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1. ABSTRACT

Quantitative biology requires high precision
measurement of cellular parameters such as surface areas or
volumes. Here, we have developed an integrated approach
in which the data from 3D confocal microscopy and 2D
high-resolution transmission electron microscopy were
combined. The volumes and diameters of the cells within
one population were automatically measured from the
confocal data sets. The perimeter of the cell slices was
measured in the TEM images using a semi-automated
segmentation into background, cytoplasm and nucleus.
These data in conjunction with approaches from stereology
allowed for an unbiased estimate of surface areas with high
accuracy. We have determined the volumes and surface
areas of the cells and nuclei of six different immune cell
types. In mast cells for example, the resulting cell surface
was 3.5 times larger than the theoretical surface assuming
the cell was a sphere with the same volume. Thus, our
accurate data can now serve as inputs in modeling
approaches in systems immunology.

2. INTRODUCTION

A mechanistic understanding of biological
processes requires the generation of quantitative data sets
and their description in mathematical terms. This approach
has been extensively used in the last years for a detailed
understanding of signal transduction pathways . As many
mathematical models are based on ordinary differential
equations, their calibration requires accurate data of as
many reaction network components as possible. The
experimental data that serve as an input to the models
include kinetics or dose responses of protein
phosphorylations (measured by intracellular flow
cytometry, beads based assays, mass spectroscopy or
Western blotting) or protein-protein interactions (quantified
by immunoprecipitations followed by Western blotting,
flow cytometry or mass spectroscopy) . Common
parameters to be measured are reaction rates (measured by
enzyme assays), association constants (determined by
surface plasmon resonance or flow cytometry) and initial
protein concentrations.
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In modeling, it is common practice to determine
some parameters by fitting the mathematical model to the
experimental data , which is a reasonable approach in many
cases. However, the more parameters are determined
experimentally the better are the models. In addition, often
relative changes rather than absolute values are measured,
requiring scaling factors. Thus, it is important to determine
the concentration of molecules in molar values, such as
moles of a receptor per area of the cell surface or moles of
a signaling molecule per volume of cytoplasm. In the case
of proteins, one can use quantitative Western blotting or
flow cytometry in combination with appropriate
standards to determine the total number of a protein on
the cell surface or inside the cell . However, the surface
area is not easy to measure and its measurement thus
constitutes a severe error source in the determination of
membrane protein concentrations.

In many reports, the cell is considered as a sphere  or
a cylinder  and the volume or surface area are calculated using
the according formula. But as evidenced form electron
microscopy (EM) images, the surface of many cell types is not
smooth and the cell is not a perfect sphere or cylinder. Many
cell surfaces contain protrusions that make the total surface
area larger than calculated from the assumption of a perfect
sphere or cylinder. Therefore, the surface density of membrane
proteins calculated by supposing a spherical cell is higher than
it is in reality.

Besides the measurement of relative increases in cell
volume, for example upon cell growth , several technologies
were used to estimate the volume of cells. These include
Coulter counting, flow cytometry, radioisotope labeling,
impedance measurements and light-microscopy  as well as
stereological techniques (see below). One of the currently used
techniques to estimate cell surface area and volume is confocal
light microscopy . In this method, image sets consisting of very
thin, serial optical sections across the cell are obtained and a
three-dimensional (3D) model of an individual cell is
constructed using digital image processing techniques. To
obtain the average of a cell population a large number of cells
have to be processed. Further, scanning ion conductance
microscopy is also used for measuring cell volumes . However,
light microscopy-based methods have a limited spatial
resolution of approx. 0.2 µm, which might not be enough to
visualize finer cell protrusions.

A high-resolution technique to visualize even small
cellular structures is transmission EM (TEM). Indeed, TEM
has been used to determine the nuclear and cytoplasmic
volumes and the surface area of cells .

In stereology a quantitative analysis of 3D structures
is undertaken based on the evaluation of 2D images .
Stereological approaches are applied in physiology, neuro-
sciences or immunology  where complex tissues are sampled
and also for single cell suspensions .

In stereology unbiased sampling strategies have
been developed to give every point in a biological sample
the same probability to be observed . This allows to directly

compute parameters of the 3D tissue from measurements
within random 2D sections.

The standard procedure in stereology allows
for computing the total surface area or the total
cytoplasm volume within a certain reference volume
from the random 2D sections analyzed by TEM. As we
were interested in the surface area per cell, we would
need the exact number of cells within the reference
volume, which cannot be obtained from random
sections. A possible solution would be to use aligned
serial sections, but this puts much higher demands on
the preparation and recording and requires to assume a
homogeneous cell density within the sample. More
complex measurements based on 2D slices, such as the
cell size distribution within a population are even more
challenging, and would require additional assumptions.

So we propose to use pure random sections for
the TEM and obtain the missing parameters (cell size
distribution within a given population) by fully
automated 3D confocal microscopy.

3. MATERIALS AND METHODS

3.1. Cells
The human T cell line Jurkat , the murine B cell

line J558L and murine bone marrow derived-mast cells
were grown  using 5% or 10% fetal calf serum. The bone
marrow derived mast cells were a gift of Michael Huber,
Aachen, and Marina Freudenberg, Freiburg. Primary mouse
B cells were obtained from the spleen of C57BL/6 mice
and purified using a CD43 MicroBead MACS Cell
separations Kit in an AutoMACS separator (Miltenyi
Biotech) according to the manufacturer’s protocol .

Human peripheral blood mononuclear cells
(PBMCs) were obtained from anticoagulated peripheral
blood of healthy donors by Ficoll density gradient
centrifugation (PAN-Biotec). For T cell blasts generation
PBMCs (1.5x106 cells/ml) were stimulated with 1.25
mg/ml phytohemagglutinin (PHA) and IL-2 (100 U/ml) for
3 days and with IL-2 only (100 U/ml) for another 2 days.
Primary human T cells were isolated from PBMCs using
the Pan T cell isolation kit II from Miltenyi Biotec
according to the manufacturer’s instructions. In a second
purification step, the MACS-sorted T cells were stained
with APC-labelled anti-CD14, APC-labelled anti-CD19
APC and APC-labelled anti-CD56 and further purified by
FACS sorting. The purity of the isolated primary human T
cell fraction was determined by anti-CD3 staining and was
96%.

3.2. Flow cytometry
Flow cytometric analyses were performed using a

LSRII Flow Cytometer (Becton Dickinson). In order to
compare the different cell types, the voltage for the forward
scatter (FSC) and side scatter (SSC) were fixed to 350 V
and 287 V, respectively. A minimum of 10000 cells were
recorded. Data were analysed with the FlowJo software
(Tree Star, Inc.) as before .
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3.3. Confocal microscopy
Cells were stained in 2 ml culture media with 2

µg Calcein AM (Mill Valley) and 32 mM DAPI
(Invitrogen) at 37°C in 5% CO2 for 45 minutes. Cells were
washed once and resuspending in culture media. Subsequently,
cells were passed through a 41 µm polyamide mesh (Reichelt)
to obtain a single cell suspension. Calcein AM  diffuses into
the cells where it is hydrolyzed by intracellular esterases and
emits a strong fluorescence and thus stains the whole cell.
DAPI binds to the minor groove of the DNA  and thus stains
the nucleus. Confocal microscopy was performed with a Zeiss
AX10 Imager equipped with a CSU-X1 spinning disk
(Yokogawa), an MRM camera and a LCI Plan-Neofluar 63x
water immersion objective (both Zeiss) with an exposure time
of 200 ms. The cytoplasmic dye Calcein AM was excited at
488 nm and measured through the emission filter BP 525/50
SFP. For the nuclear dye DAPI an excitation wavelength of
405 nm was used in combination with the emission filter BP
450/50 DAPI.

3.4. Electron microscopy
For prefixation glutaraldehyde (Sigma) was

added to the culture media to a final concentration of 2.5%
and incubated for 30 minutes. After harvesting, cells were
fixed for 3 h with 2.5% glutaraldehyde in 50 mM
cacodylate buffer and post-fixed with 1% OsO4 at 4°C.
Dehydration through a graded series of ethanol was
performed before embedding in Epon 812 resin. Ultra-thin
(approx. 90 nm) sections were stained with uranyl acetate
(UAc) and lead citrate (PbCit) and examined in a
Philips/FEI CM10 (80 kV) electron microscope equipped
with a Bio-scan Camera Model 792. Images were recorded
with Digital Micrograph software (Gatan).

3.5. Data processing
All programs for the processing of the confocal

data were written in C++. The manual corrections were
done using ImageJ. For the processing of the TEM images,
the Matlab-based Berkley segmentation engine (BSE) was
used . The software for the data evaluation was written in
Matlab.

4. RESULTS

We determined first order stereological
parameters, such as surface and volume, by combining 3D
confocal with 2D electron microscopical methods and
(semi-) automated pattern recognition (Figure 1).

4.1. Design of the study
The 3D images of the cells and the nuclei were

obtained by spinning disk confocal microscopy (Figure
1B). Automatic edge detection and expert control (Figure
1C and D) allowed determining the average volumes, lower
bounds for the surfaces and the size distribution of the cells
as well as the nuclei. The latter was important for
calculating the surface area, since the 2D TEM images do
not allow us to obtain the size distribution of the cells, due
to the fact that one does not know at which height each cell
was cut for image acquisition. For example, the same TEM
image could be obtained from a small cell sectioned at the
“equator” or a large cell sectioned at its ”pole”.

To obtain high resolution data allowing for the
determination of the exact path of nuclear- and cell
membranes, the cells were fixed, sectioned and 2D images
were recorded by TEM (Figure 1E). TEM images were
semi-automatically processed (Figure 1F and G) and
analyzed for the section area and the boundary length of the
cell and nucleus surfaces. The size distribution of the cells
obtained by confocal microscopy and the section area and
boundary length distribution from the high resolution
images by TEM, allowed us to calculate the average
surface area of the cells and the nuclei (Figure 1H). The
average cell and nucleus radii were calculated from the 3D
confocal microscopy areas using the circle formula.

In this study the three main cell types of the
adaptive immune system, T, B and mast cells, were used.
These were primary human T cells from blood of a healthy
donor and phytohemagglutinin/IL-2 expanded human T
cells (T cell blasts), the human T-cell line Jurkat , primary
mouse B cells isolated from the spleen, the murine B-cell
line J558L and bone marrow derived mast cells . Using
flow cytometry we show that 94%, 70%, 80%, 95%, 91%
and 85% of the primary T cells, T cell blasts, Jurkat,
primary B cells, J558L and mast cells, respectively, were
viable (Figure 2A). As expected, the primary cells were
smaller than the cultured cell lines, as seen by the lower
values of the forward scatter. Further, Jurkat cells showed
the highest biological variation concerning the size (FSC,
Figure 2A), where approximately 0.5% of the cells were
giant multinucleated cells (Figure 2B).

4.2. Determination of the cellular and nuclear radii
distributions

Confocal microscopy was used to obtain the
mean radius and the size distribution of the cells and nuclei.
Unbiased sampling was assured by randomly recording all
z-stacks containing several cells within the image display.
In figure 3 we show an example of one z-plane for each cell
type. A differential interference contrast (DIC) image
(Figure 3A), the Calcein AM (whole cell, Figure 3B) and
DAPI (nucleus, Figure 3E) fluorescences are displayed.
The two fluorescence images were recorded, in order to
facilitate a semi-automatic segmentation of the cells and
their nuclei. Grayscale values of the z-stacks were
normalized using a min/max function (Adjust Display
function) to set the range of grayscale between the lowest
and the highest pixel present in the z-stack. We used a
resolution of 0.1 µm in x/y-direction and 1 µm in z-
direction. The resolution in z-direction represents a trade-
off between accuracy and time requirement for the
measurement as it has been discussed for another
stereological project .

The raw data exported from the microscope were
noisy and contained structural details that were not desired
for this evaluation. For this reason a Gaussian smoothing
with standard deviation of 0.3 µm in all three directions
was applied to the data. In order to discriminate between
foreground and background, an intensity threshold was
computed based on the edge information in the data. The
edges of cells and nuclei were determined by considering
the length of the corresponding intensity gradient I, i.e.
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Figure 1. The work flow followed in this report. Firstly, the living cells (A) were stained with Calcein AM (cytoplasm) and
DAPI (nucleus) whose fluorescences were used to determine the shape of the cytoplasm and the nucleus in 3D by spinning disk
confocal microscopy (B). The resulting images were segmented with a thresholding method based on the gradient magnitude and
after a manual control (D) allowed to determine the size distribution of the cells (C) and the nuclei (H). Secondly, the cells were
fixed, stained with OsO4 and PbCit and 2D images recorded by TEM (E). The images were segmented using the Berkeley
segmentation engine (BSE) (F). The resulting segmentation masks were semi-automatically merged (G) and automatically
analyzed for the surface of the section and the boundary length (H). Thirdly, using the mean diameter of the cells obtained by
confocal microscopy and the membrane boundaries drawn into the high resolution TEM images, allowed us to calculate the
structural parameters of the cells and the nuclei (H).

the magnitude of the intensity change between neighboring
pixels. For different thresholds, we compared the values of
the gradient magnitude ||I|| on the resulting boundaries.
The best threshold τ yields cell boundaries lying on the
image edges and thus can be determined by maximizing the
gradient magnitude on the resulting contour.

δ is the Dirac function.

This threshold optimization was done for the
cells with steps in the intensity range from 10 to 1500 and
for the nucleus with steps in the range from 10 to 400, both
with a step size of 2. The result was manually controlled
using an overlay of the computed outline and the original
image in 3D (Figure 3C and F) to exclude incompletely
stained cells, cells that are only partially visible on the
image display or cell doublets (i.e. two cells touching one
another). The resulting binary masks marking the complete
cells (red) and the nuclei (green) are shown (Figure 3H).

The segmentation masks were least reliable in the
z-direction due to data blurring and the lower resolution in
this direction. Thus, we did not use pixel counting of the
complete volume to compute the average radii of the
segmented masks. Instead, the radii were computed from
the z-planes with the maximum section area, i.e. the
equatorial plane of the cell. The section area in the
equatorial plane was measured and the corresponding
radius was calculated using the circle formula. The
resulting distribution of the cellular and nuclear radii in
each cell population is displayed (Figure 3D and G,
respectively). Here and in further analyses we omitted the

few giant multi-nuclear Jurkat cells (Figure 2B; cells with
two or three nuclei that were within the size distribution
were included in our analysis).

In conclusion, spinning disk confocal microscope
images were used to record the biological variability of the
different cell populations concerning their cellular and
nuclear radii.

4.3. Acquisition of high resolution 2D images
Next, TEM was used to obtain images of the cells

with a resolution that allows unequivocal detection of all
membrane protrusions. For each cell type, a magnification
was chosen that allowed recording all cell sections in one
image. The magnifications used were 4600x, 5800x and
13500x, yielding pixel sizes in the x- and y-directions of
0.0196 mm, 0.015 mm and 0.0067 mm. Since the cells do
not have a preferential orientation within the cell
suspension, this results in a systematic random sampling
strategy that gives every position within a cell the same
probability to be sampled.

The precise segmentation of the 2D TEM images
(Figure 4A and 5A) was based on hierarchical regions
computed with the Berkley segmentation engine (BSE) . In
a first step, the image pixels were hierarchically grouped
into regions depending on their grayscale and texture
(Figure 4B and 5B). The BSE tool provides a Matlab-based
graphical user interface for the interactive generation of
final segmentation masks from region hierarchies. Herein,
the region hierarchies are merged by the user drawing dots
and lines (Figure 4C and 5C), such that very little manual
interaction is needed compared to a fully manual
segmentation. The graphical user interface displays the
resulting binary masks (Figure 4F and 5F) and an overlay
over the original data (Figure 4D and 5D). A slight
modification of the input-script was necessary in order to
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Figure 2. Flow cytometric and confocal analysis of the cells used in this study. (A) Primary human T cells, human T cell blasts
and the human T cell line Jurkat as well as primary mouse B cells, the mouse B cell line J558L and mouse bone marrow-derived
mast cells were analyzed by flow cytometry using the forward and side scatter (FSC and SSC). (B) The Jurkat cell line contains a
small proportion of giant cells. These cells contain several nuclei. One example is shown using the cytoplasmic dye Calcein AM
(left), nucleic dye DAPI (middle) and a combined 3D representation (right).

automatically load, process, and save one TEM
image after another. We needed, depending on the image’s
complexity, one to two minutes to generate a segmentation
mask for a cell and the corresponding nucleus, compared to
10 to 20 minutes in a fully manual segmentation.

These binary masks were used to compute the
Euclidean contour length shown in figure 4D and 5D. Since
the contour length is also dependent on the magnification
used, a smoothing was performed. This smoothing had to
be performed in a range that it conserved all biologically

relevant protrusions but removed noise. The choice of the
smoothing factor was reasoned by the fact that the smallest
expected curvature of the membranes are in the range of 60
nm in diameter . Hence, the contour was smoothed with a
blurring kernel with a full duration at half maximum of 50
nm.

In order to validate the results obtained from the
TEM images, the areas of the cell sections were computed
to determine the approximate radii of the cells in the
corresponding cutting plane. From the radii distribution
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Figure 3. 3D spinning disk confocal fluorescence microscopy. For each cell type representative data from the confocal spinning
disk microscope are shown using the z-stack from the equatorial plane (largest radius). DIC (A), Calcein AM (B) and DAPI (E)
fluorescence images are displayed. An overlay of the automatically determined boundaries and the fluorescence images is
displayed for the cells (C) and the nuclei (F). Finally the binary masks that mark the cells and nuclei section areas are shown (H).
From the equatorial areas the corresponding radii were calculated and the radii distributions for the cells and the nuclei are
plotted in the histograms (D and G, respectively).
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Figure 4. High resolution 2D TEM images for the human cells. One representative image from TEM is shown for each cell type
as indicated. The original TEM image (A) was used to calculate the pre-segmentation (B). Using the BSE tool, region hierarchies
were merged manually by drawing dots and lines (C). This semi-automated process resulted in binary masks that fit to the
original images as shown in an overlay (D). The distribution of the boundary length of the cells is plotted in the histograms (E).
The binary masks are shown for the cells (red) and the nuclei (green, F).
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derived from the confocal data (Figure 3D), a
distribution was simulated that would result when
sectioning these cells. A comparison between the
simulated (based on the confocal data) and the
observed (TEM data) distributions was carried out. In
case of the primary B cells and the mast cells the two
distributions were the same, serving as a validation
for our approach. In contrast, the Jurkat cells used for
TEM had a larger radius (1.17 times bigger) than the
ones used for confocal microscopy, which was done
on a different day than the TEM. Indeed, when we
compared Jurkat cells from different origins, slightly
different sizes were seen (flow cytometry data not
shown). However, one Jurkat “clone” had a constant
size independent on the cell density, CO2
concentration (5% or 7.5%) or fetal calf serum
concentration (0% - 10%) of its culture.

4.4. Calculation of the stereological 3D parameters
From stereology we used that LA (the boundary

length per unit area) and AV (the surface area per unit
volume) for random cuts are coupled by

(1)

With the boundary length B per image area A and
the surface area S per reference volume V, equation (1)
reads:

(2)

We were interested in the surface area of an
individual cell (not of a certain volume), so we only
outlined one cell in each image, which corresponded to a
single cell per reference volume. We only used images with
a complete cell section, so the height of the reference
volume was limited to the diameter of the cell d. By
defining the boundary length in image i as bi , the total
boundary in n images is

(3)

The width and length of image is denoted as w
and l. The area of one image is w*l , thus the total area of n
images is

(4)

The reference volume had the same width and
length as one image multiplied with the height h. The
height of the volume corresponded to the mean diameter of

a cell d (as determined by confocal microscopy), which
resulted in

(5)

Inserting (3), (4) and (5) into (2) we obtain

(6)

(7)

(8)

Using equation (8), we calculated the
surfaces of the cells and their nuclei (Table 1). The
diameter d was computed from the volumes
determined by spinning disk confocal microscopy
(Table). In the case of the Jurkat cells that had
slightly different sizes on different days of cell
culture (see above), we had to correct this diameter
with the factor 1.17 (see above). For further
experiments, it is advisable to use the same cell
preparation for the confocal and TEM recordings.

5. DISCUSSION

In this report we present a semi-automated
approach to determine the exact surface area of
immune cells and their nuclei. Instead of using the
“classical” stereology approach counting points and
intersects of the TEM images covered with a
transparent sheet bearing a rectangular lattice, we
used semi-automated pattern recognition to mark the
perimeter of the structures in the 2D images. To
obtain exact values for the average surface areas in a
given population of cells we further used the size
distributions of the cells or nuclei obtained by 3D
confocal microscopy and stereological calculations.

We found that the volume of the human
immortalized Jurkat T cell was 12 times larger and
the one of the T cell blasts 2 times larger than the one
of the primary T cell, being in line with relative
larger diameters as detected by flow cytometry.
Indeed, it is known that cultured tumor lines are
larger than primary lymphocytes . As expected the
primary cells showed the smallest cell-to-cell
variation compared to the proliferating Jurkat and
mast cells.
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Table 1. Summary of the cellular parameters

primary human T cell human T cell blast Jurkat
primary mouse

B cell J558L
bone marrow

mast cell
A. confocal microscopy

cell nucleus cell nucleus cell nucleus cell nucleus cell nucleus cell nucleus
number of
samples

559 559 213 213 118 118 382 382 227 227 175 175

mean
radius
[µm] *

3.57
+/- 0.01

2.91
+/- 0.01

4.30
+/- 0.04

3.12
+/- 0.01

7.99
+/- 0.11

6.19
+/- 0.09

3.19
+/-

0.01

2.81
+/-

0.01

6.21
+/-

0.04

4.88
+/-

0.04

5.33
+/-

0.04

3.49
+/-

0.03
standard
deviation
[µm]**

0.23 0.16 0.56 0.2 1.15 0.92 0.26 0.24 0.59 0.53 0.59 0.4

spherical
surface
[µm2] *

160       +/-
1

107
+/- 1

236
+/- 4

123
+/- 1

818
+/- 21

493
+/- 13

129
+/- 1

100
+/- 1

489
+/- 6

303
+/- 4

361
+/- 6

155
+/- 3

mean
volume
[µm3] *

192
+/- 2

104
+/- 1

353
+/- 15

129
+/- 2

2270
+/- 100

1062
+/- 45

139
+/- 2

95
+/- 1

1029
+/-
20

505
+/- 11

658
+/-
18

184
+/- 5

standard
deviation
[µm3] **

38 17 220 23 1100 490 37 20 297 170 234 67

B. transmission electron microscopy
number of
samples

116 102 108 81 135 123 124 123 115 93 43 24

mean
contour
length
[µm]

32.0 +/-
0.8

14.9 +/-
0.6

44.9 +/- 2
18.3 +/-

0.8
68.4 +/-

1.6
33.9 +/-

1.2

19.3
+/-
0.3

13.9
+/- 0.3

49.5
+/-
1.3

28.9
+/- 1.1

93.1
+/-
4.7

19.6
+/- 1.2

standard
deviation
[µm]

8.5 6.0 21 7 19 13.8 3.1 2.9 13.7 10.3 31 5.7

C. calculation of the surface areas
mean
surface
area [µm2]

290
+/- 8

110
+/- 5

492
+/- 27

146
+/- 7

1392
+/- 51

535
+/- 27

157
+/- 3

99
+/- 2.3

782
+/-
25

360
+/- 16

1264
+/-
75

174
+/- 12

surface
factor

1.81
+/- 0.06

1.03
+/- 0.05

2.1
+/- 0.15

1.18
+/- 0.07

1.7
+/- 0.1

1.09
+/- 0.08

1.21
+/-

0.03

0.99
+/-

0.03

1.6
+/-

0.07

1.19
+/-

0.07

3.5
+/-
0.3

1.1
+/- 0.1

* including the standard error, ** the standard deviation is the biological variation within the cell population

The sizes of the nuclei follow the same order; the
primary cells have the smallest and cultured cells the
biggest nucleus. Most likely this is related to the fact that
primary B and T cells are resting cells being in the G0 state
of the cell cycle and only minimally transcribe genes. In
contrast, the Jurkat, J558L and mast cells are proliferating
and thus contain a larger amount of the less densely packed
euchromatin that is transcriptionally active. Indeed, in the
TEM images the mast cell nucleus contains larger light-
stained regions, which represent the euchromatin, and
fewer dark-stained heterochromatic regions (Figure 5A).
As tumor lines, Jurkat and J558L cells contain a large
amount of chromosomes, thus the nucleus is the largest one
of the cell types analysed.

The mean cellular surface of the resting primary
B and T cells was the smallest, being in line with their
small size. The mean surface areas of the Jurkat and mast
cells are nearly equal (1390 and 1260 mm2, respectively),
although the volume of Jurkat was more than 3 times
bigger than the one of the mast cells. This underscores the
necessity to carefully measure the surface areas, instead of
estimating them from the cell sizes.

We calculated cell surface areas of 157 mm2 and
290 mm2 for the primary B and T cells, respectively
(table). The first value is in line with similar values
obtained by using the “classical” stereology approach from
primary T cells (150 mm2, ) or from total primary

lymphocytes (170 mm2, ). The second value is larger than
the ones reported. The mean FSC value of the fresh cells as
measured by flow cytometry was 43000 for the primary T
and 32000 for the B cells (Figure 2A). This indicates that
the primary T cells in this study indeed were larger than the
primary B cells. The discrepancy with the literature is
unknown, but might be related to differences in the
isolation procedures of the cells. Interestingly, in our
analysis the surface area of the primary T cells deviated
more from the one of a sphere (factor 1.81) than the one of
the primary B cells (factor 1.21). Indeed, the T cells
contained more protrusions than the B cells (Figure 4 and
5).

We observed that within the Jurkat cell
population approximately 0.5% of the cells differed in size
from the normal population by a factor of 3 to 4 and
contained up to a dozen of nuclei (Figure 2B). These few
cells could alter the resulting mean values significantly.
Here, we restricted the analysis to cells that were within the
peak of the size distribution. The two non-tumor cell
populations did not contain any giant multi-nucleated cells.

One of the questions addressed in this
project was how many times bigger the real cellular
surface is when compared to a surface derived from
the spherical formula using the mean radius
determined by light microscopy. This would
demonstrate how big the deviations from reality were
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Figure 5. High resolution 2D TEM images for the murine cells. For each cell type one representative image from TEM is shown
(A). Pre-segmentations and binary masks were done as in figure 4 (B, C, D and F). In E, the distribution of the boundary length
of the cells is plotted as in figure 4.
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that were used for systems immunology modeling. The
primary B cells have the smoothest surface and therewith
the smallest factor. In this case the surface was only 1.2
times larger than the one of a sphere. In the other cells the
surface is 1.6 to 2.1 times larger and in the mast cells,
which have many protrusions, the surface is 3.5 times
larger than the ones of spheres with the same radii.
Whether a factor of 1.2 or 3.5 affects the results of a
modeling approach, depends on how robust the result is to
changes in this parameter. If the exact surface area has to
be known, we recommend determining the value with the
approach presented here.

Our volumes and areas can serve as an input into
systems biology approaches. In fact, the exact surfaces and
volumes of most cell types still remain an ill-defined factor.
Therefore, it is desirable to determine the cell surface area
and the volumes of the cell and nucleus for the most
commonly used cell types and cell lines in immunology.
However, compartmentalisation of the cellular volume into
organelles and of the plasma membrane into microdomains
has to be considered, when necessary, and will reduce the
volume or area in which certain proteins can move.

Our semi-automated approach can be the basis
for further advances towards a fully automated
segmentation of these biological datasets as on the basis of
region hierarchies. In , we have already presented an
approach for the fully automatic segmentation of bone
marrow-derived mast cells from TEM recordings. In
addition to cytoplasm and nucleus regions, we also tried to
provide automatic segmentations for mitochondria and
other vesicles in this paper. The approach proved to be very
promising with an overall accuracy of 65% for the
segmentation into five classes (background, cytoplasm,
nucleus, mitochondria and vesicles). A higher accuracy is
to be expected if the very difficult classes mitochondria and
vesicles are omitted. Since this automatic approach is based
on learning from training data, the TEM images that were
recorded during the work presented here together with the
semi-automatic segmentations can be used to further
improve the method presented in . In order to stimulate
progress in automated pattern recognition research, we
make our TEM images and the according segmentations
available as reference data sets: http://lmb.informatik.uni-
freiburg.de/resources/datasets/bio/TEM_cells.html.
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