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1. ABSTRACT

Assembling a comprehensive catalog of all
transcription factors (TFs) and the genes that they regulate
(regulon) is important for understanding gene regulation.
The sequence-specific conserved binding profiles of TFs
can be characterized from whole genome sequences with
phylogenetic approaches, and a large number of such
profiles have been released. Effective mining of these data
sources could reveal novel functional elements
computationally. Due to the variability of the binding sites,
it is necessary to generalize profiles pertinent to the same
TF by clustering. The summarized familial profile is
effective in identifying unknown binding sites, thus lead to
gene co-regulation prediction. Here we report
MotifOrganizer, a scalable model-based clustering
algorithm designed for grouping motifs identified from
large scale comparative genomics studies on mammalian
species. The new algorithm allows grouping of motifs with
variable widths and a novel two-stage operation scheme
further increases the scalability. MotifOrgainzer
demonstrated favorable performance comparing to
distance-based and single-stage model-based clustering
tools on simulated data. Tests on approximately 150k
motifs from the cisRED human database demonstrated that
MotifOrganizer can effectively cluster whole genome sets
of mammalian motifs.

2. INTRODUCTION

Assembling a comprehensive catalog of all
transcription factors (TFs) and the genes that they regulate-
-regulon is important in understanding how gene
expression is regulated. An important step towards
achieving this goal involves identifying the regulatory
elements that are bound by TFs. These regulatory elements,
also referred to as motifs, are short DNA segments
typically 6 to 30 bp in length. Success in finding these
regulatory elements would contribute to our understanding
of TF-regulon relationships by providing insight into the
mechanism of transcriptional regulation. The rapid
accumulation of completely sequenced genomes, the
combination of ab initio motif searching algorithms, and
comparative genomics strategies constitutes a powerful
approach for identifying novel regulatory elements (1-5).
Several recent studies carried out genome-wide motif
discovery using sequence specificity and phylogenetic
conservation information to identify motifs that are
conserved at a higher-than-expected rate in non-coding
regions (6-10). Many online databases such as TRANSFAC
(11) and JASPAR (12), compiled large volumes of
annotated motifs.

In one such study, Robertson et al. described the
construction of cisRED, a database that contains
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predictions from whole-genome discovery of cis-regulatory
elements in mammals and other eukaryotes (9). Applying a
series of sophisticated bioinformatics analyses, including
multiple motif discovery methods, Robertson et al.
cataloged more than 200,000 motifs in their database
(http://www.cisred.org). Many of the motifs in the cisRED
database are believed to be regulatory elements that play
vital functional roles because they occur in multiple
promoter regions of orthologous genes across several
vertebrate species. As the majority of enriched modules in
cisRED remain unclassified, such a large collection
constitutes a great resource for mining novel biological
knowledge.

In particular, since regulatory proteins bind to
DNA in a sequence specific manner (13, 14), similarity in
motif sequences discovered in promoter regions of different
genes is indicative of co-regulation (5, 15, 16). A natural
follow-up of large-scale motif discovery efforts like
cisRED is to cluster similar motifs in the database into
groups. This is a critical step in translating the conserved
motifs identified by comparative genomics methods into a
putative model of regulatory elements, which not only
represent functional aggregation but can also be further
utilized for unknown function site prediction (17, 18). As
Robertson et al. pointed out, the large size of mammalian
genomes makes it challenging to conduct such a cisRED-
type analysis (9). This is especially true when attempting to
cluster the hundreds of thousands of motifs from databases
like cisRED.  Most of the available clustering approaches
used for motif clustering are pair-wise distance-based (19),
which are conceptually simple and readily available for
data sets of moderate size. However, performing distance-
based clustering on a large number of motifs requires a
huge pair-wise distance matrix which is extremely costly to
compute and maintain. Such computational jobs can only
be performed on servers with a large amount of memory.

The goal of this project is to develop an efficient
clustering strategy that can analyze a large motif dataset
(such as the motif collections from the cisRED database)
on a typical laptop computer. To do that, the clustering
strategy must be highly scalable. Given the limitation of the
distance-based clustering methods, we chose the alternative
model-based clustering strategy. Model-based motif
clustering methods (20, 21) assume that motifs in a cluster
share the same product multinomial distribution in
nucleotide composition. Clustering is achieved by
calculating the probability of each motif belonging to each
of the existing clusters. Therefore, no explicit pair-wise
distance calculation between all pairs of motifs is needed.
Consequently, model-based methods are more scalable than
distanced-based approaches in practice. More importantly,
distance-based approaches treat the input motifs as bona
fide patterns, thus ignoring uncertainty in the input. In
contrast, model-based approaches explicitly model the
uncertainty using probability distribution, which is a more
sensible way for representing the highly-variable DNA
regulatory elements.

Previously we developed Bayesian Motif Cluster
(BMC), a model-based clustering approach named and

successfully applied it to investigate co-regulation in
bacterial species including Escherichia coli (20). We
discovered both novel regulatory elements and proposed
new hypotheses on regulatory relationships. In this
manuscript, we report the development of a new algorithm
called Bayesian Motif Cluster for Eukaryotic Species
(BMCES), as well as a two-stage, divide-conquer-combine
clustering scheme, MotifOrganizer. The new algorithm and
scheme are better suited to mammalian applications than
BMC because they allow clusters, as well as a motif and
the cluster that it joins, to have different widths. The two-
stage scheme adopted by MotifOrganizer can increase the
scalability of BMC by three orders of magnitude under the
same computation environment. As a result,
MotifOrganizer is able to cluster motif collections in the
hundreds of thousands, as is typically produced from the
results of motif identification efforts conducted by whole
genome comparative genomics methods on mammalian
species. The overall operation scheme of our methods is
illustrated in Figure 1.

3. MATERIALS AND METHODS

3.1. Input Data
The basic units in the input data for BMCES or

MotifOrganizer are motifs, each of which is a stack of
aligned short DNA sequences that had been identified by
multiple, probabilistic, de novo comparative genomics
motif discovery methods (3, 22). For example, cisRED
motifs were identified in ~2kb promoter regions of sets of
orthologous genes in multiple vertebrates species (9)
(http://www.cisred.org). Each sequence in a discovered
motif is assumed to be a phylogenetic counterpart of the
other sequences. As a special case, we allowed a motif to
contain as few as one sequence. These motifs are
represented by position- specific weight matrices (PWMs)
in our model-based methods, which are used to calculate
Bayes ratios for iterative cluster assignments. See Figure 2
for an illustration of motifs and motif clusters.

3.2. BMCES
BMC (20) assumes that motifs that belong to a

cluster follow the same product multinomial distribution
(23), and implements a Gibbs sampler procedure (24, 25) to
iteratively infer cluster membership. By using only the
middle part of each motif, the original algorithm allows the
width of input motifs to be different, but requires that all
clusters have the same width. Because the widths of
mammalian transcription factor binding sites (TFBSs) vary
substantially (from 6 bp to >30 bp in JASPAR and
TRANSFAC), such a constraint is too restrictive for
clustering mammalian motifs. Recently, Jensen and Liu
proposed an extended Bayesian model that treats cluster
widths as random variables (26). We adopted an alternative
strategy in BMCES by allowing motifs and clusters with
different widths to be grouped together. Our strategy allows
flexible alignment between motifs and clusters.
Specifically, during the process that reassigns motifs to
clusters, if a cluster’s width is larger than a motif’s width,
we use a sliding window whose width is equal to the motif
width to determine which part of the cluster pattern best fits
the motif, and use this best match to calculate the
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Figure 1. Illustration of phylogenetic footprinting technique and the motif clustering strategy, as well as examples of motifs and
motif clusters. B.

Figure 2. A diagram of the two-stage divide-conquer-combine scheme MotifOrganizer proposed to enable model-based
clustering to be performed on a large motif collection.

likelihood that the motif will join the cluster. Conversely,
when the motif is wider than the cluster, we use a sliding
window with a width equal to the cluster width to

determine which part of the motif best fits the cluster, and
use only this subset of the motif to calculate the fit
likelihood for this cluster. After a cluster has been
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identified as accommodating a motif, if the cluster width is
smaller than the motif width, then only the aligned part of
the motif is added to the cluster, and the rest of the motif is
removed from consideration. Conversely, if the cluster
width is greater than the motif width, then the aligned
cluster pattern will be trimmed to the motif width, and only
the part that aligned to the added motif is kept. Such a
strategy allows us to generate clusters of different widths,
and is able to group motifs of different widths into a
common cluster.

3.3. MotifOrganizer
Because genome-wide collections of mammalian

motifs contain hundreds of thousands of motifs which is
too voluminous for BMC to cluster, we sought to increase
BMC’s scalability while retaining its favorable
performance. To accomplish this, we devised a novel, two-
stage, divide-conquer-combine scheme (Figure 1). In the
first stage, we first partition the motif set into subsets,
either randomly or by assigning motifs of different widths
to different subsets. After partitioning, BMCES algorithm
is applied independently to each subset. We then combine
all output clusters from this stage to form a new input motif
set, in which each input motif becomes a motif cluster from
the first-stage output. Since both motifs and motif clusters
are represented by PWMs, the BMCES algorithm could
again be applied to group these first-stage clusters into final
clusters. Because the number of clusters output by the first
stage clustering is typically much smaller than the total
number of original motifs (log n), the overall demand on
computer resources is substantially reduced, making the
two-stage strategy highly scalable. Since clustering runs in
the first stage can be carried out independently, it is
straightforward to implement MotifOrganizer to take
advantage of the increasingly available parallel computing
environment, which will further reduce the computation
time.

From our experience, MotifOrganizer converges
rather rapidly. Typically, 100,000 reassignments (100
cycles for a total of 1,000 motifs or 50 cycles for a total of
2,000 motifs) produce satisfactory results. As few as
10,000 reassignments sometimes produce stable results. To
avoid being trapped in a local mode, which is a common
problem for complex sample spaces, one can choose to run
multiple independent chains in MotifOrganizer (simply by
specifying an input parameter), each with different initial
setting, to better explore the entire sample space.  We chose
the result that achieves the highest posterior likelihood
among all the chains as the final reported clustering result.

3.4. Distance-based clustering approaches
For comparison purposes, we also ran distance-

based clustering methods on the JASPAR and TRANSFAC
data. There are many existing distance-based clustering
methods, such as the most popular hierarchical clustering
and the K-means clustering. CLARA, or Clustering Large
Applications (27) is designed to handle larger datasets than
the classical PAM (Partitioning Around Medoids) method.
CLARA is a two-step procedure, in the first step, a sample
is drawn from the original dataset and then PAM is applied
on the sample; in the second step, each of the un-sampled

data point is assigned to its nearest medoid. The merit of
the clustering is measured by the average distance between
each object and its medoid. The CLARA is often repeated
multiple times and the best clustering result is reported as
the final outcome.

3.5. Quality and uncertainty measures
Model-based clustering methods allow formal

statistical inference to be performed. BMCES and
MotifOrganizer take advantage of this fact to produce a set
of significance measures. One measure is the ratio of the
probability that all motifs follow the same product
multinomial distribution versus the probability that each
motif follow its own. This serves as a measure of the
cluster’s compactness. A higher ratio indicates that
individual motif sequences in a cluster more closely
resemble each other. In BMCES and MotifOrganizer, since
the widths of motifs may differ between clusters, we define
normalized Bayes ratio (NBR) for a cluster by dividing B
by the width of the cluster. BMC also calculates and reports
the posterior assignment probability (PAP) for each motif
in a cluster. This is the probability that a motif belongs to
its current cluster, conditional on the assignments of all
other motifs. A higher PAP indicates a better motif-to-
cluster fit. These quality measurements can be used to
prioritize clustering results. By sorting clusters from the
most significant to the least significant according to NBR,
one can focus on the top ones for experimental validation.
One can also remove loosely fit motifs from its cluster if its
PAP is lower than a pre-specified threshold. NBR and PAP
also provide measures of uncertainties of clusters and
clustering assignment of motifs.

3.6. Clustering accuracy
To evaluate and compare the performance of

different clustering approaches, we adopted the Adjusted
Rand Index (ARI) (28, 29), which measures the degree of
agreement between two different partitions of multiple
objects. It is able to provide an objective assessment of the
closeness between our clustering result and the true motif
family membership. The values of ARI lie between 0 and 1,
with a higher value indicating better agreement. Among
many statistics proposed, Milligan and Cooper
recommended ARI as the measure of agreement based on
extensive empirical studies (29). The detailed formula on
how to calculate ARI can be found in the Supplementary
material of Qin et al. (30). Since model-based clustering is
not a deterministic procedure, results from different runs
might be slightly different, We therefore measured the
performance of all model-based clustering algorithms by
repeating the clustering procedure 100 times and taking the
average.

3.7. Motif matching tools
To annotate the clustering results, we compared

each cluster to motif models in JASPAR 4 (12) and
TRANSFAC 9.3 (11) databases. We used MatCompare
(31) and MACO (32) to assess the similarity of motif pairs.
For MatCompare, we used the default distance measure,
which is the minimum Kulback-Leibler (KL) divergence
between matched fragments in two motifs; motifs with
divergence per column less than 1.0 are regarded as very
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similar. For MACO, we determined the threshold value for
the matching correlation coefficient scores based on the
empirical distribution obtained from 3000 random matrices.

4. RESULTS

In order to evaluate the performance of
MotifOrganizer comprehensively, we tested it on three
different datasets: we first compared the performance of
our new BMCES algorithm with BMC in a dataset
containing 1128 motifs from 59 TF binding site (TFBS)
models selected from the JASPAR 4 database (12). We
then evaluated the advantages of using the two-stage
clustering method motifOrganizer over the BMCES
algorithm using 5452 motifs from 319 TFBS models
selected from the TRANSFAC 9.3 database (11).  Finally,
we applied motifOrganizer to ~30,000 motifs selected from
the cisRED human v.2 database (9).

In the first two motif sets, since the group
membership (motif model) of each motif is known, we
were able to directly assess how accurate the model-based
approach could recapitulate the partitioning in the input
model sets, and to characterize the performance of different
clustering algorithms. With the third motif set, we
compared the clustering result to known motif models from
JASPAR and TRANSFAC databases. Since model-based
clustering is not a deterministic procedure, results from
different runs might be slightly different. Given this, we
measured the performance of all model-based clustering
algorithms by repeating the clustering procedure 100 times
and taking the average. Clustering performance is measured
by ARI.

4.1. JASPAR
We compiled a set of 1128 motifs that

represented 59 mammalian TFBS models for which
individual sequences were available from the JASPAR 4
database (12). Motif widths ranged from 5 to 22 bp, and the
number of sequences in each model ranged from 3 to 48,
averaging ~19. Clustering was performed using BMCES,
the maximum allowable width difference between a motif
and a cluster is set to be 2 bp (we used the same setting
throughout this study). For comparison, we also tested an
advanced distance-based clustering method CLARA
(Kaufman and Rousseeuw, 1990). We used the edit
distance similarity metric and determined the number of
clusters by doing runs over a range of target cluster
numbers and selecting the result set that had the maximum
average silhouette widths as recommended by Kaufman
and Rousseeuw (27). We found that BMCES achieved a
higher ARI than CLARA (0.55 versus 0.44) and returned a
number of clusters that was closer (54 vs. 34) to the number
of input TFBS models--59. BMCES also required less than
a third of the memory, and was at least three times faster,
depending on how many CLARA runs were used to
identify the optimal solution.

Next we took advantage of the quality measures
produced by model-based clustering and performed a
“cleanup” on the clustering result. To be specific, we used
the normalized Bayes ratio (NBR), which reflects a

cluster’s tightness; and the posterior assignment probability
(PAP), which measures how well a motif fits the cluster to
which it has been assigned. Further details about these
measures can be found in the Method section. Using
filtering thresholds of NBR = 0 and PAP = 0.5, On average,
835 (74%) motifs were retained after cleanup, Using
filtering thresholds of NBR = 0 and PAP = 0.5, the average
ARI improved from 0.55 to 0.71, while under the same
conditions, CLARA showed a more modest ARI increase,
from 0.44 to 0.51. These results suggested that NBR and
PAP are indeed effective quality indicators and can be used
to prioritize clustering results for future experimental
validation.

Figure 3 illustrates the clustering performance
and relationships between TFBS models and structural
classes. Its membership map shows two types of clustering
errors: ‘combining’ errors (indicated by green cell), in
which motifs that belong to different TFBS models were
clustered together, and ‘splitting’ errors (indicated by blue
cell), in which motifs belonging to same TFBS model were
assigned to different clusters. Combining errors were ~2.5
times more frequent than splitting errors. It is also evident
from the two plots that the result obtained after cleanup
(Figure 3B) indeed shows better clustering quality than
before (Figure 3A).

At least two reasons may contribute to the fact
that combining errors were ~2.5 times more frequent than
splitting errors. . First, the model-based algorithm BMC
and BMCES are based on is Dirichlet process mixture
model which favors small number of clusters and relatively
large individual clusters. This may cause more combining
errors than splitting errors. Second, the 'gold standard' of
JASPAR may be over-specific so that the members of a
family can actually be combined together to form a family
of higher hierarchy. Nevertheless, the high ARI
demonstrates the homogeneity of the clusters and
effectiveness of our approach.

Similarities between binding models for
structurally related TFs have been summarized by “familial
binding profiles” (33-35). Consistent with this, when
BMCES’s clusters contained motifs from more than one
model, the models typically belonged to the same structural
class. For example, in the top 15 filtered clusters, which
contained more than half of all motifs, three clusters
contained motifs from different TF models. One of these
clusters was mainly MA0101 (c-REL), MA0105 (p50) and
MA01007 (p65) sequences from the REL structural class;
another was mainly MA0040 (HFH-1), MA0041 (HFH-2)
and MA0047 (HNF-3beta) sequences from the
FORKHEAD structural class. At the same time, we expect
that sequences for some models may be dispersed across
clusters, given that a mixture model (36, 37) or enhanced
PWM (38) may better represent variability over binding
sequences for a transcription factor than a single PWM.

4.2. TRANSFAC
The second dataset consisted of 5452 motifs from

319 TRANSFAC 9.3 mammalian TFBS models (11). The
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Table 1. Comparison of clustering performance between regular model-based clustering approach BMC and the proposed two-
stage clustering scheme MotifOrganizer using the 5452 motif TRANSFAC dataset

PAP NBR ≥ 0 NBR ≥  2 NBR ≥  5
0.0 0.363 (0.027) 0.440 (0.032) 0.704 (0.054)

Two-stage 0.563 (0.028) 0.586 (0.018) 0.755 (0.029)
0.5 0.556 (0.043) 0.597 (0.044) 0.786 (0.052)

Two-stage 0.736 (0.026) 0.736 (0.026) 0.793 (0.030)
0.8 0.582 (0.043) 0.626 (0.045) 0.818 (0.052)

Two-stage 0.786 (0.022) 0.786 (0.045) 0.819 (0.023)

Study was performed under various quality measure threshold settings. Cluster performance is measured by Adjust Rand Index
(ARI). Both clustering procedures were performed 100 times under each setting. Both average ARI and standard deviation (in
parentheses) were reported

Table 2. Comparison of number of clusters generated with the actual number of motif profiles between regular model-based
clustering approach BMC and the proposed two-stage clustering scheme MotifOrganizer using the 5452 motif TRANSFAC
dataset

PAP Method NBR ≥ 0 NBR ≥  2 NBR ≥  5
0.0 truth 295 (0) 283 (5) 154 (18)

inferred 381 (18) 174 (11) 43 (5)
Two-stage truth 295 (0) 294 (2) 197 (6)

inferred 325 (10) 275 (8) 115 (5)
0.5 truth 219 (8) 211 (9) 110 (15)

inferred 162 (9) 132 (9) 42 (5)
Two-stage truth 259 (3) 258 (3) 162 (4)

inferred 248 (7) 243 (7) 113 (5)
0.8 truth 187 (9) 178 (10) 90 (12)

inferred 136 (8) 109 (8) 38 (5)
Two-stage truth 212 (5) 211 (5) 142 (4)

inferred 197 (6) 195 (5) 109 (4)

Study was performed under various quality measure thresholds. Both clustering procedures were performed 100 times under each
setting. Both average cluster number and standard deviation (in parentheses) were reported.

Figure 3. Membership map that summarizes BMCES clustering performance on 1152 motifs from 59 TFBS models from the
JASPAR 4 database. Rows represent TFBS models in JASPAR, columns represent clusters generated from BMCES. For each
cell (i,j),  a) red indicates cases in which motifs i and j were clustered together by BMCES and belonged to the same JASPAR
model, b) green indicates cases in which  motifs i and j were clustered together by BMCES but belonged to different JASPAR
models, c) blue indicates cases in which motifs i and j were not clustered together by BMCES but belonged to the same JASPAR
model, and d) white indicates cases in which motifs i and j were neither in the same BMCES cluster nor belonged to the same
JASPAR model . A. Membership map for all 1152 motifs in the input dataset. Adjust Rand Index (ARI) is 0.55. B. Membership
map for remaining motifs after filtering with thresholds NBR = 0 and PAP = 0.5. ARI is 0.71.

number of motifs in each model ranged from 1 to 169,
averaging 18.5. Motif widths ranged from 6 to 30 bps. Our
primary goal was to compare performance between single-
stage (BMCES) and two-stage (MotifOrganizer) model-
based clustering approaches. Using MotifOrganizer, we
first partitioned the whole motif set into disjoint motif
subsets by width, then applied BMCES in each subset

separately, and concatenated all resulting clusters as input
to the second stage clustering. More details about the two-
stage scheme can be found in the Method section).
Clustering performances measured by average ARI were
plotted in Figure 4 and summarized in Tables 1 and 2.
Compared to the one-stage approach BMC, one can see that
the two-stage approach yielded a higher average ARI
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Table 3. Examples of motif clusters that match to known TRANSFAC/JASPAR motif patterns
Clust
er ID

Motif cluster logo NB
R

TRANSFAC/
JASPAR
name

TFBS profile logo Score 11 Score
22

25.7 M00473
FOXO1

0.095 0.998

49 24.7 M00437
CHX10

0.072 0.999

95 20.9 M00179
CRE-BP1

0.542 0.942

157 17.9 MA0063
Nkx2-5

0.148 0.991

159 17.7 MA0137
STAT1

0.580 0.923

1Score 1 is the Kulback-Leibler divergence used in MatCompare, 2Score 2 is the MACO score, These cisRED motif clusters were
reported by both MatCompare and MACO as similar to at least one JASPAR CORE or TRANSFAC TFBS models. The clusters
are sorted by descending Normalized Bayes Ratio (NBR)

(green lines are always on top of the corresponding red
lines in Figure 4A), estimated the number of clusters more
accurately (green lines are always closer to the x-axis than
the corresponding red lines in Figure 4B). In addition,
Figure 4 showed that cluster quality improved with
increasing threshold values of the two quality measures--
NBR and PAP. On the other hand, the memory
consumption is about half when using the two-stage
scheme, and the computing time of the two-stage clustering
scheme is less than one third than that of the regular one-
stage clustering approach. Running first stage clustering
jobs in parallel will further reduce the running time.

4.3. cisRED
We applied MotifOrganizer to a subset of 29,490

conserved DNA sequence motifs from the cisRED human
v.2 database. These motifs had been identified using
genome-wide comparative genomics approaches that
involved combining results from multiple probabilistic de
novo discovery methods (Robertson, et al., 2006). We
selected the subset of motifs that had p-values < 0.001 and
widths between 6 and 20 bp. We applied MotifOrganizer to
this dataset. The partition before the first stage is based on
the motif width, such that each subset contains motifs of
the same width which ranges from 6 to 20. At the end, a
total of 8396 clusters were produced from MotifOrganizer.
Among which, 4865 clusters consist of 15330 motifs
passed the cleanup step with NBR cutoff of 0 and PAP
cutoff of 0.5.

Unlike JASPAR or TRANSFAC, there is no
“gold standard” partition of the cisRED motif set. In order
to gauge the effectiveness of MotifOrganizer, we compared
all 4865 filtered clusters to a large set of high-quality
known motif models: 108 models from JASPAR CORE,
and 398 models from TRANSFAC 9.3. We used two
published comparison tools, MatCompare (31) and MACO
(32), to identify “match” between predicted motif clusters
and those known motif models. For MatCompare, a

“match” is called if the default distance measure, Kulback-
Leibler (KL) distance between the PWMs of two motifs is
less than 1. For MACO, we call two motifs “match” each
other if their correlation coefficient score is close to 1. In
the end, MatCompare identified 558 matches between
predicted clusters and known motif models (one cluster
may map to multiple motif models); MACO produced 753
matches. 171 matches were identified by both methods.
Table 3 contains five such matches. The full list of all
matches identified by both MatCompare and MACO, with
motif logo plots (39), can be found at our website. Among
all 4865 clusters identified by MotifOrganizer, 660 (14%)
were similar to one of 506 known motif models using at
least one method Among all the 506 known motif models,
294 (58.1%) matched to at least one predicted cluster.

We then compared our clusters with JASPAR
PHYLOFACTS motifs. This database consists of 174
conserved motifs identified in a large scale mammalian
comparative genomics study (10).. MatCompare identified
167 matches and MACO identified 166. Seventy matches
were identified by both methods. Table 4 contains five such
matches. The full list of all matches identified by both
MatCompare and MACO, with motif logo plots, can be
found at our website. Of the 174 PHYLOFACT motifs, 108
(62.1%) matched at least one predicted cluster.

We are encouraged that many of the predicted
motif clusters identified by MotifOrganizer match to
known motif models. And more than half of the known
motif models match to at least one of the clusters predicted.
We also found that clusters with higher NBR are more
likely to match to known motif models in JASPAR CORE,
JASPAR PHYLOFACTS or TRANSFAC databases. Of the
top 1000 clusters out of 4865 in total, 162 matched to
known motif models according to MatCompare, while in
clusters 1001 – 2000, 2001 – 3000, 3001 – 4000, 4001 –
4865, only 28, 25, 17 and 7 clusters matched to known
motif models. MACO results were similar (data not
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Table 4. Examples of motif clusters that match to known JASPAR PHYLOFACTS motif patterns
Cluster
ID

Motif cluster logo NBR JASPAR
PHYLOFACT
S name

TFBS profile logo Score 11 Score 22

2 36.9 PF0074 0.749 0.774

5 33.4 PF0024 0 1

15 29.8 PF0056 0 1

49 24.7 PF0023 0 1

101 20.5 PF0074 0.631 0.887

1Score 1 is the Kulback-Leibler divergence used in MatCompare, 2Score 2 is the MACO score,These cisRED motif clusters were
reported by both MatCompare and MACO as similar to at least one JASPAR PHYLOFACTS motifs

shown). This suggests that clusters with higher quality
scores were more likely to be bona fide functional
elements. However, some highly ranked clusters, and
overall more than 80% of all identified clusters, matched no
motifs in JASPAR CORE, JASPAR PHYLOFACTS or
TRANSFAC databases. Table 5 contains motif patterns
from 12 such clusters. Most positions in these motifs were
highly conserved, and many of the motifs were
palindromic, which is typical of homodimer DNA binding
proteins. This suggests that these novel motifs may
represent binding sites for uncharacterized TFs that mediate
expression levels of the genes with which they are
associated.

5. DISCUSSION

Large amount of evolutionarily conserved DNA
elements has been discovered with fast accumulation of
sequenced genomes. Build on the hypothesis that sequence
similarity implies functional conservation binding by the
same regulatory protein, clustering these motifs will lead to
the translation of putative elements into regulatory
information. It has been shown that the ability of modeling
uncertainties explicitly give model-based clustering
approaches advantages over distance-based approaches.
However, existing model-based approaches such as BMC
are unable to handle large scale motif sets collected from
mammalian species on a regular personal computer. In this
study, we proposed a novel two-stage model-based
algorithm for clustering motifs identified from mammalian
species genome-wide. Our new algorithm allows motifs of
variable different widths to be clustered together and is
capable of handling large scale input motif sets.
Comparison studies indicated that our new approach
retained and surpassed the clustering accuracy achieved by
the single-stage model-based approaches, while reducing
computation time and memory requirements to levels that
permit clustering genome-wide sets of mammalian motifs
on today’s commodity computer systems. To further
demonstrate MotifOrganizer’s scalability, we tested it on
150K motifs from the cisRED human v.2 database. Using

the default parameter setting, the entire two-stage clustering
process took about four days to complete on a regular
shared cluster computer server, and the peak memory
consumption was only about 250MB. The scalability of
MotifOrganizer demonstrated in this study is quite
promising. As the number of cis regulatory regions may
currently be underestimated, we anticipate a persistent need
for highly scalable clustering tools to analyze the large
motif sets.

In BMCES and motifOrganizer, we employed the
same probability model used in BMC, which models motif
columns as multinomial with Dirichlet priors. Under this
model, nucleotide counts from each species are treated
identically as independent observations. However, from the
point of view of evolution theory, aligned sequences from
closely-related species, like human and chimpanzee, are far
from independent. A more desirable model should take into
account of the phylogenetic distances among species and
weigh the contributions from different species accordingly.
Various evolution models and techniques traced back to
Felsenstein (40) may be applied. We believe such an
improved model will enhance the performance of BMCES
and motifOrganizer and will be pursued in our future work.

We were encouraged that many of the predicted
motif clusters identified by MotifOrganizer were similar to
known motif models, that more than half of known motif
models tested matched at least one of the predicted clusters,
and that highly-ranked clusters were more likely to be
similar to known motifs. On the other hand, most of our
filtered clusters appeared to differ from cluster patterns
reported by previous large-scale studies, and some clusters
with high NBR rank matched to no known motif pattern.
These results suggest that regulatory motifs are highly
diverse and that a substantial number of new regulatory
elements have yet to be discovered and validated.

We seek to create a comprehensive catalog of
mammalian cis regulatory motifs that, by facilitating
dimension reduction and pattern discovery, and so
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Figure 4. MotifOrganizer clustering results for TRANSFAC 9.3 data. This dataset contains 5452 motifs that belonged to 295
TRANSFAC TFBS models. To evaluate using quality measures to filter clustering results, we tested nine different threshold
settings, combining NBR thresholds of 0, 2, and 5 for clusters and PAP thresholds of 0, 0.5 and 0.8 for cluster assignments (solid,
dashed and dotted lines respectively). Red lines correspond to one-stage BMCES clustering and green lines to two-stage
motifOrganizer clustering. A. Clustering performance measured by ARI; B. Differences between numbers of clusters and number
of TRANSFAC models in the remaining motif sets after filtering. See Tables 1 and 2 for numerical values.
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Table 5. Selected motif clusters from the result of clustering the 30K motif cisRED Human v.2 dataset using motifOrganizer
Cluster ID Motif cluster logo NBR
71 22.9

78 22.4

83 22.1

94 20.9

151 18.1

159 17.7

187 16.3

196 16.0

218 15.3

228 15.1

232 14.9

238 14.7

The motif pattern of these clusters does not match to any JASPAR CORE, PHYLOFACTS or TRANSFAC motif model
according to both MatCompare and MACO software. The clusters are sorted by normalized Bayes ratio (NBR)

functional annotation, will contribute to understanding
modules and networks in mammalian transcriptional
regulation. We anticipate improving MotifOrganizer’s
performance by extending it to include parameters that
address more aspects of eukaryotic transcriptional
regulation. For example, clustering may be more effective
when it integrates additional data types like co-factors,
DNA and chromatin structure, and histone modifications. A
number of such data types, including mammalian TF
binding regions, appear to be cost-effectively

characterizable by ChIP-Seq technologies (41-44). As for
ChIP-chip (45, 46) and other types of ChIP-sequencing
(references 1-10 in (44)), motifs can be identified in bound
or enriched regions identified from the target genome (47)
using newly developed programs such as HMS (48).
However, approaches that seek to combine motifs from
regions identified by ChIP-Seq with deep genome-wide
comparative genomics methods are likely to continue to
require scalable ways of identifying both conserved motifs
and groups of similar motifs. We anticipate that
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MotifOrganizer and its extensions will serve as an
important resource for such work. MotifOrganizer package
written in C++ and Perl (source code included) can be
freely downloaded from
http://userwww.service.emory.edu/~zqin4/motif/.
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