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1. ABSTRACT  
 

Epilepsy is one of the most common chronic 
neurological disorders. Furthermore, it is associated to 
diminished health-related quality of life and is thus 
considered a major public health problem. In spite of the 
large number of available and ongoing development of 
several new antiepileptic drugs (AEDs), a high percentage 
of patients with epilepsy (35-40%) are resistant to 
pharmacotherapy. A hypothesis to explain 
pharmacoresistance in epilepsy suggests that 
overexpression of multidrug resistance proteins, such as P-
glycoprotein, on the endothelium of the blood brain barrier 
represents a challenge for effective AED delivery and 
concentration levels in the brain. Proven therapeutic 
strategies to control pharmacoresistant epilepsy include 
epilepsy surgery and neuromodulation. Unfortunately, not 
all patients are candidates for these therapies. 
Nanotechnology represents an attractive strategy to 
overcome the limited brain access of AEDs in patients with 
pharmacoresistant epilepsy. This manuscript presents a 
review of evidences supporting this idea. 
  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 2. INTRODUCTION 
 

Epilepsy is a chronic disorder of the brain 
characterized by an enduring predisposition to generate 
epileptic seizures (1). Although there are several available 
antiepileptic drugs (AEDs), seizures do not remit in 35-
40% of the patients despite pharmacological treatment (2-
4). Pharmacoresistance in epilepsy has been defined by the 
International League Against Epilepsy as the “failure of 
adequate trials of two tolerated and appropriately chosen 
and used AED schedules (whether as monotherapies or in 
combination) to achieve sustained seizure freedom” (2). 

 
It is well known that the impact of epilepsy is 

multidimensional and extends far beyond the harm induced 
by seizures themselves. The unpredictability of seizures 
imposes severe lifestyle restrictions on patients with 
epilepsy, resulting in significant impairments in 
psychological, emotional, economical and/or social spheres 
(5, 6). These negative impacts of epilepsy are increased in 
case of pharmacoresistant epilepsy (7-9). Compared to the 
general population, patients with drug-resistant epilepsy 
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present an increased risk of sudden unexpected death 
(SUDEP) and suicide (10-12). 

 
Pharmacoresistant epilepsy represents an 

important economical burden since patients require 
continuous medical assistance, diagnostic tests, AEDs, 
protective equipment and eventual hospitalizations (5, 7, 
13, 14). The cost of pharmacoresistant epilepsy in adults 
exceeded 2,817 USD per patient per year in the United 
States, whereas it was estimated at approximately 2,610 € 
in Germany (13, 15). In Mexico, the Mexican Institute of 
Social Security (IMSS) indicated that the annual cost per 
patient is $2,646 USD (5). Altogether, these data 
underscore the necessity of developing new therapeutic 
strategies to control pharmacoresistant epilepsy. 

 
3. HYPOTHESES TO EXPLAIN 
PHARMACORESISTANCE IN EPILEPSY 
 

There are several hypotheses that explain the 
mechanisms associated to pharmacoresistance in epilepsy. 
The neural network hypothesis suggests that recurring 
episodes of excessive neuronal activity induce structural 
changes such as neuronal degeneration, gliosis, axonal 
sprouting, necrosis and synaptic reorganization. These 
alterations could contribute to the formation of aberrant 
neural networks that may lead to pharmacoresistance (16). 
The methylation hypothesis indicates that seizures are 
associated to long-lasting epigenetic mechanisms such as 
acetylation, methylation, phosphorylation, ubiquitination of 
DNA and alterations in multidrug transporter molecules 
that contribute to the development of pharmacoresistance in 
epilepsy (17-19). The impaired mitochondrial function 
hypothesis suggests that failed responses to AEDs result 
from alterations in mitochondrial production of energy 
(20). The hypothesis of the intrinsic severity of epilepsy 
postulates that drug resistance is a consequence of an 
elevated excitatory neurotransmission that underlies higher 
seizure intensity and frequency (8, 21, 22). The target 
hypothesis establishes that patients with pharmacoresistant 
epilepsy present intrinsic or acquired changes in specific 
targets, rendering them less sensitive to AEDs effects (23, 
24). Finally, the transporter hypothesis indicates that 
pharmacoresistant epilepsy results from restricted 
penetration of AEDs to the cerebral parenchyma and a 
consequent reduced concentration in target sites as a 
consequence of increased expression of drug transporters 
such as multidrug resistance-associated proteins (MRPs) 
and P-glycoprotein (P-gp) (2, 21). According to the last 
hypothesis, many studies have aimed to design new 
strategies to ensure effective drug delivery in 
pharmacoresistant epilepsy. 

 
4. OVEREXPRESSION OF MULTIDRUG 
TRANSPORTERS AND PHARMACORESISTANT 
EPILEPSY 
 

Normally, the role of multidrug transporters is to 
efficiently remove drugs or limit their access and 
accumulation in the brain (25) (Figure 1). The most studied 
transporters are P-gp, MRPs and Breast-Cancer Resistance 
Protein (BCRP), all members of the adenosine triphosphate 

(ATP)-binding cassette (ABC) transporter protein 
superfamily (26). P-gp and MRPs are multidomain integral 
membrane proteins consisting of two transmembrane 
domains and two cytosolic nucleotide binding domains 
(27). BCRP has only one transmembrane domain and one 
nucleotide binding domain and is assumed to function as a 
dimmer (28-30) 

 
P-gp was initially discovered in cancer cells (31, 

32). Under normal conditions, P-gp is expressed in various 
tissues associated with barrier and/or secretory functions 
(33), such as the blood-testis barrier (34), the blood-
mammary barrier (35, 36) and the endothelial cells of the 
cochlea and vestibule (37, 38). P-gp is expressed in 
endothelial cells of the blood brain barrier (BBB), 
specifically at the luminal endothelium side (39, 40), and it 
plays an important role in brain protection (41, 42) 

 
Several studies in patients and experimental 

models support the role of P-gp overexpression in 
pharmacoresistant epilepsy (43-45). In 1995 Tishler et al. 
(46) were the first authors to report that the gene expression 
of multidrug resistance protein 1 (MDR1), which encodes 
for P-gp, was significantly increased in the endothelium of 
the BBB and astrocytes of epileptic brain tissue obtained 
from patients with refractory epilepsy. At present, it is 
known that P-gp is also overexpressed in neurons, 
astrocytes and endothelial cells of patients and in 
experimental models of pharmacoresistant epilepsy (47-55) 

 
Experiments carried out in animal models of 

pharmacoresistant seizures support the idea that low 
intracerebral concentrations of AEDs are correlated with a 
high expression and function of P-gp (56) (Figure 1). 
Indeed, the administration of P-gp blockers such as 
tariquidar or nimodipine, facilitates AED delivery into the 
brain of animals with pharmacoresistant epilepsy (57, 58) 

  
Overexpression of MRP has been detected in 

blood vessels, dysplastic neurons and glia of patients with 
pharmacoresistant epilepsy (59, 60). BCRP is normally 
located at the luminal surface of the microvessel 
endothelium of the BBB, but its overexpression has been 
associated to different types of pharmacoresistant epilepsy 
(61-64). At present, the role of BCRP in resistance to 
epilepsy is controversial due to the low affinity of AEDs 
for this transporter (65). The Mayor Vault Protein (MVP), a 
non-ABC multidrug resistant transporter, is also 
overexpressed in balloon cells of tissue from patients with 
pharmacoresistant tuberous sclerosis (66) and experimental 
animal models of temporal lobe epilepsy (67) 
  
5. THERAPEUTIC STRATEGIES TO CONTROL 
PHARMACORESISTANT EPILEPSY 
 

Different therapeutic strategies have been 
developed to control pharmacoresistant epilepsy. Epilepsy 
surgery has the potential to render some patients seizure 
free and/or significantly improve their quality of life (68). 
This strategy may involve removal of brain areas that cause 
seizures and/or interruption of seizure propagation 
pathways (69). Unfortunately, a high percentage of patients 
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Figure 1. Schematic representations of P-glycoprotein (P-gp) expression and antiepileptic drugs (AEDs) in blood stream and 
cerebral parenchyma under different conditions. A) Under healthy conditions, in which P-gp expression is low and limited to the 
endothelial cells of the brain microvessels, the AEDs could raise the brain parenchyma at therapeutic concentrations and induce 
anticonvulsant effects; B) In pharmacoresistant epilepsy, P-gp is abnormally expressed in neurons and astrocytes and 
overexpressed in the endothelial cells of the brain microvessels. This last condition prevents achieving effective concentrations of 
the AEDs in the brain parenchyma. C) Representation of the application of drug nanocarries of AEDs in the brain with 
pharmacoresistance epilepsy. The drug nanocarriers transport the AEDs across the BBB, a situation that allows achieving their 
effective concentrations in the brain. 

 
with refractory epilepsy (30%) are not candidates for 
surgery (70). For these patients, neuromodulation 
represents a promising strategy for seizure control (71). 
Neuromodulation strategies include electrical stimulation 
of the vagal or trigeminal nerve, deep brain areas and 
transcranial magnetic stimulation (72, 73). Although 
neuromodulation is a powerful therapeutic alternative, it 
entails invasive procedures associated to certain risks such 
as bleeding or infections (82), and side effects such as 
hoarseness, changes in voice quality, or breathing 
impairment in the case of vagal nerve stimulation (74-77). 
In addition, the different neuromodulation strategies are 
expensive (78) and, therefore, inaccessible for many 
patients. 
 
6. NANOTHECHNOLGY AND DRUG 
NANOCARRIERS 
 

Nanotechnology is the engineering of functional 
systems with domain dimensions below 100 nm (79). 

Nanotechnology has been used as a diagnostic modality in 
brain disorders. For example, iron oxide (magnetic) 
nanoparticles (MnPs) are applied as contrast agents in 
magnetic resonance imaging (MRI) (80) of cerebral 
pathologies such as tumors (81, 82), stroke (83, 84), 
multiple sclerosis (85), acute disseminated 
encephalomyelitis (86) and trauma (87, 88). Attached to 
nonradioactive drugs, such as alpha methyl tryptophan, 
magnetic nanoparticles are employed for MR imaging of 
normal cerebral functions and changes induced by epileptic 
activity (89). Conjugation of nanoparticles with specific 
markers (90) or antibodies (91) may improve diagnostic 
specificity. 

 
For therapeutic purposes, magnetic 

nanoparticles can be directed to a specific organ or 
tissue using an external magnetic field to induce local 
effects (92). For example, hyperthermia induced by 
MnPs exposed to a magnetic field has been applied 
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for termotherapy of malignant brain tumors in animal 
models (93) and in human patients (94, 95). 

 
Nanotechnology represents an attractive 

therapeutic strategy to design drug nanocarriers that allow 
transportation of previously adsorbed, entrapped, 
encapsulated or covalently linked substances to 
nanomaterials (96, 97). The main advantage of the drug 
nanocarriers is their ability to mask molecules and then 
transport them into the cerebral parenchyma across the 
BBB (98). They may also prolong the release of drugs 
increasing their efficiency (99, 100). According to these 
characteristics, drug nanocarriers are considered ideal to 
augment cerebral penetration of substances (101) for the 
treatment of pharmacoresistant brain tumors (102) or 
neurodegenerative disorders such as Alzheimer's and 
Parkinson's diseases (103). 

 
Some examples of drug nanocarriers are polymer 

nanoparticles, liposomes, dendrimers, micelles, carbon 
nanotubes, solid lipid nanoparticles and nanostructured 
lipid carriers (104-112). Drug nanocarriers should fulfill 
some characteristics to be considered as therapeutic 
options. Size must be small to avoid reticuloendothelial 
system uptake (113). Other requirements include high drug-
loading capacity, elevated stability in biological fluids and 
reduced toxicity as well as ability to provide protection 
from peripheral degradation to transported drugs (114).  
 
7. NANOTECHNOLOGY, SEIZURES AND 
EPILEPSY 
 

Several studies have studied the effects of 
anticonvulsant drugs transported by drug nanocarriers in 
animal models of seizures or epilepsy. Using the maximal 
electroshock model, Friese et al. (115) described that the 
duration of the anticonvulsant effect of MRZ 2/57, a 
non-competitive NMDA receptor antagonist, was 
longer when this drug was encapsulated in poly 
(butyl cyanoacrylate) nanoparticles coated with 
polysorbate-80. Eskandari et al. (116) described that 
the anticonvulsant effect of valproic acid is 
augmented when it is applied by intranasal route 
using nanostructured lipid carriers. Using the 
maximal electroshock model, Nair et al. (117) 
reported that the anticonvulsant effect induced by 
oral administration of carbamazepine is increased 
when the drug is loaded in solid lipid nanoparticles of 
chitosan. Yusuf et al. (118) described that the 
anticonvulsant effect of β-carotene in acute 
experimental models of seizures is improved when it is 
encapsulated in nanoparticles of poly(d,l-lactide-co-
glycolide), an effect that is more effective when the 
nanoparticles are coated with polysorbate-80.  
Carbamazepine loaded in a nanoemulgel system and 
administered by intranasal route induces higher 
anticonvulsant effects in chemically- and electroshock-
induced convulsions in mice (119). The subcutaneous 
administration of ethosuximide loaded in thermo-gelling 
nanogels of chitosan suppresses spontaneous spike-wave 
discharges in an experimental model of absence like 
seizures (120) 

Fewer studies have evaluated the effects of drug 
nanocarriers in experimental models of epileptogenesis in 
rats. The intranasal administration of thyrotropin releasing 
hormone encapsulated in polylactic acid nanoparticles 
delays kindling-induced epileptogenesis (121, 122). A 
similar effect was induced by adenosine-releasing brain 
implants containing microspheres in nanofilm-coated silk 
fibroin scaffolds (123) 

 
It is important to notice that treatment of 

pharmacoresistant disorders of the central nervous system 
is one of the greatest challenges in drug delivery. However, 
at present there are no studies aiming to evaluate the effects 
of AEDs transported by drug nanocarriers in experimental 
models or patients with pharmacoresistant epilepsy. 
 
8. HOW TO APPLY NANOTECHNOLOGY TO 
CONTROL PHARMACORESISTANT EPILEPSY   
 

The use of drug nanocarriers is potentially a very 
useful tool that may be applied to overcome the problem of 
drug delivery in pharmacoresistant epilepsy. Developing 
this technology requires the collaborative work of 
specialists in the field of nanotechnology and 
pharmacology in a multidisciplinary approach.  

 
One important consideration at the experimental 

level is that nanomaterials must be tried out in experimental 
models that reproduce the characteristics of 
pharmacoresistant epilepsy, such as the overexpression of 
transporters in the BBB. Epilepsy induced by kindling or 
spontaneous epileptic seizures as long-term consequence of 
status epilepticus may be appropriate models to identify 
animals with pharmacoresistant epilepsy. Electrical 
or chemical kindling requires the repeated application 
of initially subthreshold electrical or chemical 
stimuli, which induce progressive changes 
culminating in generalized epileptic seizures (124, 
125). Once the process of epileptogenesis is 
completed, pharmacoresistant animals are identified 
by the absence of changes in afterdischarge 
thresholds despite administration of effective doses 
of AEDs (126). Another procedure entails induction 
of spontaneous seizures as a long-term consequence 
of status epilepticus induction by repeated electrical 
stimulation of sensitive brain regions or systemic 
administration of drugs such as lithium-pilocarpine or 
kainic acid. Pharmacoresistant animals present spontaneous 
seizures in spite of adequate treatment with AEDs. 
Animals with pharmacoresistant epilepsy exhibit 
characteristics that resemble findings in patients with 
pharmacoresistant epilepsy such as overexpression of 
transporters in the BBB. However, development of 
these models requires prolonged experimental periods 
and the percentage of pharmacoresistant subjects 
obtained is low (20% or less) (127). A short-term 
alternative for obtaining animals with overexpression 
of brain transporters is the repeated administration of 
3-mercaptopropionic acid or pentylentetrazol (47, 
128). However, these procedures do not induce 
spontaneous seizures and thus should not be 
considered epilepsy models.  



Nanotechnology and epilepsy 

333 

Other important requirements to be considered in 
the development of nano-sized transporters for AEDs as 
therapeutic options in pharmacoresistant epilepsy include: 
1) nanosystems must be designed in such a way that AEDs 
can be masked and circumvent the effects of 
multiresistance proteins on the BBB facilitating penetration 
into brain parenchyma (Figure 1); 2) nanosystems must 
result in effective prolonged and sustained delivery of the 
transported drugs enabling reduced administration 
frequencies; 3) synthesis should be easy and economical; 4) 
secondary effects of application should be minimal at the 
central and peripheral levels. About the last issue, all the 
components of the drug nanocarriers have to be safe and must 
be approved by agencies for the evaluation of medicinal 
products such as the U.S. Food and Drug Administration 
(FDA) or the European Medicines Agency (EMA) (129). 
Besides the active pharmaceutical ingredient (drug), the 
nanocarriers may include other inactive substances that are 
intentionally integrated for therapeutic-enhancing purposes 
called excipients (130). All the excipients authorized by the 
FDA are listed in the Inactive Ingredients Guide (131), 
including substances with different chemical nature such as 
sugars (sucrose, trehalose, dextran, gelatine), polymers 
(polyethylene glycol (PEG), polylactide (PLA), poly(D,L-
lactide-co-glycolide) (PGLA)) and macromolecules as 
albumin. Several of these substances are used as excipients 
with nanomaterials (118, 132-136) and some nanomaterials are 
used as excipients per se (137, 138). However, the design and 
application of new drug nanocarriers focused to induce 
sustained therapeutic effects may include the application of 
novel excipients not already approved by the FDA. 
Unfortunately, at present there are regulatory uncertainties of 
using new excipients in drug products, including nanodrugs. 
Therefore, the development process of novel nanocarriers and 
their excipients focused to control pharmacoresistant epilepsy 
requires a strong collaboration between pharmacologists and 
pharmaceutical industry, including excipient innovators (131, 
139) 

 
Among the different types of nanosystem 

evaluated at present, MnPs have proven to be one of the 
best strategies for different biomedical purposes, such as 
MRI contrast agents, cellular therapy, tissue repair, ablation 
by hyperthermia, drug delivery and carrier systems (140-
142). In addition to their easy and economical synthesis 
process, MnPs offer special advantages such as their small 
size (<100 nm) allowing penetration through cell 
membranes (114, 143). Their biodegradability is carried out 
by lysosomal rupture of the iron oxide core resulting in iron 
ions that are incorporated back into the hemoglobin pool 
(144) Given the magnetic characteristic of MnPs, 
intracerebral release from special devices can be controlled 
by magnetic fields (145) 

  
Some reports indicate that MnPs present high 

biocompatibility and its administration does not induce 
toxic effects (146-148). According to this information, 
MnPs could represent an excellent strategy to deliver AEDs 
into the brain parenchyma of patients with 
pharmacoresistant epilepsy. Indeed, a previous study 
indicates that the intraperitoneal administration of MnPs for 
4 weeks does not produce “apparent” toxicity, 

histopathological changes or adverse effects on body 
development and behavior (149). However, it is relevant to 
consider that MnPs are also reactive in the biological 
environment and may induce chemical interactions and 
toxicological effects (150, 151). Concerning this issue, it is 
described that the MnPs could produce reactive oxygen species 
in excess, a situation that may result in oxidative stress (152, 
153), neuronal damage, proinflammatory effects and 
modification of BBB permeability (154). The oxidative stress 
could induce cell death as result of mitochondrial membrane 
damage or electron chain dysfunction (150, 155), mutagenesis 
(156), the activation of oncogenes such as Ras (157) or 
production of DNA damaging end-products (158) and 
subsequent carcinogenesis (159). Therefore, it is indispensable 
to determine under different physiological conditions if 
undesirable effects are produced after the chronic 
administration of MnPs. 

 
9. CONCLUSIONS 
 

It is clear that AEDs-loaded in nanosystems could 
be a promising therapy for the treatment of 
pharmacoresistant epilepsy. The preparation procedure of 
some of these nanosystems, already used routinely for 
therapy of different brain disorders, is very easy. This 
advantage along with the diversity of available modern 
technologies, the availability of proper experimental 
models of AED resistant epilepsy plus a coordinated 
endeavor involving experts in basic science, bioengineering 
and clinicians will surely promote the development of new 
-more effective- nanotherapies for the treatment of 
pharmacoresistant epilepsy over the next years. 
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