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1. ABSTRACT 

 
Issues in determining the threshold values of 

QTL mapping are often investigated for the backcross and 
F2 populations with relatively simple genome structures so 
far. The investigations of these issues in the progeny 
populations after F2 (advanced populations) with relatively 
more complicated genomes are generally inadequate. As 
these advanced populations have been well implemented in 
QTL mapping, it is important to address these issues for 
them in more details. Due to an increasing number of 
meiosis cycle, the genomes of the advanced populations 
can be very different from the backcross and F2 genomes. 
Therefore, special devices that consider the specific 
genome structures present in the advanced populations are 
required to resolve these issues.  By considering the 
differences in genome structure between populations, we 
formulate more general score test statistics and Gaussian 
processes to evaluate their threshold values. In general, we 
found that, given a significance level and a genome size, 
threshold values for QTL detection are higher in the denser 
marker maps and in the more advanced populations. 
Simulations were performed to validate our approach.  

 
 
 
 
 
 
 
 
2. INTRODUCTION 

 
The statistical model of interval mapping (IM) 

proposed by Lander and Botstein (1) is generally a normal 
mixture model, as the genotypes of the quantitative trait 
locus (QTL) are not observable and needed to be inferred 
from its flanking markers. In the parameter estimation of 
the normal mixture model, the maximum likelihood 
estimation is commonly implemented to obtain the 
maximum likelihood estimates (MLE) through the EM 
algorithm (2) by treating the model as an incomplete-data 
problem. Typically, the presence of a QTL, i.e. the null 
hypothesis of no QTL, is tested over the all possible 
positions in the whole genome by using likelihood ratio test 
(LRT) statistics, and the position with the significantly 
maximum LRT statistic is regarded as the estimated QTL 
location. Under this framework, it has been recognized that 
the determination of the threshold values for claiming 
significant QTL detection (rejecting the null hypothesis) 
along the genomes is one of the complicated and important 
issues in QTL mapping (3-4) for the following reasons. 
One is that the QTL position is unidentified under the null 
hypothesis, and the maximum LRT statistic does not follow 



Threshold values for QTL mapping 

2671 

the standard x2 distribution asymptotically (4). Further, 
various factors, such as the number and size of intervals, 
population genome structures, and informativeness of 
markers, will involve in and should be considered in 
determining the threshold value for claiming QTL detection 
(5-8). Besides, because multiple correlated and 
uncorrelated tests are performed in searching for QTLs on 
the whole genome, the common pointwise significance 
level is not appropriate and genomewise significance level 
should be considered in QTL mapping (1,4,6,8).  

 
Several theoretical and simulation 

approximations have been proposed to determine the 
threshold values of QTL detection. Lander and Botstein (1) 
suggested using Bonferroni argument for sparse-map case 
and ORENSTEIN-UHLENBECK diffusion for dense-map 
case to determine the threshold value.  For intermediate 
situations, extensive numerical simulations have been used 
to determine the thresholds (1,9). Churchill and Doerge 
(10) suggested using a permutation test for determining an 
appropriate threshold values for specific data sets. Rebai, 
Goffinet and Mangin (11) used Davies's bound (12) to 
derive a conservative formulas for calculating the 
approximate thresholds for backcross and F2 populations. 
They demonstrated good performance of their formulas 
using simulation. Dupuis and Siegmund (13) provided 
approximate formulas to calculate the threshold for the case 
of very dense markers in the population, but they did not 
take interval mapping into account in their approximation. 
Piepho (14) also used Davies's bound to propose a quick 
method for computing the approximate thresholds for 
general designs. The quick method is computationally 
inexpensive and claimed to be an alternative to permutation 
procedure. Zou et al. (8) and Chang et al. (4) proposed a 
score-statistic framework to assess the threshold values. As 
the maximum of the square of score test statistics is 
asymptotically equivalent to the maximum LRT statistics, 
the threshold values derived from the score test statistics 
can be used as those for the LRT statistics in the population 
(4, 8, 15-16). 

 
On the basis of score test statistics, Zou et al. (8) 

proposed a resampling approach to obtain the threshold 
values mainly for the F2 population by simulating the F2 
genome structure. Chang et al. (4) also devised a score-
statistic method for computing the threshold values in a 
backcross population by analytically analyzing the 
backcross genome structure. Chang et al. (4) showed that 
score test statistics along the genomes is a Gaussian 
stochastic process with mean zero and well-structured 
covariance, and they used them to compute the threshold 
values of QTL detection in the backcross population. The 
score-statistic method not only can be less computationally 
demanding than the permutation test and numerical 
simulation, but also can be more accurate than previous 
approximate formulas in the computation of the threshold 
values (4,8). So far, most of the studies of assessing the 
threshold values for QTL detection are investigated in the 
backcross and F2 populations (8, 11 and 14 discussed the 
threshold values for F3 populations), still they are generally 
lacking or inadequate for the progeny populations after F2 
(advanced populations). These advanced populations, such 

as recombinant inbred (RI) and advanced intercrossed (AI) 
populations, have been well devised and implemented in 
genetic studies. For example, Bai et al. (17) used RI 
populations in rice and Kelly et al. (18) implemented AI 
populations in mice for investigating the genetic 
architectures of quantitative traits in their studies. For 
specific populations where time is not an issue, the 
advanced populations can have some very useful properties 
in that their genomic structures allow researchers to yield 
better results in their investigations. Therefore, it is of 
importance to address the issues of assessing the threshold 
values for these populations in more details in QTL 
mapping study. Due to the fact that these advanced 
populations undergo multiple meiosis cycles, their genomic 
structures, such as homozygosity, genotypic frequency and 
variance components, are differing and can be very 
different from the backcross and F2 genomes. In this 
article, by distinguishing between different population 
genome structures, we formulate more general score test 
statistics and Gaussian processes under the framework of 
interval mapping to compute the threshold values and to 
study their behaviors for various populations. One of the 
keys to our approach is to devise the genotypic 
distributions of two, three and four genes of the populations 
into the formulations, so that their specific genome 
structures can be well described to address these issues 
across various populations. Simulation studies are 
performed to evaluate our approach to assessing the 
threshold values. The R program of our approach is 
available on http://www.stat.sinica.edu.tw/~chkao/.  
 
3. EXPERIMENAL POPULATIONS 
 
3.1. Advanced populations 

Various experimental populations have been 
designed for the study of QTL mapping. Among these 
populations, the backcross and F2 populations have been 
the most widely used designs in the studies. Besides, the 
progeny populations from the F2, which are called 
advanced populations, are also very common. These 
experimental populations are produced as follows. A cross 
between two parental inbred lines, P1 and P2, is performed 
to produce an F1 population. If the F1 individuals are 
backcrossed to P1 or P2, it produces the backcross 
population. If the F1 individuals are selfed or randomly 
mated, it produces an F2 population. If the F2 population is 
further selfed and/or randomly mated for generations, the 
produced progeny populations will be called advanced 
populations. These advanced populations include 
recombinant inbred (RI) and advanced intercrossed (AI) 
populations. As the RI populations or AI populations is 
obtained by repeatedly selfing (inbreeding) or randomly 
intermating the F2 individuals for several generations, 
their genomes will be subject to more meiosis cycles as 
compared to the backcross and F2 populations. 
Therefore, the genomic constitutions, such as 
homozygosity, genotypic distribution and linkage 
disequilibrium, of the advanced populations will be 
different from each other (19) and no longer similar to 
those of the backcross and F2 populations. In general, 
selfing will increase the homozygosity at the expense of 
heterozygotes. Also, further meiosis cycles tend to 
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accumulate crossovers so that the proportion of 
recombinants will increase and linkage disequilibrium 
between genes will reduce in the populations. These 
features in the advanced populations can be very useful and 
may allow for more productive investigations. For 
example, the RI populations can increase the homozygosity 
to assist the detection of additive effects in QTL mapping 
(20). Further, the AI populations can harbor more 
recombination events in a short chromosome segment for 
genetic fine mapping and may provide better power in the 
separation of closely linked QTL (20-21). 
 
3.2. Genotypic distributions 

As will be shown and explained later, an 
important key to successfully compute the threshold values 
for these populations is to well devise the genotypic 
distributions of one, two, three and four genes of the 
populations into the formulations, so that the specific 
genome structures of the populations can be well 
considered under our proposed framework. We now explain 
briefly how these genotypic distributions are obtained in 
different populations. Consider an F2, AI or RI 
population used for the QTL mapping studies. In 
general, for m genes, there are 2m different gametic 
genotypes and 2(2m-1)+2m/2 zygotic genotypes. 
Therefore, for m=1, 2, 3 and 4, there are 2, 4, 8 and 16 
gametic genotypes and 3, 10, 36 and 136 zygotic 
genotypes. As the different populations undergo 
different numbers of meiosis cycle, they will have 
different distributions of gametic and zygotic genotypes 
in the genomic constitutions. For one gene, there are 
three possible genotypes, P1 homozygote, heterozygote 
and P2 homozygote. The frequencies of these three 
genotypes are expected to be 1/4, 1/2 and 1/4, 
respectively, in the AI populations. In the RI 
populations, the frequency of heterozygote is halved in 
each selfing cycle. For m=2, 3 or 4, the genotypic 
frequencies in different AI and RI populations can be 
obtained by using the transition equations of Haldane 
and Waddington (22), Geiringer (23), and Kao and Zeng 
(20, 24). These transition equations, which are derived 
under the assumptions of Haldane map function and 
equal crossover value in two sexes, aim to obatin the 
genotypic distributions of the populations in different 
generations when individuals are subject to random 
mating or selfing process. In RI populations, the 5, 20 
and 72 transition equations in Haldane and Waddington 
(22) and Kao and Zeng (20, 24) can be used to compute 
the frequencies of the 10, 36 and 136 genotypes of two, 
three and four genes. In AI populations, the gametic 
frequencies are first computed, and then the genotypic 
frequencies can be obtained from the product of gametic 
frequencies. To obtain the frequencies of the 4, 8 and 16 
gametic frequencies for m=2, 3 and 4, Geiringer's 
approach (23) can be used to formulate the transition 
equations of gametic frequencies or the sets of transition 
equations provided by Kao and Zeng (20, 24) can be 
directly used. Conceptually, it is also possible to obtain 
the genotypic distributions for any number of genes in 
any AI and RI populations by extending their 
approaches. However, there may be too many equations, 
and each equation contains numerous terms.  

4. STATISTCAL MOEL OF INTERVAL MAPPING 
FO QTL 
 
4.1. Statistical model 

The data structure of QTL mapping generally 
consists of two parts, jy  ( ),1,= nj ⋅⋅⋅  for the quantitative 

trait value and jX  ( ),1,= nj ⋅⋅⋅  for the genetic markers. 
An interval mapping statistical model for testing a QTL, Q, 
at the position x  in an interval, I , flanked by markers, M 
(with alleles M and m) and N (with alleles N and n), is 
proposed as 

iiii dzaxy εµ +++= **   (1) 
where iy  is the quantitative trait value of the i th 
individual, a  and d  are the additive and dominance 

effects of Q, *
ix  and *

iz  defined as 
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2
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*
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are the coded variables of genotypes of Q, and iε  is a 

random error. We assume iε  follows N (0, 2σ ). In general, 
as Q may not be coincident with a marker, its genotype is 
not observable and can be QQ  ( 1=*

ix  and 1/2=* −iz ), 

Qq  ( 0=*
ix  and 1/2=*

iz ) or qq  ( 1=* −ix  and 

1/2=* −iz ) for an individual i . 
 
4.2. Conditional probabilities 

Although Q is not observable, its genotypic 
distribution can be inferred from its flanking marker 
genotype according to the principle of conditional 
probability as 

 

)MN(
)MQN()NM,|Q(

P
PP = .  (2) 

 
Therefore, obtaining the above probability 

involves in the use of the genotypic distributions of two and 
three genes in the experimental populations. For any 
advanced population under consideration, the two flanking 
markers can have nine different genotypes, MN/MN, 
MN/Mn, Mn/Mn, MN/mN, MNmn (MN/mn or Mn/mN), 
Mn/mn, mN/mN, mN/mn and mn/mn. For each one of the 
nine marker genotypes, the genotype of Q can be QQ , 
Qq  or qq . When M, N and Q are considered together, 

there are 27 different genotypes and 27 corresponding 
conditional probabilities. In the following, we denote these 
27 conditional probabilities by ijp 's, ,91,2,= Li  indexing 

the marker genotypes and 1,2,3=j  indexing the QTL 
genotype. It should be pointed out that, in the 2F   
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Table 1. General formulations for the conditional probabilities (mixing proportions) of a putative QTL, Q, flanked by two 
markers, M and N, in the advanced populations from two inbred lines 

marker genotype Trait mean Expected  
frequency Conditional probabilities of  Conditional probabilities of  Conditional probabilities of 

   QQ Qq qq 

 
  

   

 
  

   

 
  

   

 
  

   

   
   

 
  

   

 
  

   

 
  

   

 
  

   
The alleles of M, N and Q are denoted as (M,m), (N,n) and (Q,q), respectively. 

 
 
population, it is straightforward to obtain ijp 's, as the 
genotypic distributions of two and three genes have a 
simple relationship with the recombination fractions 
between M, Q and N. For example, the frequencies of 
digenic gametes Mq and qN  are /2=)( 1rMqP  and 

/2=)( 2rqNP , where 1r  and 2r  are the recombination 

fractions between Q and M and between Q and N. The 
frequency of trigenic gamete MqN  can be easily obtained 

by the product of the two digenic frequencies as 
/2=)()(2=)( 21rrqNPMqPMqNP ×× , and the 

conditional probability of qq  genotype given the flanking 
marker genotype MN/MN is simply as 

2
21

2 )]/(1[=)]()/([=)/( rrrMNPMqNPMMNNqqP − , 

where r  is the recombination fraction between M and N. 
Nevertheless, such a simple relationship for straightforwardly 
computing the conditional probabilities does not hold in the 
more advanced populations. Here, we implement the sets of 
transition equations proposed by Haldane and Waddington 
(22), Geiringer (23) and Kao and Zeng (20, 24) to obtain the 
genotypic frequencies of two and three genes as have been 
mentioned in the previous section. With these frequencies, the 
27 conditional probabilities of QTL genotypes given the 
flanking marker genotypes in any populations can be obtained 
(see Table 1). These conditional probabilities play very 
important roles in constructing the statistical QTL mapping 
model for precise QTL mapping. 
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5. LIKELIHOOD OF THE STATISTICAL MODEL 
 

For an individual i , the unobservable Q at 
position x  can be QQ , Qq  or qq  with certain 
probabilities depending on the flanking marker genotypes. 
Now let 1iq , 2iq  and 3iq  denote the three probabilities of 
Q being QQ , Qq  or qq  for the individual i , 
respectively, and these probabilities at position x  can be 
obtained from the 27 conditional probabilities in Table 1. 
That is ijq 's, ni ,1,2,= L , can be found from kjp 's, 

,91,2,= Lk . If Q is QQ  (with probability 1iq ), the 

distribution follows ),( 2
1 σµN , where /2=1 da +−µµ . 

Similarly, Q can be Qq  or qq  (with probability 2iq  or 

3iq ), and the distribution follows ),( 2
2 σµN  or 

),( 2
3 σµN , respectively, where /2=2 d−µµ  and 

/2=3 da ++µµ . Therefore, the likelihood of an individual 
is a mixture of three normals with different means and 
mixing proportions, jµ ' s and ijq ' s, 1,2,3=j . For a 
sample with n  individuals, the log likelihood function for 

θ  = ),,,( 2σµ da  at position x  is the sum of the log 
likelihood of the n  individuals as 

∑ ∑
= =

−
−×+−=

n

i j
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qndal

1

3

1
2

2
22 ])

2

)(
exp(log[)2log(

2
),,,(

σ

µ
πσσµ  

(3) 
Note that ijq 's can be determined by the position x  and 
need not to be estimated here. To assist the following 
derivations of score statistics, we classify the n  individuals 
into nine categories according to their marker genotypes 
and reformulate equation (3) as 

∑ ∑ ∑
= = =

−
−×+−=

9

1 1

3

1
2

2
22 ]})

2

)(
exp(log[{)2log(

2
),,,(

i

n

j k

kj
ik

i y
pndal

σ

µ
πσσµ  

(4) 
where 1n , 2n , 3n , 4n , 5n , 6n , 7n , 8n  and 9n  are the 
numbers of individuals with the nine marker genotypes 
MN/MN, MN/Mn, Mn/Mn, MN/mN, MNmn, Mn/mn, 
mN/mN, mN/mn and mn/mn, respectively. Note that the 
log likelihoods for the individuals with the same marker 
genotype have the same mixing proportions, ikp ' s, in the 
reformulated equation. 
 
6. SCORE TEST STATISTICS 
 
6.1. Score functions 

The score functions for the additive and 
dominance effects are the derivatives of the log likelihood 
(Equation (4)) with respective to the parameters, a  and d , 

and using the MLEs of µ  and 2σ , nyi /=ˆ ∑µ  and 

nyi /)ˆ(=ˆ 22 µσ −∑ , evaluated under 0=:0 aH  and 

0=d  at position x  . Let )(1 xu  and )(2 xu  denote the 
score functions of a  and d , respectively. The two score 
functions can be found as  

)].()[(
ˆ2
1=)()]()[(

ˆ
1=)( 312

1=
2231

1=
21 yyqqqxuandyyqqxu iiii

n

i
iii

n

i

−×−−−×− ∑∑ σσ

 

If the n  individuals are classified into nine categories 
according to their marker genotypes, the score functions 
become  

iiiii
i

ii
i

yffppppnxu ×××−−− ∑∑ ]})([){(
ˆ

=)( 31

9

1=
31

9

1=
21

σ
 

(5) 
 and  

,]})([){(
ˆ2

=)( 312

9

1=
312

9

1=
22 iiiiii

i
iii

i

yffppppppnxu ×××−−−−− ∑∑σ
  

(6) 
 where if ' s ( nnf ii /= ) and iy ' s, ,91,2,= Li , are the 
frequencies of individuals and trait means in the nine 
flanking marker categories. To simplify the following 
derivations, now let ik 's and il 's be  

])([)(= 31

9

1=
31 iii

i
iii fppppk ×−−− ∑  (7) 

 and  

],)([)(= 312

9

1=
312 iiii

i
iiii fppppppl ×−−−−− ∑  (8) 

 
 ,91,2,= Li . Note that ik  's and il ' s are closely related to 
the genotypic distributions of two and three genes, as ip  's 
and if ' s are functions of the genotypic frequencies of two 
and three genes in the population. Then, under the null, the 
variances of )(1 xu  and )(2 xu  are  

,
ˆ4

=))((
ˆ

=))(( 2
9

1=
22

2
9

1=
21 ii

i
ii

i

flnxuvarandfknxuvar ×× ∑∑ σσ
 

(9) 
 and the covariance between )(1 xu  and )(2 xu  is  

.
ˆ2

=))(),((
9

1=
221 iii

i

flknxuxucov ××∑σ
       (10) 

6.2. Score test statistics 
If only additive or dominance effect under the 

null, 0=:0 aH  or 0=:0 dH , is considered, the score test 
statistic, )(1 xU  or )(2 xU , is )(1 xu  or )(2 xu  divided by its 
standard deviation as 

.
))((

)(=)(
))((

)(=)(
2

2
2

1

1
1 xuvar

xuxUor
xuvar

xuxU
 

 
If both additive and dominance effects are 

considered at a time, we may define the score function as 
))()((=)( 21 ′xuxuxu . The score test statistic, )(2 xU , for 

0=:0 aH  and 0=d  against 0:1 ≠aH  and 0≠d  at 
location x  takes the form  

( ) ,
)(
)(

  )()(=)(
2

11
21

2




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

−

xu
xu

VxuxuxU  (11) 

where V  is the variance-covariance matrix of )(xu . The 
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elements in V  are the variances and covariance of )(1 xu  
and )(2 xu  in equations (9) and (10). The above derivations 
for score test statistics are relatively simpler as compared to 
the derivations for the MLE, as it avoids the parameter 
estimation of the normal mixture likelihood, which usually 
involves in the use of the iterated EM algorithm for 
obtaining the MLE (25). Also, as given by Cox and Hinkley 
(26) and Chang et al. (4), the maximum of the )(2 xU  is 
asymptotically equivalent to the maximum of LRT. 
Therefore, the maximum of )(2 xU  under the null 
hypothesis can be used to assess the threshold value of the 
maximum likelihood approach in QTL mapping. 

 
6.3. Asymptotic forms of score test statistics 

To understand the null distributions of the score 
test statistics, the asymptotically equivalent forms of 

)(1 xU , )(2 xU  and )(2 xU  are derived below. In 
derivations, we follow Haldane and Waddington (22) to use 
the oblique letters, EEDC ,,,  and G , to denote the 
genotypic frequencies. Let C  be the frequency of MN/MN 
or mn/mn genotype, D  be the frequency of Mn/Mn or 
mN/mN genotype, E  be the frequency of MN/Mn, 
MN/mN, Mn/mn or mN/mn genotype, F  be the frequency 
of MN/mn genotype, and G  be the frequency of Mn/nM 
genotype, respectively. Note that the exact values of 

FEDC ,,,  and G  in the different advanced populations 
can be computed using sets of transition equations as 
mentioned in the previous sections. Therefore, for large n  
in a population, we have Cff == 91

, 

Effff ==== 8642
, Dff == 73

 and GFf +=5
 

asymptotically and can formulate the asymptotic forms of 
)(1 xu , )(2 xu , ))(( 1 xuvar , ))(( 1 xuvar  and ))(),(( 21 xuxucov  

in terms of FEDC ,,,  and G  in any populations. We then 
have  
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 Also, due to symmetry, the term 

iiii
fpp ×−∑ )( 31

9

1=
 in 

ik  (equation (7)) will be zero and 

31= iii ppk −  in a large population. Further, it can be shown 
that 1W , 

2W , 
3W  and 

4W  all follow (0,1)N  asymptotically. 
Consequently, )(1 xZ  follows (0,1)N  asymptotically . 
Similarly, we have the score test statistic of the dominance 
effect as  
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Note that the term iiiii
fppp ×−−∑ )( 312

9

1=
 in 

il  (equation (8)) will be zero in the 2F  and AI 

populations, and it is 1(0.5) 2 −−t  in the RI tF  

populations. As *
1W , *

2W , *
3W , *

4W  and *
5W  follow 

(0,1)N asymptotically, it is also straightforward to show 
that )(2 xZ  follows (0,1)N  asymptotically. If both effects 
are considered at a time, the asymptotic forms of )(2 xU , 
denoted by )(2 xZ , can be obtained from equations (11) by 
using the asymptotic forms of )(1 xu , )(2 xu , ))(( 1 xuvar , 

))(( 2 xuvar  and ))(),(( 21 xuxucov . As 
0=))(),(( 21 xZxZcov , it implies 

)()(=)()( 2
2

2
1

22 xZxZxZxU +≈  in the populations. 
 
7. GAUSSIAN STOCHASTIC PROCESS 
 
7.1. Covariance between test statistics 

The previous discussions mainly focus on 
deriving the score test statistics at a fixed position x . As 
presented in Chang et al. (4), the score test statistics along 
the genomes can be described by Gaussian stochastic 
process asymptotically. To obtain Gaussian processes for 
the different populations, we now derive the relationship 
between the test statistics at two different positions by 
considering the changes in the genomic structure between 
populations. Now consider )(xZ ′  and )(xZ ′′  at two 
different positions x′  and x ′′  in two distinct intervals, 
(A,B) and (C,D), respectively (note that A, B, C and D 
denote markers with alleles (A,a), (B,b), (C,c) and (D,d), 
and oblique letters C , D , E , F  and G  denote the 
genotypic frequencies). To compute their covariances, we 
need to first obtain the covariances between their 
components at the two different positions. To obtain these 
component covariances, we reformulate )(1 xZ  and )(2 xZ  
(Equations (12) and (13)) in much simpler expressions as  

 

,=)(=)( *
5

1=
2

4

1=
1 ii

i
ii

i

WtxZandWsxZ ×× ∑∑
 

 
where 
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it 's are the associated coefficients of 
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 Similarly, the remaining 

is 's and 
it 's are well 

defined and can be found in Equations (12) and (13). Then, 
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the covariance between )(1 xZ ′  and )(1 xZ ′′  can be 
expressed more succinctly as  
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 and the covariance between )(2 xZ ′  and )(2 xZ ′′  is  
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 As it 's and is 's are constants in a population, 

the covariances in Equations (14) and (15) will depend on 
the covariances between 'iW  and '′iW  and between '*

iW  

and '* ′iW  in different positions, i.e. )','( ′ji WWcov 's and 

)','( ** ′ji WWcov 's. To obtain )','( ′ji WWcov 's and 

)','( ** ′ji WWcov 's, note that the two different positions x′  

and x ′′  can be in the two neighboring or non-neighboring 
intervals. If they are in the neighboring intervals (flanking 
markers B and C are the same), evaluating )','( ′ji WWcov 's 

and )','( ** ′ji WWcov 's needs to consider the genotypic 
distributions of three loci. If they are in the non-
neighboring intervals, the evaluation needs to take the 
genotypic distributions of four loci into account. For 
example,  
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where '1⋅y  's and '9⋅y  's ( '1 ′⋅y ' s and '9⋅y ' s) denote the 
trait means of marker genotypes, AB/AB and ab/ab 
(CD/CD and cd/cd), and C  ( C ′′ ) is the frequency of 
individuals with AB/AB or ab/ab genotype (CD/CD and 
cd/cd). This covariance needs to evaluate the four 
covariances, )','( 11 ′⋅⋅ yycov , )','( 91 ′⋅⋅ yycov , 

)','( 19 ′⋅⋅ yycov  and )','( 99 ′⋅⋅ yycov , between trait means in 
different intervals. 
 
7.2. Covariance between trait means 

For n  large, we have  
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where '1n  ( '1 ′n ) is the number of individuals with AB/AB 
or ab/ab (CD/CD or cd/cd) marker genotype. Note that 

CPn ′× =)
AB
AB(  and CPn ′′× =)

CD
CD(  in a population. 

Therefore, we have  
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 Similarly, we can obtain the other components of 

covariances as  
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 Since CPP ′=)
ab
ab(=)

AB
AB(  and 

CPP ′′=)
cd
cd(=)

CD
CD( . The four covariances between 

trait means in different intervals depend on the genotypic 
frequencies of two and four loci. Consequently, the 
covariance between '1W  and '1 ′W  for non-neighboring 
intervals in Equation (16) can be obtained, and it is  
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 which depends on the genotypic frequencies of four loci. 
Similarly, for neighboring intervals, the covariance 
between '1W  and '1 ′W  is a function of the genotypic 
frequencies of three loci, and it is  
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 The other covariances, such as )','( ′ii WWcov 's, 

)','( ** ′jj WWcov 's, )','( *
ji WWcov 's, )','( * ′′ ji WWcov 's, 

'( iWcov , )'* ′jW 's and '( *
jWcov , )'′iW 's, 1,2,3,4=i  and 
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1,2,3,4,5=j , can be obtained in a similar way by first 
deriving their component covariances, i.e. )','( ′⋅⋅ ji yycov 's, 

,91,2,=, Lji . In general, obtaining these covariances 
between different 'iW  and '′iW  needs to first evaluate the 
covariances between different '⋅iy  and '′⋅iy  in the different 
intervals (see Appendix), which will involve in evaluating 
36 genotypic frequencies of three genes for neighboring 
intervals and 136 genotypic frequencies of for genes for 
non-neighboring intervals (20, 24). With these covariances, 
the covariances between the asymptotic score test statistics, 

)(1 xZ ′ , )(2 xZ ′′ , )(2 xZ ′  and )(1 xZ ′′ , in different 
intervals can be computed. It is found that the covariances 
between )(1 xZ  and )(2 xZ  either in the same or different 
intervals are zeros, i.e. 0=))(),(( 21 xZxZcov ′′  
( 0=))(),(( 12 xZxZcov ′′′′ ), 0=))(),(( 21 xZxZcov ′′′  and 

0=))(),(( 12 xZxZcov ′′′ , asymptotically. Essentially, by 
incorporating these covariances into the variance-
covariance matrix of Gaussian process, it can consider the 
differences in genome structure between different 
populations in computing the threshold values. The above 
derivations allow us to explore the behaviors of threshold 
values across populations. 

 
8. SIMULATING THE NULL DISTRIBUTION 
 

The scheme of simulating the null distributions of 
)(sup 2

1 xZ , )(sup 2
2 xZ  and )(sup 2 xZ  is outlined in this 

section. If only additive (dominance) effect is considered, 
we may simulate the components of )(1 xZ ' s ( )(2 xZ  's), 

i.e. iW ' s ( *
iW ' s) in our case, and then to compute )(1 xZ  

's ( )(2 xZ  's) and )(sup 2
1 xZ  ( )(sup 2

2 xZ ) throughout the 
genomes as suggested by Chang et al. (4). If both effects 
are considered at a time, we suggest to simulate their 
subcomponents, iy 's, ,91,2,= Li , (components of iW 's 

and *
iW 's) to obtain the asymptotic forms of )(1 xu , 

)(2 xu , ))(( 1 xuvar , ))(( 2 xuvar  and ))(),(( 21 xuxucov  

and then to compute )(2 xZ  along the genomes using 

Equation (11), and finally to obtain )(sup 2 xZ . Note that it 

is also feasible to obtain )(sup 2
1 xZ  ( )(sup 2

2 xZ ) by 
simulating iy 's. 

When simulating iy 's for every intervals, note 
that there are constraints on iy 's between the current  l th 
interval and the next 1)( +l th interval due to sharing a 
common flanking marker. These constraints are  
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To simulate the null distribution of )(sup 2 xZ  for 
a genome with k  intervals, we suggest the following steps: 
 

1.Generate ( (1)y , (2)y , L , )(ky ) from 

),0( ∑N , where (1)y  is a vector containg the nine trait 

means in the first interval, and )(ly , kl ,2,3,= L , is a 

vector containing six of the nine trait means, e.g., 1y , 2y , 

4y , 5y , 7y  and 8y , in the l th intervals, and ∑  is the 

variance-covariance matrix of the trait means. The 
construction of ∑  for the normal distribution needs to 

evaluate the covariances between different iy 's by using 
the genotypic distributions of three and four genes (see 
APPENDIX). 

 
2.Compute the remaining three trait means, e.g., 

3y , 6y  and 9y , for the 2nd to k th intervals using the 
three constraints (equations (18),  (19) and  (20)). The 
dimension of ∑  is usually large and is 

3)(63)(6 +×+ kk . 
 
3. Compute the score test statistics, )(2 xZ 's, at 

all positions in the k  intervals along the genome, and find 
and record their maximum. 

 

The above steps are repeated many times, say 
10,000 times, to obtain the approximate distribution of 

)(sup 2 xZ . The threshold value at significant level α  can 
be determined accordingly. The R program of our approach 
is available on http://www.stat.sinica.edu.tw/~chkao/. 
 
9. REAL EXAMPLE AND SIMULATION STUDIES 
 
9.1. Real example 
As a real data application, we considered a backcross 
model to compute the threshold value of QTL mapping in a 
pseudo-testcross population of Radiata pine. One hundred 
and twenty markers contributed genotypic information 
across twelve linkage groups and covered ~1679.3 cM. The 
traits considered are tree diameter, branch quality scores 
and brown cone number. The average spacing of the 107 
marker intervals was 13.5 cM. The maximum distance 
between two adjacent markers is 74.8 cM, and the 
minimum is 1.5 cM. For this practice of QTL detection, 
Kao et al. (7) used Bonferroni argument to choose a value 
of 12.12 (χ2

1,0.05/107) as a threshold in the 



Threshold values for QTL mapping 

2678 

Table 2. Comparison of the proposed and empirical 
thresholds at α=0.05 for different marker densities in F2, AI 
Ft and RI Ft populations 

  RI RI AI AI 
population �1 Proposed2 Empirical3 Proposed2 Empiric

al3 

F2 100 8.103 8.128 8.103 8.128 
 50 8.966 8.978 8.966 8.978 
 20 9.853 9.998 9.853 9.998 
 10 10.574 10.481 10.574 10.481 
 5 11.145 11.120 11.145 11.120 
 2 11.732 11.750 11.732 11.750 
 1 11.959 12.318 11.959 12.318 
F3 100 8.076 9.133 8.183 9.328 
 50 9.080 9.206 9.100 9.463 
 20 10.099 9.495 10.130 10.266 
 10 10.859 10.253 10.887 11.206 
 5 11.487 11.096 11.638 11.655 
 2 12.212 11.535 12.325 12.384 
 1 12.447 12.759 12.580 12.828 
F4 100 8.139 9.072 8.195 9.678 
 50 9.059 9.199 9.183 10.113 
 20 10.107 10.324 10.343 10.677 
 10 11.186 11.099 11.132 11.190 
 5 11.860 11.768 11.886 12.043 
 2 12.493 12.375 12.729 12.567 
 1 12.799 12.729 12.952 12.896 
F6 100 8.273 7.455 8.200 9.972 
 50 9.130 9.656 9.292 10.288 
 20 10.321 9.732 10.617 11.285 
 10 11.315 11.000 11.533 12.299 
 5 12.160 11.280 12.293 12.533 
 2 12.845 12.250 13.260 13.526 
 1 13.257 12.814 13.518 13.973 
F10 100 5.562 5.737 8.194 9.879 
 50 6.296 6.411 9.410 10.401 
 20 6.963 7.307 10.832 11.279 
 10 7.928 7.873 11.871 11.831 
 5 8.560 8.643 12.710 12.189 
 2 9.102 9.210 13.804 12.921 
 1 9.327 9.525 14.261 13.504 

1marker distance (in cM) on a 100-cM chromosome.  2 

based on 10,000 simulations.  3 based on 10,000 data sets 
with 200 individuals from the null distribution. The 
population considers additive effect only, and the other 
populations consider both additive and dominance effects.  

 
analysis. By using our approach, a larger threshold value 
12.43 is obtained. By using 12.43 as a threshold of QTL 
mapping, the numbers of detected QTL for the three traits 
are the same as those by using 12.12 as a threshold in this 
case.  

 
9.2. Simulation studies 

Simulations were performed to evaluate the 
performance of the proposed method and study the 
behaviors of the threshold values under various marker 
densities in several experimental populations. For each 
population, one chromosome with a total length of 100 cM 
was simulated. On the chromosome, we assume that there 
are 101, 51, 21, 11, 6, 3 and 2 evenly spaced markers, i.e. 
the marker distances are 1, 2, 5, 10, 20, 50 and 100 cM, 
respectively. The experimental populations considered 
include F2, AI (RI) F3, AI (RI) F4, AI (RI) F5, AI (RI) F6 
and AI (RI) F10 populations. Except for the RI F10 
population, both additive and dominance effects are 
considered. For the RI F10 population, only the additive 
effect is considered, as there are very few heterozygotes 
due to continuous self.  For each case considered, score test 

statistics are computed every 1 cM, and the number of 
simulated replicate is 10,000. The 10,000 maximums of the 
score test statistics along the chromosome are recorded. To 
validate our method, we also simulate 10,000 sets of the 
traits and markers from 200 individuals for each marker 
density and experimental population under the null 
hypothesis. Each data set is then analyzed by the interval 
mapping approach, and the LRT statistics were computed 
every 1 cM and the 10,000 maximums were obtained for 
comparison. Results of the threshold values at �=0.05 
from the maximums of LRT statistics and score test 
statistics are given in Table 2. It is worth pointing out that 
the score-statistic approach is several hundred times faster 
than the LRT-statistic approach to complete the results in 
Table 2. This advantage of greatly saving computation time 
has been identified by Chang et al. (4).  
 

Table 2 shows that the threshold values obtained 
from the two different approach are generally very close to 
each other, especially, in the F2 population. For example, 
the values by the score-statistic approach are 8.103, 8.966, 
9.853, 10.574, 11.145, 11.732 and 11.959, respectively, for 
the sever marker densities in the F2 population, and those 
from the LRT statistic are 8.128, 8.978, 9.998, 10.481, 
11.120, 11.750 and 12.318, respectively. For more 
advanced AI or RI populations, the differences between the 
threshold values seem to become relatively larger, 
especially for the sparse marker density in the more 
advanced AI populations. For example, in the AI F10 
population, the threshold values from the score test statistic 
are 9.410 and 8.194 in the 50- and 100 cM-marker spacing, 
and those from the LRT statistic are 10.401 and 9.879. 
Also, the threshold values are increasing for denser marker 
maps, which is consistent with the findings in previous 
studies (8, 11). Such an increasing trend becomes more 
obvious in the more advanced populations as compared 
with that in the earlier populations. For example, the values 
for 100- and 1-cM marker spacing are 8.200 and 13.518 
(8.273 and 13.257), respectively, in the AI (RI) F6 
population, and they are 8.183 and 12.580 (8.076 and 
12.447) in the AI (RI) F3 population. Besides, the threshold 
values are higher in the more advanced populations. For 
example, the values for 10-cM marker spacing are 10.574, 
10.887 (10.859), 11.132 (11.186), 11.533 (11.315), 11.871  
in the F2, AI (RI) F3, AI (RI) F4, AI (RI) F5, AI (RI) F6 and 
AI F10 populations. The threshold values in the AI 
populations are generally larger as compared to those in the 
RI populations (except for the case of 100-cM spacing in 
the F6 population). For example, the threshold values are 
8.075, 9.080, 10.090, 10.859, 11.487, 12.212 and 12.447 
for the seven marker densities in the RI F3 population, and 
they are 8.183, 9.100, 10.130, 10.887, 11.638, 12.325 and 
12.580 in the AI F3 population. The similar trends can be 
also observed in the other AI and RI Ft populations. 
 
10. DISCUSSION 
 

When applying the interval mapping procedure 
to search the whole genomes for QTL, typically, the LRT 
statistics are constructed over the all possible positions to 
test for the null hypothesis of no QTL, and the position 
with the significant maximum of LRT statistic is regarded 



Threshold values for QTL mapping 

2679 

as the estimated QTL position. Under such a procedure, the 
determination of the threshold values for the test statistics 
to declare significance has been a central issue in QTL 
mapping. As the maximums of the score test and LRT 
statistics are asymptotically equivalent (4, 8, 26) and the 
computation cost of the score test statistics is much cheaper 
(4, 8), we propose a general score-statistic approach to 
computing the threshold values of QTL detection for 
various experimental populations. These experimental 
populations include F2, AI and RI populations. In our 
approach, the score test statistics are formulated in terms of 
the trait means of marker classes, mixing proportions, and 
the genotypic distributions of two and three genes of the 
populations. The asymptotic distribution of the score test 
statistics along the genomes is characterized by a Gaussian 
process with mean zero and well-structured variance-
covariance matrix. We devise the genotypic distributions of 
three and four genes into the variance-covariance matrix to 
take care of the changes in the genomic structure between 
different populations, so that the threshold values for the 
different populations can be computed and their behaviors 
can be explored in various marker densities and genome 
sizes. The validity of our approach is compared with the 
LRT statistics by Monte Carlo simulations. In general, the 
threshold values obtained by our approach are very close to 
those by the LRT statistics in the various advanced 
populations as shown in Table 2. Given a significance level 
and a genome size, the threshold values should be enhanced 
in denser marker maps and in more advanced populations.  

 
The different advanced populations are subject 

to different numbers of meiosis cycle either by inbreeding 
and/or random mating. They will produce different 
genomic structures, and their genotypic distributions will 
be different from each other. By recognizing such 
differences between populations, we incorporate the 
distributions of two, three and four genes of these 
populations into the score test statistics and Gaussian 
processes (equations~(12),  (13),  (14) and (15)). Therefore, 
our approach can consider their specific genome structures 
to well compute their threshold values and investigate their 
behaviors. More importantly, it has to be pointed out that 
the genotypic frequencies of three and four genes can be 
directly obtained by the genotypic frequencies of pairwise 
genes in the F2 populations, as the F2 genomes have a 
Markovian structure under Haldane map function (27). 
However, for advanced populations, this Markovian 
property disappears, and obtaining the genotypic 
frequencies of three and four genes is not straightforward. 
Here, we use the sets of transition equations proposed 
by Kao and Zeng (20, 24) to obtain these frequencies. 
If these frequencies are approximated by using Jiang 
and Zeng's method (28), which implicitly assumes a 
Markovian property, and the approximate frequencies 
are used in the construction of the test statistics and 
Gaussian processes in the computation of the 
threshold values. We found that the threshold values 
obtained by using the approximate genotypic 
frequencies are generally larger, especially in the 
denser marker maps and in the more advanced 
populations (results not shown), as compared to those 
by using exact frequencies. 

The proposed score-statistic approach for 
computing the threshold value is mainly devised for the 
interval mapping model, i.e. a single QTL model. Under a 
single QTL model, the score test statistics for the additive 
and dominance effects in equations (12) and (13) are not 
mixtures and are functions of the nine trait means. The nine 
trait means correspond to the nine flanking marker 
genotypes whose proportions are adjusted to different 
population structures. In the setup of the variance-
covariance matrices of Gaussian processes, the elements 
are obtained from the covariances between the test statistics 
(trait means). Therefore, it needs to consider the 
distributions of three (for neighboring intervals) and four 
genes (for non-neighboring intervals) at a time, and the 
dimension of the variance-covariance matrix is usually 
large. For example, the dimensions of the matrices are 
63×63 (9+(10-1)×6 = 63) and 123×123 (9+(20-1)x6 = 
123) for a chromosome with 10 and 20 intervals, 
respectively. If composite interval mapping (CIM; 6) or 
multiple interval mapping (MIM; 7) is considered, it 
will need to evaluate many more genotypic frequencies 
of more genes to construct a much higher-dimensional 
variance-covariance matrix in the processes. Taking a 
two-QTL MIM model, yi = µ+a1x1

*+ a2x2
* +εi, as an 

example, if searching a chromosome segment with 10 
marker intervals for the first QTL (testing H0: a1=0 and 
a2 ≠ 0) by conditioning on the second QTL in the other 
region, the score test statistic for a1 can be classified 
into 81 different categories according to the 81 marker 
genotypes of the two flanking intervals (92=81), and 
each category contains mixture components. As the 
score statistic is a mixture, the derivations of its 
variance and asymptotic form are not simple. 
Furthermore, the dimension of the variance-covariance 
matrix in the Gaussian process will increase to 567x567 
(81+(10-1)x54=567), and obtaining the covariance 
elements needs to evaluate the 2080 genotypic 
frequencies of six genes for this MIM model. If the 
second QTL is coincident with a marker, the two-QTL 
MIM model reduces to a CIM model. The corresponding 
score test statistic can be classified into 27 categories 
corresponding to 27 marker genotypes. The variance-
covariance matrix of the Gaussian process has a 
189x189 (27+(10-1)x18=189) dimension, and obtaining 
the covariance elements needs to evaluate the 528 
genotypic frequencies of five genes for this CIM model. 
Certainly, if more QTL are considered at a time in the 
model, the obtaining of the score test statistics and 
Gaussian processes will be even more complicated as 
they will involve using the distributions of a large 
number of genes at a time in the populations. 
Consequently, the issues in determining the threshold 
values for the multiple-QTL models remain challenging.  
The approaches to unraveling these issues will not be in 
a straightforward manner and are worth pursuing in the 
future. 
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12. APPENDIX 
 

Evaluation of the covariances between ’s and 

’s, , at the two different positions,  and  

, in two distinct marker intervals,  and , 
respectively, are presented below. In general, the evaluation 
involves using the genotypic distributions of two, three and 
four genes in the populations. There are 81 covariances in 
total. If the two intervals are nonneighboring, the 
covariances are functions of the genotypic frequencies of 
two and four genes. They are listed below. 

 

 
 

 
 

 
 

 
 
where , ,  and  denote the alleles of 

markers , ,  and , respectively, define   is the 

frequency of  or  genotype, 
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If the two intervals are neighboring, the 
covariances are functions of the genotypic 
frequencies of two and three genes, and they can be 
obtained in a similar way. The frequencies of the 10, 
36 and 136 genotypes for two, three and four genes in 
the different advanced populations can be obtained by 
using the transition equations of Haldane and 
Waddington (1931) and Kao and Zeng (2009, 2010). 
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