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1. ABSTRACT 
 

Bio-effects mediated by non-ionizing 
electromagnetic fields (EMF) have become a hot topic of 
research in the last decades. This interest has been triggered 
by a growing public concern about the rapid expansion of 
telecommunication devices and possible consequences of 
their use on human health. Despite a feasibility study of 
potential negative impacts, the therapeutic advantages of 
EMF could be effectively harnessed for the treatment of 
cancer and other diseases. This review aims to examine 
recent findings relating to the mechanisms of action 
underlying the bio-effects induced by non-ionizing EMF. 
The potential of non-thermal and thermal effects is 
discussed in the context of possible applications for the 
induction of apoptosis, formation of reactive oxygen 
species, and increase of membrane permeability in 
malignant cells. A special emphasis has been put on the 
combination of EMF with magnetic nano-particles and 
ultrasound for cancer treatment. The review encompasses 
both human and animal studies. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2. INTRODUCTION 
 

Over the last few decades, researchers started to 
pay more attention to the bio-effects induced by EMF. The 
growth of interest in this area has been influenced by public 
concern about the possible negative impact of technologies 
employed for telecommunication and mobile telephones (1-
7). The term non-ionizing ‘electromagnetic fields’ 
encompasses a broad spectrum of frequencies of 
electromagnetic waves between 3 kHz and 300 GHz. In this 
review the abbreviation ‘EMF’ strictly refers to non-
ionizing electric and/or magnetic fields.  

 
The last two centuries are characterized by an 

extensive research and rapid expansion of EMF 
applications for various commercial and technological 
needs. Some of them have been already successfully 
implemented in health care as a basis for diagnostic and 
therapeutic modalities. However some frequencies 
classically reserved for technological applications are still 
waiting for exploration and further clinical use. Research 
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has already begun in this area. The feasibility of use of 
EMF for treating of various pathologies has been 
discovered in many in vivo and in vitro studies. Some 
studies exploited mainly the electric component of EMF 
(electroporation (8); electro-chemotherapy (9, 10); pulsed 
electric fields (11)), while others have focused on the 
magnetic features of EMF (static and pulsed magnetic 
fields of different frequencies and powers) (12, 13). The 
magnetic aspect has been routinely utilized to induce 
thermal effect with assistance of metal-containing 
nanoparticles (14-16). 

 
3. NON-THERMAL BIO-EFFECTS INDUCED BY 
ELECTROMAGNETIC FIELDS  

 
3.1. Possible mechanisms of action  

In spite of numerous studies up to date, the 
precise mechanism underlying the non-thermal bio-effects 
mediated by EMF remains vague. First of all, it concerns 
the impact of EMF at genetic level and its consequences for 
all cellular components. Unlike other physical modalities, 
such as ultrasound, EMF is unable to provide sufficient 
thermal or mechanical energy to directly trigger the 
breakage of the DNA molecular structure (17).  Because of 
this, possible DNA damage has been linked to the induction 
of free radicals and oxidative stress. This assumption has 
been supported by various experimental studies (18-22). 

 
Lai and Singh hypothesized that the increase of 

production of free radicals caused by EMF might be 
associated with the Fenton reaction (5).This phenomenon 
was discovered by Henry John Horstman Fenton (1894), 
and it is directly related to unbound iron inside cells. 
According to the classic theory, the iron ion can catalyze 
hydrogen peroxide decomposition with the generation of 
hydroxyl radicals (23) (Eq.1): 

 
Fe2+ + H2O2 → Fe3+ + OH- 

 

The reaction is highly pH-dependent and under 
normal physiological conditions the reduction potential of 
Fe3+ to Fe2+ is 772 mV (23, 24). It should be noted that iron 
maintains a high catalytic activity despite its predisposition 
to actively form chelate complexes in organic environment 
(23). As a result of the Fenton reaction, hydrogen peroxide 
is reduced to hydroxyl-free radicals by glutathione 
peroxidase and catalase, where iron plays a pivotal role. 
The formed free radicals can cause the DNA double-strand 
breaks, which can lead to accumulation of mutations due to 
inaccurate repair of damaged sites (25), and also to 
apoptosis (26-29). 

 
There are reports indicating an abundance of iron 

in cancer cells and its cardinal role in formation of 
hydroxyl radicals and promotion of tumor growth (30-35). 
In order to harness this phenomenon for clinical purposes, 
researchers have been attempting to develop new strategies 
(36-39). As of today, most of the proposed iron-based 
therapeutic concepts are oriented on chemical or genetic 
approaches. However, in this context, the potential of bio-
physical modalities such as EMF has not yet been fully 
explored. First of all, it relates to the ability of EMF to 

directly influence intracellular iron, thus providing an 
opportunity for precise targeting and selective destruction 
of tumors at different locations.  

 
Another possible therapeutic strategy is targeting 

iron-containing cellular structural elements such as 
holotransferrin. In some studies, it has been experimentally 
demonstrated that EMF (60 Hz) affects an expression of 
human transferrin receptors, which play a crucial role in 
iron homeostasis in an organism (40-42). Apart from 
transferrin, other metal-proteins (cytochromes) and metal-
enzymes (catalases) might be a subject of interest for future 
electromagnetic applications (43, 44). 

 
All aforementioned discoveries provide a 

foundation for possible clinical implementation of EMF-
based therapies. On the other hand, there are reports about 
the negative effects of EMF on DNA and cellular structures 
(5, 45-47). It was revealed that EMF can directly affect 
hydrogen bonds of DNA thus disturbing the DNA structure 
(48). As mentioned above, the production of free radicals 
and stimulation of oxidative stress is feasible under the 
application of extremely-low EMF (ELF EMF) (49-53). 
Thus the genotoxic potential of EMF must be considered in 
the context of possible therapeutic applications.   

 
3.2 Potential for permeabilization of cellular membrane 
and drug delivery 

Electroporation is an established technique for 
the permeabilization of cells (54-57). Current review is 
more focused on recent insights on application of ELF 
magnetic and radio-wave components of EMF rather than 
on electrical conductivity. In this context, the work of 
Stratton and colleagues deserves special attention (58). The 
researchers used acute monocytic leukemic THP-1 cells 
(AML-M5) as cell model in order to investigate the 
response of cellular membrane to applied alternating 
current, pulsed ELF EMF (0.3 µT at 10 Hz, 6 V AC). To 
quantify the cellular damage, researchers utilized versatile 
bio-physical and bio-chemical analytic techniques such as 
flow cytometry, calcium chelation, detection of 
intracellular calcium and transmission electron microscopy. 
The results revealed that ELF EMF has a capacity to induce 
disruption of plasma membrane. Stratton et al assumed that 
the underlying mechanism could be linked to the formation 
of areas of low lipid density at the membrane due to re-
alignment of charged phospholipid groups (58). In turn, it 
leads to the creation of pores in the plasma membrane and 
consequently to the influx of molecules from the 
extracellular space.  

 
The deliberate poration of plasma membrane has 

been a basis for introduction of therapeutic and genetic 
compounds into the cytoplasm and nucleus. The 
mechanism involved in EMF induced membrane 
permeabilization completely differs from other non-viral 
methods of membrane poration such as microinjection (59-
61), biolistics (62, 63), photoporation (64, 65), and 
sonoporation. (66-69). Most of those approaches involve 
the mechanical breakage of cellular membrane due to 
applied external forces. The disruption of the membrane 
can result in either resealing the damaged site and survival 
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of the cell or it dies due to the launching of an apoptotic 
reaction. In this sense, the membrane poration by means of 
EMF offers a method of drug delivery that does not cause a 
trauma to the cell. 

 
The fundamental mechanism of EMF mediated 

molecular uptake has some similarities with the well-
known technique of ‘electroporation’ (70, 71). The term 
‘electroporation’ refers to re-arrangement of membrane 
lipids and formation of pores under applied electrical 
pulses. In the case of EMF, the main driving force of re-
arrangement of phospholipid groups is the magnetic field, 
and direct application of electric pulses is not required. 
Thus the permeabilization of the plasma membrane by 
means of EMF is, by its nature, completely non-invasive. 
This feature significantly extends its clinical application for 
gene and drug delivery. However further extensive research 
in this area is ultimately needed. 

 
3.3. Feasibility of modulation of apoptosis  

The non-invasive modulation of apoptotic 
reactions is an area of great potential in cancer 
management.  Apoptosis (‘programmed cell death’) is a 
natural process occurring in cells and it plays a 
fundamental role in maintaining and regulating vital 
functions of an organism (72-75). According to current 
knowledge and understanding of this phenomenon, 
apoptosis has two signaling cascades: intrinsic 
(mitochondrial) and extrinsic pathways (76, 77). The 
intrinsic pathway is linked to permeabilization of 
mitochondrial membrane resulting in escape of cytochrome 
C from mitochondria. It triggers a cascade of reactions, 
including the binding of cytochrome C to apoptotic 
protease activating factor 1 (Apaf-1), activation of the 
caspase chain and consequently leading to the breakdown 
of the nucleus (77-79). The extrinsic pathway relies on the 
ligation of Tumor Necrosis Factor (TNF) death receptors 
on the surface of cellular membrane with Fas ligand and the 
formation of a signaling complex containing Fas-
Associated Death Domain protein (FADD). It triggers an 
activation of the caspase family (8, 3, 6 and 7), and finally 
nuclear cleavage (77, 80). Both pathways could be 
triggered by chemical, biological or physical stimuli (81-
83). 

 
In malignant cells, the apoptosis process is 

suppressed or deregulated, which promotes uncontrolled 
tumor growth and resistance to anti-cancer therapy (83). 
Restoring apoptotic reactions may amend the effect of 
traditional chemotherapy, making tumor cells more 
susceptible to pharmacological agents. 

 
In this context, EMF provides an exciting 

opportunity for the targeting of the apoptotic pathways in a 
controllable, non-invasive and reliable manner. This might 
be achieved by the exploiting the magnetic component of 
EMF and the new generation of iron-based nano-carriers. 
Recently, Cho and colleagues conducted a study, in which 
they used magnetic nanoparticles (zinc-doped iron oxide) 
conjugated with antibody for death receptor 4 (DR4), 
which acted as a ‘magnetic switch’ for the induction of 
apoptosis in colon cancer cells (84). The magnetic 

nanoparticles were bound to death-inducing signaling 
complex (DISC) containing the FADD, which launched the 
cascade of apoptotic reactions involving the activation of 
caspase 8 and caspase 3 therefore following the extrinsic 
apoptosis pathways. Apart from in vitro studies, the authors 
conducted experiments on animal models (zebra fish) in 
order to validate the effectiveness of induction of apoptosis 
by magnetic nanoparticles. The choice of zebra fish was 
dictated by the genetic similarity of zebra fish ovarian TNF 
receptor to human DR4 receptor (84). It was found that 
embryo development of fish subjected to magnetic field 
(0.5 Tesla) was significantly disturbed. Those findings 
demonstrated a potential of magnetic fields to be employed 
for apoptosis induction and may have an application for the 
treatment of various pathologies, including cancer. 

 
The last decade has been characterized by 

extensive research addressing the induction of apoptosis by 
means of pharmacological compounds. Therapeutic agents 
were found to be able to induce or suppress apoptotic 
events in the cells by targeting apoptosis pathways (80, 83). 
Some agents, such as monoclonal antibodies agonist to Dr4 
and Dr5 and all trans retinoic acid (ATRA), are active in 
the induction of an extrinsic pathway such as tumor 
necrosis factor-related apoptosis-inducing ligand receptor 
(TRAIL), while others such as arsenic trioxide, lonidamine 
and antisense Bcl-XL, Bak, Bax have been targeting the 
intrinsic (mitochondrial) pathway (80). There is also a 
range of agents that target the modulators of apoptosis 
pathways, e.g., proteasome inhibitors (bortezomib), NFnB 
inhibitor, and mTOR inhibitors. Most of these agents are 
currently in clinical trials or under development. 

 
Taking into account the high therapeutic 

potential of the above-mentioned agents in cancer 
management, it would be worthwhile to investigate the 
effect of their combined use with bio-physical modalities 
such as EMF. Some attempts have been already made for 
other non-invasive and non-ionizing physical methods such 
as ultrasound (85), but to date only a few studies have been 
carried out on EMF.  

 
4. THERMAL BIO-EFFECTS CAUSED BY 
ELECTROMAGNETIC FIELDS: APPLICATIONS 
FOR CANCER THERAPY  

 
The thermal bio-effects induced by EMF have 

been mainly associated with microwave radiation, where 
the energy has been absorbed and distributed by tissues 
resulting in heat production. The elevation of temperature 
has a huge potential for clinical implementation, in 
particular for tumor elimination. However, it must be noted 
that the thermal effect depends on many factors such as the 
parameters of applied EMF, the duration of exposure, and 
the compensatory mechanisms of the tissue. In order to 
increase the efficiency and safety of thermal therapy, the 
researchers started paying close attention to exploiting 
magnetic nanoparticles. It has been demonstrated that the 
utilizing of nanoparticles in combination with EMF allows 
an effective destruction of malignant cells and provides a 
platform for drug and gene delivery (15, 86-91). Various 
types of nano-carriers such as magnetic microsphere-
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methotrexate conjugates (92), micro-particles containing 
metallic iron and activated carbon (93), and 
magnetoliposomes have been proposed (94). Although all 
of them vary in size, structure, magnetic and thermal 
properties the application of magnetic nanoparticles mostly 
relies on generation of heat upon exposure to EMF, thus 
providing a basis for developing thermal bio-effects and 
release of loaded substances to the tissues. Apart from the 
potential for drug delivery, magnetic particles can facilitate 
target-navigation by means of Magnetic Resonance 
Imaging (MRI).  

 
The thermal effects of EMF enhanced by iron-

containing carriers have attracted interest among 
oncologists and biophysicists in the last decades. Giustini et 
al have exploited iron oxide magnetic nanoparticles (MNP) 
in combination with alternating magnetic field (169 kHz) to 
validate their radio-sensitization potential for cancer 
treatment (95). It was revealed that the coupling of 
magnetic field with MNP provided the optimal level of 
tumor regrowth compared with their solitary applications 
and micro-wave induced hyperthermia. 

 
The organ targeting of nanoparticles could be 

significantly improved by combining with targeting 
ligands. Derfus and co-workers proposed the use of 
superparamagnetic nanoparticles conjugated to 30 bp DNA 
with oligonucleotides assembled on the surface for remote 
activation (96). In their study, the molecular release was 
triggered by dissociation of DNA oligonucleotides under 
EMF (400 kHz) induced heating. 

 
Another promising area, which deserves 

attention and extensive research, is the incorporation of 
targeting ligands to the magnetic nano-carriers for binding 
to various factors on the tumor surface such as Fibroblast 
Growth Factor (FGF) or the family of TNF’s. This method 
would provide a high concentration of therapeutic agents in 
the desired location. It has some similarities with the 
utilization of the new generation of ultrasound micro-
bubbles for drug/gene delivery (97-100). However it should 
be mentioned that the ultrasound drug delivery systems 
suffer from the same issues as magnetic nano-carriers such 
as problems of controlling of size at fabrication stage, in 
vivo stability, biocompatibility, and bio-distribution.  

 
Despite the challenges, which are mainly related 

to the development phase, magnetic nano-carriers provide 
promising material for the development of a new multi-
functional platform for diagnostics, drug delivery, 
modulation of apoptosis, image-guided targeting, and 
tumor ablation. 

 
Historically hyperthermia has been considered as 

a standard method for apoptosis induction (101). In this 
perspective, the hyperthermic potential of EMF could open 
a new avenue in the targeted activation of apoptosis in 
tumor tissues. Apart from this, EMF provides the means for 
non-thermal modulation of apoptosis, particularly in 
conjunction with the use of pharmacological apoptotic 
inducers. Potentially these modulators could be 
incorporated into the magnetic nano-carriers. Once injected 

the carriers are activated by applying extracorporeal EMF, 
which would result in local release of apoptotic inducers. 
Such an approach can guarantee a synergistic effect and a 
lowering of the administrated dose. 

 
At the same time, the potential of non-thermal 

induction of apoptosis by EMF should not be ignored. It 
has been shown that ELF EMF can non-invasively trigger 
apoptotic cascades without involvement of magnetic 
nanoparticles and high EM frequencies. Berg et al 
demonstrated the in vitro efficacy of ELF EMF and pulsed 
EMF (PEMF) in the induction of apoptosis, inhibition of 
angiogenesis, suppression of proliferation and direct death 
of cancer cells (102). 

 
One of the latest technologies for the induction 

of apoptosis in cancer cells is Tumor Treating Fields (TTF) 
therapy, which has been proposed by Prof. Yoram Palti. 
This method exploits alternating electric fields with the 
frequency specific for the targeted cell type. At present, 
TTF is undergoing extensive studies, and the first results 
are promising.  

 
5. FUTURE DIRECTIONS 

 
The unique bio-physical features of EMF provide 

a mechanism for its combined use with chemical, 
biological and physical methods for treating cancer and 
other diseases. Both thermal and non-thermal bio-effects 
elicited by EMF could be effectively coupled with other 
non-invasive therapeutic modalities such as ionizing 
radiation, ultrasound, UV, photo-dynamic and laser 
therapies (7).  

 
In this context, the combination of EMF and high 

intensity focussed ultrasound (HIFU) is an exciting 
direction of research, where synergistic properties of both 
modalities could be effectively utilized for tumor reduction, 
induction of apoptosis and remotely-activated drug 
delivery. HIFU has already proven its capability for non-
invasive and precise eradication of tumors without 
damaging unaffected tissues (104-106). Apart from the 
induction of hyperthermic reaction, HIFU is able to cause 
the cavitation effect, which has been considered a driving 
force for ultrasound-assisted drug and gene delivery (67, 
106, 107). For the latter, the exploitation of ultrasound 
contrast agents with paramagnetic properties might provide 
a new platform for cancer management. Stride and co-
workers have already demonstrated the usefulness of such a 
strategy for gene delivery (108), where phospholipid micro-
bubbles containing magnetic nanoparticles were 
synthesised. These micro-bubbles were found to be more 
effective compared with phospholipid micro-bubbles and 
micelles containing magnetic nanoparticles. 

 
Double stranded DNA chain, where one chain is 

bonded to magnetic particle, and another is linked to 
therapeutic molecule, could be incorporated into the 
phospholipid micro-bubbles. This would protect the drug 
from immune arresting and prolong its lifetime in the 
circulation system. In addition, it provides visualization 
either by using MRI or ultrasound. After detection on the 
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target zone, the micro-bubbles could be subjected to an 
external magnetic or acoustic field in order to elevate local 
temperature. It would result in disruption of hydrogen 
bonding between two DNA strands and the release of 
therapeutic molecule. In order to enhance site specific gene 
delivery, the phospholipid micro-bubbles could be 
equipped with targeting ligands on their surface. This 
approach significantly broadens the EMF-associated 
applications for various clinical situations, where gene 
therapy is needed. 

 
It must be noted that the EMF-based anticancer 

therapy can be utilized in other areas, where other physical 
modalities cannot provide an appropriate level of safety and 
effectiveness. For example, the treatment of brain tumors 
by means of ultrasound and laser therapy requires direct 
access to the affected brain tissues, because the skull acts as 
an impenetrable barrier for any type of waves except 
electromagnetic ones. Although the researchers have been 
trying to overcome this obstacle by developing multi-array 
ultrasonic transducers, there are still problems with the 
heating effect and necessity for total depilation. In this 
regard, EMF offers a unique opportunity to non-invasively 
suppress tumor growth by induction of apoptosis, site-
specific delivery of chemotherapeutic agents and the direct 
ablation of malignant cells. 

 
Apart from these features, EMF has potential to 

inhibit the growth of cancer cells in a highly selective 
manner without damaging normal tissues. Recent studies 
conducted by Zimmerman et al have provided experimental 
proof that a very low level of amplitude-modulated EMF is 
able to suppress the growth of hepatocellular carcinoma 
and breast cancer cells (109).  This conforms to the results 
of another study conducted on patients (single-group, open-
label, phase I/II) by Costa et al (110). The researchers 
noted the anti-tumor efficacy of amplitude-modulated EMF 
in treatment of hepatocellular carcinoma. 

 
The sensitivity of different types of tumor to 

specific EM frequencies is a crucial factor for effective 
anti-cancer therapy. In this context, the work of Barbault et 
al deserves special attention (111). In the study, 1524 types 
of EM frequencies (from 0.1 Hz up to 114 kHz) were 
scrutinized in order to determine tumor specific frequencies 
on patients diagnosed with various types of cancer, 
including colorectal cancer, hepatocellular carcinoma, 
breast cancer and others. It was revealed that 77.6 % of 
used frequencies were tumor-specific. The application of 
EMF was not accompanied by reports of adverse effects.  

 
To summarize, EMF-based technology possesses 

all the features to become a new therapeutic modality. It 
particularly concerns the use of a new generation of 
magnetic nano-carriers for both diagnostic and therapeutic 
purposes. In the initial phase of disease, the application of 
these agents equipped with specific targeting ligands would 
significantly facilitate the imaging of affected tissues by 
means of MRI. At the same time, the nano-carriers might 
be loaded with anti-cancer drugs or apoptotic modulators, 
which could be released under externally applied EMF or 
ultrasound. Beside the drug release, EMF provides a means 

for local hyperthermia, the stimulation of production of free 
radicals, induction of apoptosis, and direct damage DNA in 
cancerous cells. Moreover, EMF allows immediate post-
treatment evaluation. Such an approach will allow the 
maximising of the therapeutic efficacy of anti-cancer drugs 
along with the decreasing probability of side effects.  

 
Notably EMF provides a wide range of options 

for its use either alone or in combination with different 
pharmacological, genetic, and bio-physical modalities for 
the treatment of cancer and various disorders. However, 
further research for the optimization of treatment protocols 
is required.  
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