejected at the tested QTL position, the QTL is 
declared as an iQTL. We can further assess whether the 
imprinting effect is due to complete silence of the maternal 
allele by testing 

                                                                       

1 2 12

2 2
0

1 0

: 0

:  is not true         
m m mH

H H

σ σ σ = = =

   

                                       

Hypothesis (8) 
 
or due to complete silence of the paternal allele by testing 

1 2 12

2 2
0

1 0

: 0

:  is not true         
f f fH

H H

σ σ σ = = =

  
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The likelihood ratio test statistic (denoted as 

mimpLR and 
fimpLR ) corresponding to the above two tests 

follows a mixture chi-square distribution with 

0

1 1
2 2 212 12
3 1

cos cos1: :
2 2 2

π ρ ρχ χ χ
π π

− −−  (25). 

 
We can also test whether a QTL controls trait 1 

by testing 

                                                                                       

1 1 1

2 2
0

1 0

: 0

:  is not true         
m f mfH

H H

σ σ σ = = =



                                  

Hypothesis (9) or controls trait 2 by testing 

                                                                               

2 2 2

2 2
0

1 0

: 0

:  is not true         
m f mfH

H H

σ σ σ = = =



                                         

Hypothesis (10) 
 

The likelihood ratio statistic corresponding to the 
above tests is denoted as j

pleioLR  ( 1,2j = ) which under 

the null asymptotically follows a mixture chi-square 
distribution with the form 

1 1 1 2
12 13 23 3

1 1 1 2
12|3 13|2 23|1 2

1 1 1 2
12 13 23 1

1 1 1 2
12|3 13|2 23|1 0

1 [2 cos cos cos ] :
4
1 [3 cos cos cos ] :

4
1 [cos cos cos ] :

4
1 1[ [3 cos cos cos ]
2 4

π ρ ρ ρ χ
π

π ρ ρ ρ χ
π

ρ ρ ρ χ
π

π ρ ρ ρ χ
π

− − −

− − −

− − −

− − −

− − −

− − −

+ +

− − − −

 

 
where rsρ  refers to the correlation between the variance 
terms r and s  ( , 1,2,3r s = ) which is calculated from the 
Fisher information matrix, and the conditional correlation is 
defined as ( )

( ) ( )| 1/2 1/22 21 1
rs rt st

rs t

rt st

ρ ρ ρ
ρ

ρ ρ

−
=

− −

. The detailed 

derivation can be found in Li and Cui (25). 
 

Rejection of the null of the above two tests 
indicates the pleiotropic effect (i.e., one gene acts on two 
traits). But if two genes are closely linked at the detected 
(i)QTL (i.e., close linkage), the pleiotropic effect might be 
a false positive due to close linkage. Thus, it is essential to 
distinguish a pleiotropic effect vs close linkage. This is 
exactly the relative advantage of the multi-trait linkage 
analysis. To further distinguish close linkage against 
pleiotropic effect, we develop the following two tests 

                         

12 12 120

1 0

: 1

:  is not true          
m f mfH

H H

ρ ρ ρ= = =



                                        

Hypothesis (11) for testing pleiotropic effect and 

12 12 120

1 0

: 0

:  is not true          
m f mfH

H H

ρ ρ ρ= = =



                                         

Hypothesis (12) 
 

for testing close linkage, where ρ.′s are genetic correlation 
measures for different variance components between two 
traits. The null hypothesis in test Hypothesis (11) indicates 
that the additive effects for two traits are perfectly 
correlated and two traits are possibly controlled by a single 
gene. On the contrary, the null hypothesis in test 
Hypothesis (12) indicates two closely linkage genes at one 
(i)QTL location. The likelihood ratio test is denoted by 

pLR  for test Hypothesis (11) and co inLR −  for test 

Hypothesis (12). The null distribution of pLR  has a 

mixture chi-square distribution (since 1 is a boundary point 
for correlation ρ ) with the form 

1 1 1 2
12 13 23 3

1 1 1 2
12|3 13|2 23|1 2

1 1 1 2
12 13 23 1

1 1 1 2
12|3 13|2 23|1 0

1 [2 cos cos cos ] :
4
1 [3 cos cos cos ] :

4
1 [cos cos cos ] :

4
1 1[ [3 cos cos cos ]
2 4

π ρ ρ ρ χ
π

π ρ ρ ρ χ
π

ρ ρ ρ χ
π

π ρ ρ ρ χ
π

− − −

− − −

− − −

− − −

− − −

− − −

+ +

− − − −

, while 

the null distribution of co inLR −  follows a regular chi-square 
distribution with 3 degrees of freedom, i.e., LRco-in 

~ 2
3χ since 0 is not a boundary point. Note that the 

assessment of pleiotropic effects vs close linkage only 
occurs at the genomic location where there is an (i)QTL 
being identified by the overall genetic test. 
 

4.  SIMULATION 

4.1.  Simulation design 
We designed a simulation study to evaluate the 

performance of the joint analysis as well as the effect of 
different genetic designs on testing power and parameter 
estimation. Six equally-spaced markers (M1-M6) were 
simulated for one linkage group assuming a backcross 
design. This linkage group covers a length of 100cM. 
Haldane map function was used to convert map distance to 
recombination rate. Assume there was one QTL located at 
48cM away from the first marker which had effects on two 
phenotypic traits. Phenotypic values of two traits were 
generated from a multivariate normal distribution with 
variance-covariance specified in Equation (2). Parameter 
values used for simulation are given in Table 2-3. 

 
As described in Li and Cui (16), different 

combinations of family and offspring size could influence 
testing power and parameter estimation. To mimic the real 
data, we fixed the total sample size as 400 and considered 
two designs, i.e., 4 families with 100 offsprings each 
(denoted as 4×100) and 20 families with 20 offsprings each 
(denoted as 20×20). In each simulation scenario, the IBD 
value of any two siblings was calculated at every 2cM 
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Table 1. The power, QTL position and variance components parameter estimates based on 100 simulation replicates for data 
simulated assuming a Mendelian QTL with no imprinting effect under the 4×100 design. True values used for simulation studies 
are indicated by <>. The standard errors of the parameter estimates are given in parentheses 

Trait Position 
1

2
mσ  1

2
fσ

 1

2
mfσ

 2

2
mσ  2

2
fσ

 2

2
mfσ

 1

2
gσ

 2

2
gσ

 1

2
eσ  2

2
eσ  

Power Type I
Error

 <48cM> <0.75? <0.75> <0.5> <0.375> <0.375> <0.25> <1.5> <0.75> <3> <1.5>   
T1+T2* 47.82 0.56 0.55 0.80 0.44 0.41 0.52 1.91 0.97 3.04 1.50 0.76 0.06 
(4×100) (10.04) (0.27) (0.35) (1.17) (0.18) (0.21) (0.56) (1.28) (0.57) (0.51) (0.23) - - 

T1 44.66 0.30 0.50 0.87 - - - 2.04 - 2.88 - 0.70 0.10 
 (18.28) (0.45) (2.32) (1.49) - - - (1.23) - (0.61) - - - 

T2 46.78 - - - 0.20 0.35 0.65 - 0.95 - 1.50 0.60 0.12 
 (15.02) - - - (0.32) (1.01) (1.65) - (0.56) - (0.25) - - 

T1+T2 47.36 0.72 0.71 0.71 0.44 0.45 0.43 1.56 0.78 3.04 1.50 0.78 0.03 
(20×20) (10.36) (0.42) (0.59) (0.66) (0.25) (0.31) (0.31) (0.77) (0.34) (0.39) (0.17) - - 

*T1 and T2 refer to trait 1 and trait 2. The true QTL is located at 48cM. Power is calculated based on Hypothesis (5) for testing 
the overall QTL effect. Type I error is calculated based on Hypothesis (7) for testing the imprinting effect.
 
 

 
 
Figure 1. The LR profile plot averaged over 100 replicates. The solid, dotted and dash lines correspond to LR profiles with the 
analysis considering both traits, trait 1 and trait 2, respectively. The true QTL position is indicated by the arrow sign (48cM from 
marker 1). 
 
along the linkage group using the approach described in Li 
and Cui (16). The REML method was adopted to estimate 
unknown parameters of interests, and 100 simulation 
replicates were recorded. 
 
4.2.  Simulation results 

Figure 1 plots the likelihood ratio statistic 
averaged over 100 simulation replicates across the entire 
linkage group obtained with the proposed multivariate 
analysis and single trait analysis. The bivariate analysis 
shows consistently high LR values across the linkage group 
with a clear peak corresponding to the simulated QTL 
position, which implies the potential power gain in QTL 
identification with the joint analysis. This is further 
confirmed by the power analysis in Table 1 (82% power for 

the bivariate analysis vs 70% and 60% for each single trait 
analysis) with data simulated assuming no imprinting effect 
(i.e., 

1 1

2 2
m fσ σ=  and 

2 2

2 2
m fσ σ= ). 

 
The parameter estimation, power of QTL 

identification and type I error of the imprinting test are 
summarized in Table 1. Overall, the joint analysis gives 
larger statistical power (82%), smaller type I error rate for 
the imprinting test (6%) and less biased variance 
components estimation compared to the results obtained 
with the single trait analysis. We also noticed that the joint 
analysis gives less bias and smaller standard error in QTL 
location estimation compared to the single trait analysis. In 
addition, the joint analysis greatly improved the false 
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Table 2. The power, REMLs of the QTL position and effect parameters estimated based on 100 simulation replicates for a QTL 
showing different imprinting effects under the 20×20 sampling design. True values used for simulation studies are indicated by 
<>. The standard errors of the parameters are given in parentheses 

Position 
1

2
mσ  1

2
fσ

 2

2
mσ  2

2
fσ

 1

2
mfσ

 12mfσ
2

2
mfσ

1

2
gσ

12gσ
2

2
gσ

1

2
eσ 12eσ  2

2
eσ  

Power1 Power2 ipower1

<48cM>     <0.5> <0.3> <0.25> <1.5> <0.9> <0.75> <3> <1.8> <1.5>    
 <1.5> <0> <0.75> <0>             

46.46 1.16 0.33 0.73 0.29 0.68 0.30 0.50 2.07 1.26 1.04 2.90 1.74 1.46 0.87 0.87 0.34 
(10.59) (0.61) (0.29) (0.32) (0.22) (0.61) (0.50) (0.32) (0.83) (0.52) (0.39) (0.38) (0.24) (0.17)    

 <0> <1.5> <0> <0.75>             
50.52 0.17 1.10 0.14 0.65 0.66 0.36 0.40 1.46 0.87 0.71 3.08 1.85 1.54 0.65 0.69 0.43 

(27.39) (0.18) (0.97) (0.14) (0.52) (0.59) (0.43) (0.30) (0.63) (0.39) (0.30) (0.32) (0.22) (0.17)    
 <1> <0.5> <0.5> <0.25>             

46.10 0.92 0.69 0.54 0.49 0.74 0.36 0.48 1.63 0.98 0.83 3.02 1.81 1.50 0.78 0.82 0.13 
(12.52) (0.44) (0.69) (0.29) (0.31) (0.66) (0.47) (0.32) (0.80) (0.51) (0.37) (0.40) (0.26) (0.19)    

 <0.5> <1> <0.25> <0.5>             
48.34 0.56 0.95 0.32 0.55 0.86 0.41 0.45 1.59 0.96 0.79 2.95 1.78 1.50 0.68 0.68 0.25 

(18.83) (0.42) (0.82) (0.24) (0.42) (0.77) (0.54) (0.41) (0.68) (0.42) (0.32) (0.34) (0.22) (0.17)    
Power1 and Power2 refer to the overall QTL detection powers calculated based on the empirical and the theoretical test; iPower1 
refers to the imprinting power for testing 

1 1 2 2 12 12

2 2 2 2
0 : , ,f m f m f mH σ σ σ σ σ σ= = = . The imprinting test is only conducted at the 

position where Hypothesis (5) is rejected. 
 

Table 3. The estimated parameters for the two endosperm traits: mean ploidy level (Ploid) and percent of the endoreduplicated 
nuclei (Endo) 

Ch QTL Position 
1

2
mσ

 12mσ  2

2
mσ  1

2
fσ

 12fσ
 2

2
fσ

 1

2
mfσ

 12mfσ
2

2
mfσ impp

 mimpp
 fimpp

 pp
 co inp −

2* bnlg 0.19 0.31 0.96 0.04 -0.16 0.76 0.09 -0.29 1.97 0.15 - - 0.88 0.95 
4* umc+5.62cM 0.70 1.23 2.48 0.32 0.59 1.10 0.01 0.06 1.30 0.02 0.56 ≈ 0 0.03 0.09 
6* bnlg+23.49cM 0.30 0.60 2.10 0.43 1.11 2.84 0.12 -0.51 4.97 0.04 0.03 0.88 ≈ 0 0.09 
7 dupssr 0.27 0.38 0.52 0.28 0.50 1.05 0.01 -0.05 0.20 0.99 - - 0.88 0.73 
9* umc+10cM 0.31 0.21 0.19 0.30 0.42 1.73 0.32 -0.03 ≈ 0 0.26 - - 0.88 0.64 
10* MMC+8cM 0.38 0.62 1.07 0.32 0.68 1.43 0.01 -0.08 0.66 0.16 - - 0.07 0.01 

Note: Six QTLs for joint traits Ploi and Endo are located at chromosome 2, 4, 6, 7, 9 and 10. QTLs showing 
significance at the genome-wide level are indicated by *. impp ,

mimpp , 
fimpp , pp  and co inp − are the p-values for testing imprinting 

effect (
1 1 2 2 12 12

2 2 2 2
0 : , ,m f m f m fH σ σ σ σ σ σ= = = ), complete maternal imprinting (

1 2 12

2 2
0 : 0m m mH σ σ σ= = = ), complete paternal 

(
1 2 12

2 2
0 : 0f f fH σ σ σ= = = ), pleiotropic effect (

12 12 120 : 1m f mfH ρ ρ ρ= = = ) and co-incidence linkage 

(
12 12 120 : 0m f mfH ρ ρ ρ= = = ), respectively. 

 
positive control with the 4×100 design. The simulation 
results indicate that the joint mapping by incorporating 
bivariate phenotypic information greatly improves the 
efficiency of QTL detection. 

 
The above simulation results were based on a 4×100 

design. Our previous investigation showed that this design is less 
powerful for single trait analysis compared to the 20×20 design 
when the sample size is fixed (16). Thus, we did additional 
simulation under the 20×20 design. The results showed improved 
power for QTL detection and also improved precision for 
parameter estimation (Table 2). In real application, our 
recommendation is to adopt a balanced design with a reasonably 
large family size. 

 
Focusing on the 20×20 design, we did additional 

simulation to evaluate the performance of imprinting analysis for 
the joint model under different imprinting mechanisms. The results 
are tabulated in Table 3. Four imprinting mechanisms were 
considered: complete paternal imprinting (i.e., 

1 2

2 21.5, 0.75m mσ σ= =
and 1 2

2 2 0f fσ σ= =
), complete maternal 

imprinting (i.e., 1

2 2
2 0m mσ σ= =

and  

 

1 2

2 21.5, 0.75f fσ σ= =
), partial paternal imprinting (i.e., 

1 2

2 21, 0.5m mσ σ= =
 and 1 2

2 20.5, 0.25f fσ σ= =
), and partial 

maternal imprinting (i.e., 1 2

2 20.5, 0.25m mσ σ= =
 and 

1 2

2 21, 0.5f fσ σ= =
).  

 
The results showed that the complete maternal 

imprinting case has the lowest power (65%). This is due 
to the fact that a backcross endosperm genome carries 
two maternal copies. When there is no genetic effect for 
the maternal copies, we expect the power to be lower. 
We also realized the overall relatively low imprinting 
power. By increasing the sample (e.g., double the total 
size to 800), we did find largely improved imprinting 
power (data not shown). The simulation study implies 
that large samples are always desirable to obtain 
reasonably large imprinting power, which is feasible for 
an experimental cross, especially for plants. For the 
proposed backcross design study, more than 1000 
samples are needed in order to achieve good imprinting 
power, preferably with a 40×25 design.
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Figure 2. The profile of the log-likelihood ratios (LR) for testing the existence of QTLs underlying the two endosperm traits 
across the 10 maize linkage groups ( 1 10,...,G G ). 

 
5.  REAL DATA ANALYSIS 

Endosperm is created from the fusion of two 
polar nuclei and a sperm cell, resulting in a triploid tissue 
with two identical chromosomes inherited from the 
maternal parent and one chromosome from the paternal 
parent. The endosperm supplies nutrition to the embryo 
during seed germination, and serves as a major source of 
food for human beings (26). The function of the endosperm 
is far more complicated than we understand, and is beyond 
simple nutrient delivery to the embryo. As mentioned in the 
introduction section, maize endosperm cells undergoing 
endoreduplication are generally larger than other cells (20). 
Recent empirical study revealed that endoreduplication in 
maize endosperm may be associated with genes showing 
parent-of-origin effects (18). 

 
A study was recently launched to identify parent-

of-origin effects associated with endoreduplication in maize 
endosperm (17). Two inbred lines (Sg18 and Mo17) were 
used to generate the F1 population. Four backcross 
segregation populations were then generated following a 
reciprocal backcross design, i.e., Sg18× F1, Mo17× F1, 
F1× Sg18, and F1×Mo17, with each one containing 
roughly around 90 offspring. Two endosperm traits, % of 
endoreduplication (denoted as Endo) and mean ploidy level 
(denoted as Ploid) were measured for each of the backcross 

offspring, and 10 linkage groups were constructed from the 
observed marker data. More details about the description of 
the data can be found in Coelho et al. (17). The data set 
was previously analyzed with a single trait variance 
components model and significant imprinting genes were 
identified (16). 

 
The sample correlation between the two traits is 

0.812 after combining the four backcross phenotype data 
together, which indicates the potential benefit of a joint 
analysis by using the proposed bivariate variance 
components model. To enhance the power of iQTL 
mapping and further identify the pleiotropic iQTL effect, we 
applied our newly derived method to this data set. Figure 2 
shows the LR profile plot across the ten linkage groups. In 
addition to the results based on the joint analysis (solid curve), 
the single trait analysis results are also plotted (dotted line for 
trait Endo and dashed line for trait Ploid). The 5% genome-
wide significance threshold corresponding to the joint analysis 
(horizontal dotted lines) was determined by permutations 
based on repeatedly shuffling the relationship between marker 
genotypes and phenotypes (27). The horizontal dotted line in 
G7 indicates the 5% chromosome-wide permutation threshold. 
Note that the single trait analysis was done without correcting 
for the neighborhood QTL effect, hence the LR curves 
obtained in Li and Cui are different from the ones presented 
in this paper (16). 
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As shown in the figure, five QTLs were detected 
at the 5% genome-wide significance level and are located 
in linkage groups G2, G4, G6, G9 and G10. One QTL in 
G7 only passes the chromosome-wide threshold and is a 
suggestive QTL. Compared to the single trait analysis 
results, more QTLs were detected by the joint analysis. 
Table 3 lists the estimates of the QTL position, variance 
components, and p-values for testing overall QTL effect 
and various imprinting and pleiotropic effects. With the 
joint analysis, the identified QTLs in G4 and G6 are 
imprinted with imprinting p-values 0.02, and 0.04 
respectively. Further tests show that the QTL in G4 shows 
paternal expression ( 0

fimpp ≈ ), and the QTL on G6 

shows maternal expression ( 0.03
mimpp = ). The other QTLs 

do not show an imprinting effect. We further evaluated the 
pleiotropic vs close linkage effect of the six QTLs. The 
results indicated that two iQTLs in G4 and G6 show 
significant co-incident linkage ( 0.05co inp − > and 

0.05pp < ), while the QTL in G10 shows a pleiotropic 

effect ( 0.05co inp − < and 0.05pp > ). The p-values for 

the other QTLs are all larger than 0.05, hence no 
conclusion about pleiotropic or close linkage effect can be 
made. This might be due to the issue of genetic design and 
small sample sizes. The LR profile plot in Figure 2 
indicates the power of the joint analysis over the single trait 
analysis. In addition to the increased power for QTL 
identification, we were also able to test the pleiotropic 
effect of (i)QTLs. The (i)QTLs shown pleiotropic effects 
should be paid special attention for follow-up functional 
validation. 

6.  DISCUSSION 

A number of studies have shown that for 
correlated traits, multivariate approaches for genetic linkage 
analysis can increase the power and precision to identify 
genetic effects, especially when a QTL has a pleiotropic effect 
on several traits (5, 6). Considering the importance of 
imprinted genes in endosperm development and the relative 
merit of multi-trait analysis, we developed a bivariate variance 
components model based on a reciprocal backcross design to 
identify iQTLs while incorporating the special genetic make-
up of the triploid inbreeding population. Simulation studies 
showed the performance of the method under different 
sampling designs with finite sample size. Comparing the 
results of joint analysis with those of single trait analysis, the 
joint analysis greatly improves the performance in QTL 
position estimation, testing power, and type I error rate. 

 
We applied the joint model to a real data set with 

two endosperm traits, e.g., % of endoreduplication and mean 
ploidy level. Six QTLs were detected on G2, G4, G6, G7, G9, 
and G10 across the maize endosperm genome. Among the six 
QTLs, five showed genome-wide significance, two are iQTLs 
with maternal imprinting (on G4) and paternal imprinting (on 
G6). Compared with the single trait analysis, more QTLs were 
mapped in the joint analysis. In maize, several paternal 
imprinting genes have been identified. For example, there 

is the r  gene in the regulation of anthocyanin, the seed 
storage protein regulatory gene dsrl, the MEA gene in seed 
development and some α - tubulin genes (28-31). Study 
has shown that endoreduplication shows a maternally 
controlled parent-of-origin effect (18). Given that no 
specific gene has been reported to control 
endoreduplication, the identified iQTLs could serve to 
locate potential candidate genes for further functional 
validation. 

 
In addition to mapping several QTLs, we also 

identified significant pleiotropic effects. In maize, some 
vital genes displaying pleiotropic effects have been 
reported. For example, maize zfl regulatory genes have 
pleiotropic effects on structure traits in branching and 
inflorescence formation (32). The tb1 gene and its 
intergenic sequences illustrates the pleiotropic effects on 
maize morphology (33). A maize gene GLOSSY1 (GL1) 
expresses its effect on trichome size and cutin structure 
during epidermis development (34). Given the high 
correlation between the two endoreduplication traits, the 
identification of genes with pleiotropic effects is practically 
important. Further functional verification is needed to 
confirm the findings of this investigation. 

 
In the simulation study, the results indicate low 

power for imprinting detection with the 4×100 design. This 
result is consistent with the findings we found earlier for a 
single trait analysis (16). When we changed the design to 
20×20 with a fixed total sample size, improved results were 
observed (Table 3). Even with the extremely unbalanced 
design (4×100), simulations also show reasonable false 
imprinting detection rate (6%). The real data setting is quite 
similar to the simulation design, thus the detected 
imprinting effects should have little chance to be false 
positives. Overall, the simulation studies provide practical 
guidance to real experimental designs: try to maintain a 
balanced sampling design and avoid extremely small 
families with large offspring and extremely large families 
with very small offspring. 

 
The current method was derived for single iQTL 

mapping. Extension to multiple iQTL mapping is in fact 
not straightforward. Further investigation is needed in this 
context. On the other hand, even though the method was 
developed for experimental crosses, extension to human 
genetic mapping studies is straightforward. The only 
modification is the IBD sharing probability of sibpairs, 
where the calculation should take the family structure into 
account (e.g., 9). In fact, the IBD calculation is simpler in 
humans, because the cross sharing probability reduces to 
zero for a natural population with random mating. We hope 
our method will shed light on human genetic mapping 
studies to identify imprinting effects with variance 
components models while considering multiple traits. 
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8.  APPENDIX 

Derivation of Fisher scoring algorithm for REML 
estimation 

 
Define the IBD sharing matrices corresponding to 

the three phenotypic vectors as 

|(1)
|

0
0 0
m r

m r

∏ 
∏ =  

 
 with dimension 

1 1

1 1

l l

k k
k k

n n
= =

×∑ ∑ for matrix 0. 
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The IBD sharing matrices for |f r∏ , |mf r∏ , 

rΦ , and rI  can be similarly defined and are denoted as 

|f r

s∏ , 
|m r

s∏ , s
rΦ  and s

rI  ( , 1,2,3s r = ; 

1 2 3l l l K+ + = ). Let u
∗ ∂

=  
∂Ω 

l
 be the score vector of 

the first derivative of the log-likelihood function in (4) with 
respective to each variance component, i.e., 
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=  
∂Ω ∂Ω 

l
 be the Hessian matrix 

(The matrix is too large to be included and is omitted here). 
The Fisher information matrix, ( )I Ω , in the REML 
procedure is obtained by taking the expectation of the 
negative Hessian matrix. The algorithm starts with 

( 1) ( ) 1 ( ) ( )( )t t t tI u+ −Ω = Ω + Ω . Given initial values 
(0)Ω , the iteration starts and stops until converges. Upon 

convergence, the REML estimator of β  is just the 
generalized least squares estimator, that is, 

( ) 1
1 1ˆ ˆˆ yT TX X Xβ

−
− −= ∑ ∑  
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