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1. ABSTRACT

Temporal Lobe Epilepsy (TLE) is a 
chronic condition characterized by epileptic 
seizures originating mainly in temporal lobe areas. 
Epileptogenesis is a process in which a central 
nervous system injury can lead surviving neuronal 
populations to generate abnormal, synchronous 
and recurrent epileptiform discharges producing 
focal or generalized seizures. Hipocampal 
sclerosis, a massive cell death in the hippocampal 
formation and in the other regions of temporal 
lobe, is considered as hallmark of TLE. Despite the 
numerous antiepileptic drugs (AEDs) commercially 
available, about 30-40% of patients remain with 
seizures refractory to pharmacological treatment. In 
addition, there is no drug with significant efficacy to 
modify the epileptogenesis process. In this review 
we present some data regarding the neuroprotective 
effect of some adenosinergic agents, erythropoietin 
and carisbamate regarding the disease- and 
epileptogenesis-modifying effect.

2. INTRODUCTION 

Epilepsy is a disorder of the brain 
characterized by an enduring predisposition 
to generate epileptic seizures and by the 
neurobiological, cognitive, psychological, and 
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social consequences of this condition (1). The 
term “epileptogenesis” refers to an injury-initiated 
change that causes surviving neuronal populations 
to generate abnormal, synchronous and recurring 
epileptiform discharges that produce focal or 
generalized behavioral seizures (2). However, 
Sloviter and Bumanglag (2) suggested that the 
window to act on the epileptogenesis process 
encompasses only the first week after status 
epilepticus (SE), and that the first days of the 
latent period correspond to a period during which 
a maturation of the epileptic circuitry occurs. 
Temporal Lobe Epilepsy (TLE) is a term used 
to define a chronic condition characterized by 
epileptic seizures originating preferentially, but not 
exclusively, in temporal lobe areas. 

Neuropathological studies indicate that 
TLE is frequently associated with hippocampal 
sclerosis (HS) that is routinely detected by 
imaging studies during the presurgical evaluation 
of patients with this disorder (3). The histological 
pattern of HS includes loss of pyramidal cells in 
the prosubiculum, CA1, CA3 and hilus of dentate 
gyrus from the hippocampal formation (3). In 
addition, phenomena of synaptic rearrangement 
(sprouting of mossy fibers) and dispersion of 
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granule cells of the dentate gyrus are frequently 
observed in the HS from patients with TLE (4). 
Changes can also be found in other regions of 
the mesial temporal lobe, the entorhinal cortex 
and white matter (5). Patients who develop TLE 
demonstrate a progression in both the number 
of seizures and in the neurological symptoms 
related to the seizures, such as cognitive and 
behavioral disorders (6,7). The high prevalence 
and refractoriness to pharmacological treatment 
make this disease a subject of great interest for 
researchers in basic and clinical areas (8).

2.1. Molecular changes in epilepsy
Despite technological advances applied to 

neurosciences, little is known about the cellular and 
molecular phenomena related to epileptogenesis, 
the process by which a previously asymptomatic 
brain becomes capable of generating spontaneous 
seizures.

Several changes have been associated 
with epileptogenesis in hippocampus from 
patients with TLE or animal models of TLE. 
Hyper-excitability occurs in response to abnormal 
expression of GABAergic neurons in CA1 which 
can cause abnormal synchrony leading to seizure 
appearance (9). Reports of high expression of 
GluR1 in mossy cells of the hilus and in pyramidal 
neurons in CA3 have been associated with 
excitation of granule cells in hippocampus of 
patients with TLE (10).

Studies have reported that astrogliosis 
can also contribute to hyper-excitability and cell 
death resulting from seizures. Astrocytes contribute 
to the inflammatory response in the central 
nervous system (CNS). Glial cells can produce 
a variety of immunological molecules, such as 
class II major histocompatibility complex antigens, 
cytokines and chemokines. High levels of pro-
inflammatory cytokines have been reported in brain 
areas involved with generation and propagation 
of seizures. Studies have shown that IL-1β is 
up-regulated after 3h and 15 days in animals 
subjected to pilocarpine (11,12). This up-regulation 
is also observed in the sclerotic hippocampus of 
patients with TLE and can contribute to seizure 
onset through glutamate release (13,14). The 
genes regulated by IL-1β are also up-regulated in 
the sclerotic hippocampus from TLE patients (15). 
IL-1β is pro-ictogenic and the exposure to IL-1β 
or TNF-α exacerbates the excitotoxic neuronal 
damage produced by NMDA and AMPA receptors 

suggesting the role of cytokines in cell death. IL-1β 
increases the calcium influx mediated by NMDA 
receptors thereby promoting excitotoxicity (16).

Despite the knowledge of a large number 
of mechanisms involved in hyper-excitability, seizure 
onset and cell damage resulting from seizures, the 
literature still lacks specific experimental models to 
study antiepileptogenesis. These models should 
allow the identification of brain areas involved with 
seizure triggering and what factors are responsible 
for this change. 

To date, there is no report about any 
antiepileptic drug (AED) effective in treating seizures 
in patients with TLE which has been efficacious 
in preventing epileptogenesis (17). In this way, 
some strategies of neuroprotection with disease-
modifying properties have been encouraged. 
Summarized below there is a brief review of studies 
on adenosinergic agents, erythropoietin and 
carisbamate regarding their neuroprotective and 
epilepsy-modifying action.

3. ADENOSINE: A BRIEF REVIEW

Adenosine is an endogenous nucleoside 
with modulatory action in different physiological 
processes in the CNS and in peripheral organs with 
potent neuroprotective action (18-21). 

The regulation of the levels of intracellular 
and extracellular adenosine in the CNS occurs by 
the balance between the mechanisms of synthesis, 
release, uptake and degradation (21,22). In 
physiological conditions, the basal concentration 
of adenosine is relatively low in intracellular 
levels (10-50 nM) (23) and extracellular 
(30-300 nM) (21,24). However, its extracellular levels 
increase dramatically in conditions of metabolic 
stress such as ischemia, seizures or trauma (25). 

The actions of adenosine in the CNS are 
mediated via P1 purinergic receptors, a family of 
G-protein coupled receptors. To date, four subtypes 
have been cloned and characterized: A1, A2A, A2B 
and A3 which differ by the type and the G-protein 
signal transduction triggering (21,24,25). Generally, 
the A1 and A3 receptors interact with inhibitory G 
proteins (Gi) promoting the inhibition of adenylate 
cyclase and thus decreasing the levels of cAMP. 
A2A and A2B receptors are coupled to stimulatory 
G protein (Gs) and activate adenylate cyclase, 
increasing cAMP (24).
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Adenosine exhibits high affinity for receptors 
A1, A2A, A3 and low affinity for A2B receptor. The 
A1 and A2A receptors are most abundant in the 
CNS, where they are involved in most physiological 
activities. A2B and A3 receptors have lower 
expression in the CNS and may be relevant in some 
pathologic processes (26).

The A1 receptors are widely distributed in 
the CNS with pre- and post-synaptic location. They 
are highly expressed in the neocortex, hippocampus, 
cerebellum and spinal cord and display a low density 
in the striatum, amygdala, olfactory bulb, thalamus, 
substantia nigra and nucleus of the solitary tract (26). 
Although these receptors are most abundant in 
neurons, they are also present in astrocytes, 
microglia and oligodendrocytes (23).

The A2A receptors exhibit a more narrow 
distribution in the CNS compared to A1 receptors. They 
are predominantly expressed in the dorsal striatum, 
particularly in striato-pallidal GABAergic neurons 
and cortico-striatal glutamatergic terminals (23,25). 
However, these receptors are also found in other 
brain regions, including the neocortex, nucleus of 
the the solitary tract, hippocampus and thalamus, 
albeit with lower levels of expression (26). As A1, 
A2A receptors are present in neurons, astrocytes, 
oligodendrocytes and microglia (23). They are also 
found in cerebral blood vessels (25). A2A receptors 
are present in the hippocampus, particularly in 
glutamatergic nerve terminals, favoring the release 
of glutamate (23). In presynaptic terminals A2A 
receptors may be co-localized with A1 receptors; 
thus, the activation of A2A reduces the inhibitory 
effects mediated by A1 (23, 27). Moreover, the 
presence of A2A receptors in the postsynaptic 
membrane of hippocampal neurons would promote 
depolarization of these cells (28).

Activation of A1 receptors is the most 
important inhibitory role played by adenosine in 
the CNS (25, 26). In contrast, A2A receptors are 
responsible for the excitatory actions of adenosine 
in the CNS and are involved in locomotion, anxiety, 
aggression, motivation and reinforcement in drug 
abuse and psychotic behaviors (29–31). Furthermore 
A2A receptors are involved in the control of cerebral 
blood flow (32).

3.1. Adenosine and epilepsy
In the CNS adenosine acts as a 

neuromodulator, predominantly inhibiting neuronal 
activity via A1 receptors (21,24). Thus, adenosine 

has emerged as an important endogenous 
anticonvulsant agent (33). Microdialysis studies have 
reported that adenosine levels rise in the extracellular 
space of the hippocampus during the ictal phases 
in both experimental models and in patients with 
complex partial seizures and this increase has been 
proposed as an intrinsic mechanism for controlling 
seizures (33,34). Thus, any manipulation able 
to increase extracellular adenosine level offers 
significant potential for both preventing and blocking 
epileptic seizures (35). 

In fact, the evidence suggests that 
the inhibitory effect of adenosine on seizure 
activity is mediated mainly by the activation of 
A1 receptors (18-20). These receptors have a 
high density in the hippocampus and are located 
in pre- and postsynaptic neuronal locations. 
Activation of presynaptic A1 receptors modulates 
excitatory synaptic transmission by decreasing 
glutamate release through inhibition of voltage-
dependent calcium channels. In parallel, activation 
of postsynaptic A1 receptors depresses neuronal 
excitability by increasing membrane conductance 
to potassium ions hyperpolarizing the cell (21,35). 
These effects are crucial for the maintenance of 
intracellular calcium homeostasis and thus may 
protect nerve cells against excitotoxicity (25).

Several reports have shown that  the 
adenosinergic A1 receptor agonist R-N6-
phenylisopropyladenosine (R-PIA) and selective 
or non-selective A2A receptor antagonists are 
neuroprotective when administrated prior to kainic 
acid (37) or pilocarpine (18,20,38,39). Accordingly, 
adenosinergic A1 receptor agonists can attenuate 
seizures in several experimental models of 
epilepsy as kindling (40–42), pilocarpine (43,44) or 
3-nitropropionic acid (45), but the neuroprotective 
action was not reported by the authors. In fact, 
little is known about the action of these agents as 
modifiers of epileptogenesis.

Several studies have shown decreased 
density and activity of A1 receptors in epilepsy 
models (37–39). Since this inhibitory system is 
deficient it favors glutamate release and occurrence 
of seizures. Besides the decreased function of A1 
receptors, reduction of the extracellular levels of 
adenosine due to the increase of adenosine kinase 
(ADK) activity in astrocytes has been reported in 
models of chronic epilepsy (49). Thus, strategies 
of activation of A1 receptors and manipulation of 
ADK in order to increase the extracellular level 
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of adenosine represent a challenge to control 
epileptogenesis.

Many authors have shifted their focus of 
interest to understanding the role of A2A receptor 
in modulating seizures (50). Contrary to what is 
observed with the A1 receptors, the density of A2A 
receptor is increased in the epileptic tissue (51). 
Furthermore, activation of the A2A receptor can 
stimulate microglia and astrocytes, causing the 
release of cytokines, increase of oxidative stress 
and inflammation (50), contributing to neurotoxicity 
and neuronal damage (27). Thus, blockade of A2A 
receptors has been considered a neuroprotective 
strategy for epilepsy (23,25,50).

According to some authors, the blockade 
of A2A receptors either using genetic deletion of 
A2A receptors in the pilocarpine model (52,53) or 
using non-selective antagonists such as caffeine 
administered chronically in the bicuculline and 
pentylenetetrazol models (54), can cause a 
robust decrease in the severity of seizures. In 
contrast, the administration of the A2A antagonist, 
3,7-dimethyl-1-propylxanthine (DMPX) prior to 
pilocarpine, increased the number of animals in 
SE (55). The chronic administration of caffeine prior 
to lithium-pilocarpine effectively prevented neuronal 
damage caused by seizures (38). However, the 
pretreatment with the selective A2A antagonist 
(7-(2-phenylethyl)-5-amino-2-(2-furyl)-pyrazolo-(4,3-
e)-1,2,4-triazolo(1,5-c) pyrimidine) (SCH58261) 
did not change the pattern of seizure-induced cell 
death, although it reduced the number of animals 
presenting SE and the mortality, and increased the 
latency to SE onset (20).

Numerous studies targeted at 
understanding the role of A2A receptors in the 
modulation of epileptogenesis have generated 
controversial data highlighting the need of studies 
with new approaches.

Herein, we highlight the important role of 
adenosine as an endogenous inhibitor of neuronal 
excitability and neuroprotector, and we provide 
an overview about the role of each adenosinergic 
receptor in these process. Knowing the metabolic 
regulation of adenosine is the major point for 
understanding the modulation of adenosine on 
seizures or on epileptogenesis. Several authors 
detailed these points in reviews, especially Masino 
et al. (35). In summary, studies that show the role of 
adenosine in the modification of epileptogenesis are 

still scarce in the literature although adenosine is 
emerging as a potent therapeutic target for epilepsy.

4. ERYTROPOIETIN

Erythropoietin (EPO), a 34 kDa 
glycoprotein hormone, is produced primarily in the 
kidney and regulates the number of erythrocytes 
within the circulation to provide adequate tissue 
oxygenation (56-58). Recent studies have 
shown that EPO is a multifunctional molecule 
produced and utilized by many tissues. EPO is 
induced under hypoxia, hypoglycemia, strong 
neuronal depolarization and excess of oxygen 
radicals (59–61). The induction of the EPO gene in 
most tissues is regulated by the hypoxia-inducible 
factor-1 (HIF-1) (62,63). Both the EPO and EPO 
receptor (EPOR) can be expressed in various 
organs, as rodent and human brain, as well as in 
cultured neurons, astrocytes, oligodendrocytes, 
microglia, and endothelial cells, and they are related 
to endogenous neuroprotective effect (64–70).

EPO is present in the CNS and also in the 
vascular and immune systems. In these systems, 
EPO offers robust protection against cell death caused 
by oxidative stress, excitotoxicity and inflammation. 
In addition, EPO promotes neurogenesis and 
differentiation in the brain and induces angiogenesis 
via downstream effectors such as vascular endothelial 
growth factor (VEGF) (56,57,71–75).

EPOR is expressed constitutively in almost 
all neurons of the hippocampus, except within the 
hilus (63). Neuronal EPOR immunolabeling is 
concentrated within cell bodies and varicosities, 
except in the CA1 area where EPOR is also 
found in basal dendrites of pyramidal neurons 
laying throughout the stratum radiatum. The basal 
expression of EPOR in the hippocampus suggests 
that it plays a role in neuronal homeostasis (63).

The ability of peripherally administered 
EPO as well as recombinant human EPO (rhEPO) 
to cross the blood–brain barrier (BBB), combined 
with its robust neurotrophic and angiogenic 
efficacy, has sparked interest in EPO as a 
potential neuroprotector  (61,67,69,70,73,76–78). 
The administration of exogenous EPO in vivo 
or in vitro preparations has shown neurotrophic 
and neuroprotective actions against central and 
peripheral neuronal injury associated with trauma, 
stroke, ischemia, inflammation and epileptic 
seizures (56,58,61,63,72,73,76,79–82).
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4.1. EPO and epilepsy
In epilepsy models, EPO has been 

associated with a variety of functions including 
reduction of seizure duration, protection against 
BBB leakage and microglial activation, prevention 
of aberrant cell genesis and granule cell dispersion, 
reduction in infiltration of macrophages and in 
inflammatory cytokines, decreased neuronal damage 
associated with spontaneous recurrent seizures 
(SRS) in rats (56,58,61,63,65,70,72–74,78,83–85).

Considering the neuroprotective and 
anti-inflammatory potential of EPO, some authors 
tested EPO-derived mimetic peptides regarding 
its disease modifying or antiepileptogenic ability. 
When administrated after SE onset, the peptide 
pyroglutamate helix B surface peptide (pHBSP) 
promoted hippocampal cell proliferation, neuronal 
differentiation and cell survival but did not affect the 
number of rats presenting spontaneous seizures (86). 
However, pHBSP was able to attenuate mood 
disorders as well as cognitive deficits associated to 
epilepsy (86).

In this line, Epotris, another EPO-derived 
peptide devoid of erytropoietic activity, was 
administrated to evaluate the histopathological 
consequences of SE induced by electrical 
stimulation (69). Epotris attenuated the seizure-
associated expansion of the neuronal progenitor 
cell population and affected the number of basal 
dendrites in these progenitor cells (69). In addition, 
Epotris diminished the microglial activation caused 
by seizures in the thalamus, but did not interfere 
with hippocampal cell loss. According to the authors, 
Epotris exerted limited in vivo effects on cell 
consequences caused by prolonged seizures (69). 
Despite the opposing biological effects, the EPO-
derived peptide mimetic design offers intriguing 
possibilities as therapeutic strategy since it may 
yield molecules with disease- or epileptogenesis-
modifying properties (87).

Several studies have shown enhancement 
of EPOR in the hippocampus following SE induced 
by pilocarpine, lithium-pilocarpine or kainic 
acid (56,60,63,65,78). When administered after SE 
onset, EPO provides neural protection in the CA1, 
CA3, and hilus (56,60,63,65,78). According to the 
authors, the mechanisms underlying this effect can 
be associated with caspase-3 inhibition, increase 
in the expression of Bcl-w, elevated expression of 
Bcl-XL, normal expression of Bim, and up-regulation 
of Bcl-2, which can neutralize Bid, a pro-apoptotic 

Bcl-2 protein, and cause down-regulation of 
Bax (39,65,84,88,89). In addition, EPO is able 
to decrease glutamate release, increase GABA 
release and suppress the influx of calcium via PI3K/
Akt and/or ERK1/2 signaling pathway, increasing the 
expression of p-Akt protein which in turn regulates 
the expression of caspase-9, hence protecting 
neurons against excitotoxicity (60,71,61,77,89). 
Given these data, we consider that treatment 
with EPO offers exciting opportunities to prevent 
the onset and progression of neurodegenerative 
disorders as epilepsy.

5. ANTIEPILEPTIC DRUGS 

AEDs are the most common treatment 
of epilepsy (91). However, even with more than 
10 new AEDs available for purchase, about 
30-40% of patients with TLE remain with refractory 
seizures even in polytherapy (92). A variety of 
mechanisms of action has been assigned to new 
and conventional AEDs, including modulation 
of ion channels, GABAergic and glutamatergic 
neurotransmission (metabolism, receptor and 
secondary messengers) (93). In some cases, more 
than one mechanism can be attributed to one AED. 
For example, phenobarbital increases GABA levels, 
potentiates GABAA receptors and facilitates chloride 
ion flux (91). Several authors have focused their 
interest on studying the modulation of epilepsy by 
AEDs and some data are shown in Table 1 (93).

As can be seen in Table 1, there is a 
considerable literature showing that AEDs might 
have a beneficial effect in the prevention of neuronal 
death resulting from epileptic seizures (94). Different 
patterns of neuroprotection can be seen with one 
AED depending on the epilepsy model tested 
(Table-1). For example diazepam applied in the 
pilocarpine model induced neuroprotection in CA1, 
CA3 and hilus (95). However in the kainic acid 
model, the neuroprotection induced by diazepam 
was observed in the amygdala, piriform cortex and 
endopiriform nucleus (96). In the kindling model 
diazepam induced a significant neuroprotection in 
CA1, CA3 and hilus only when administrated 2h 
after SE (97) (Table-1). Besides neuroprotection, 
diazepam induced significant SRS changes in a few 
cases, modifying the duration, frequency and latency 
of seizures (97–104).

The AED carisbamate (RWJ-333369; 
(S)-2-O-carbamoyl-1-ochlorophenyl-ethanol), 
has received special attention due to its ability 
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Table 1. Neuroprotective AEDs and their effect on seizures and epileptogenesis
AED Model Beginning of 

treatment 
Duration of 
treatment

Doses 
Mg/kg

Effect on 
epileptogenesis

Effect on 
seizures

Neuroprotection Ref.

DZP Pilocarpine 4, 28, 52 and 76 h 
after SE

Unique 2 ND ND CA1, CA3 and hilus (95)

Kainic acid 3h after SE Unique 25 ND ND amygdala, piriform cortex 
and endopiriform nucleus 

(114)

Amygdala 
kindling

2 or 3h after SE Unique 20 Only 42% of rats 
developed SRS

↓ frequency CA1, CA3 and hilus only 
in 2h after SE

(97)

VPA SSSE 4h after SE (SE 
was stopped with 
diazepam)

4 weeks 400‑200 
(3 × day)

No change ↓ frequency hippocampus (98)

CBZ Pilocarpine ND 56 days 40 
(3 × day)

No change ↓ frequency and 
duration

hippocampus (99)

Pilocarpine 4, 28, 52 and 76 h 
after SE

Unique 120 ND ND CA1, CA3 and hilus (95)

PHT Pilocarpine 4, 28, 52 and 76 h 
after SE

Unique 60 ND ND CA1, CA3 and hilus (95)

FBM PPS 10 and 40 min 
after PPS

Unique 50, 100 
and 200

ND ND CA1, piriform cortex, 
subiculum and amygdala

(115)

LTG PPS 1h after PPS 2 weeks 12.5. 
(2 × day)

ND ND CA3, hilus and piriform 
cortex

(116)

TPM Kindling
(HPC)

140 min after 
stimulation

Unique 20, 40 and 
80

ND ND CA1, hilus and 
CA3 (contralateral)

(114)

Lithium‑ 
Pilocarpine

10h after SE 6 days 10, 30 and 
60 (2 × 
day)

No change No change CA1 and CA3 but not 
hilus, entorhinal and 
piriform cortex

(117)

VGB Lithium‑ 
Pilocarpine

10 min after 
Pilocarpine 
administration

45 days 250 No change No change CA3, CA1 and hilus (118)

PGB Lithium‑ 
Pilocarpine

20 min after 
pilocarpine

7 days 50 No change increased latency 
for SRS

Piriform and entorhinal 
cortex

(102)

TGB PPS Immediately after 
evoked potentials

4 days 50 ND ND CA1 and CA3 (119)

LSM SSSE 24h after SE
(Stopped with 
diazepam)

24 days 10 and 30 
(3 × day)

No changes No change CA1 and piriform cortex 
only at the dose of 30 mg/
kg

(120)

CRS Lithium‑ 
Pilocarpine

1h after SE 7 days 30, 60, 90 
and 120 
(2 × day)

Suppressed SRS 
50% of rats 

Delayed the SRS 
on the other 50% 
of rats

CA1, CA3, thalamus, 
amygdala, entorhinal and 
piriform cortex

(104)

Lithium‑ 
Pilocarpine

1h after SE 7 days 90 
(2 × day)

Suppressed SRS 
50% of rats 

CA1, CA3, thalamus, 
amygdala, entorhinal and 
piriform cortex

(103)

Perforant‑path stimulation (PPS); self‑sustained status epilepticus (SSSE); spontaneous recurrent seizures (SRS); amygdala (AMY); 
hippocampus (HPC); diazepam (DZP); valproate (VPA); carbamazepine (CBZ); phenobarbital (PHB); phenytoin (PHT); felbamate (FBM); 
lamotrigine (LTG); topiramate (TPM); vigabatrin (VGB); pregabalin (PGB); tiagabine (TGB); lacosamide (LSM); carisbamate (CRB)
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to modify the epileptogenesis besides to induce 
significant neuroprotection. Indeed, carisbamate is 
an anticonvulsant with a wide spectrum of activity 
and a substantial safety margin (105). However, 
little is known about its mechanism of action. Some 
authors have reported that carisbamate blocks the 
voltage-gated sodium channel (106), although other 
authors demonstrated that carisbamate inhibits 
excitatory synaptic strength by a presynaptic 
mechanism without affecting the GABAergic 
system (107). In a recent study, Shin et al. (108) 
reported that treatments during 2 or 14 days with 
carisbamate decrease the firing activity in the 
dorsal raphe nucleus, locus coeruleus and ventral 
tegmental area, probably due to a reduction in the 
serotonin (5HT), norepinephrine and dopamine 
neurotransmission. Nevertheless, in the same study 
the authors reported increased activation of 5-HT1A 
receptors in the hippocampus (108).

In post-SE epilepsy models such as 
kainic acid and lithium-pilocarpine, carisbamate 
presents an anticonvulsant action by significantly 
increasing the latency to the occurence of 
SRS (109,110). In the lithium-pilocarpine model, 
SRS occurrence was observed only in 50% of 
carisbamate treated rats (110). Other authors 
using the lithium-pilocarpine model have shown 
that the administration of carisbamate (90 and 
120 mg/kg, i.p.), at 1 and 9 hours after SE onset, 
over 6 days, produces a strong neuroprotection 
in the hippocampus, entorhinal and piriform 
cortices, thalamus, amygdala, nucleus basalis 
magnocellularis as well in orbital, infralimbic and 
prelimbic cortices (103,104,111). In addition a 
significant preservation of learning and memory, 
attention, locomotion and coordination capabilities 
was recorded when animals were subjected 
to behavioral testing (103,111). In this model, 
carisbamate prevented mossy fiber sprouting in 
the dentate gyrus and suppressed SRS in almost 
50% of treated rats (104). Interestingly, rats that 
did not present characteristic SRS displayed spike-
and-wave discharges, an electrographic pattern 
characteristic of absence seizures. In addition, 
carisbamate exhibited anti-seizure effect in the 
Genetic Absence Epilepsy Rat from Strasbourg 
(GAERS) since it abolished spike-and-wave 
discharges (112). These data show the potential 
disease-modifying effect of carisbamate 

Based on these data, carisbamate has 
been considered a strong epilepsy-modifying AED 
with neuroprotective properties whose mechanisms 

need to be elucidated. To date, several studies 
are ongoing to attempt understanding more about 
the cellular and molecular mechanisms underlying 
carisbamate action. The proteomic technology 
using 2-dimensional electrophoresis to determine 
differential protein expression in brain areas of the 
epileptic circuit of rats treated with carisbamate have 
shown changes in glycolytic pathways associated 
with carisbamate treatment. Besides, differential 
activation of thalamic nuclei involved with seizure 
spread, has been observed in carisbamate-treated 
rats compared to untreated rats. Finally, partial 
results have shown that carisbamate also alters 
the level of monoamines (serotonin, dopamine 
and noradrenaline) and its metabolites in the 
hippocampus and entorhinal/piriform cortices of rats 
(data in progress).

In summary, despite numerous AEDs 
commercially available, about 30-40% of patients 
with TLE remain with seizures refractory to 
pharmacological treatment (92). New AEDs 
have been developed in an attempt to modify 
SRS occurrence but also to reduce the side 
effects of classical AEDs (113). Considerable 
neuroprotection has been observed with 
the use of AEDs in experimental models of 
epilepsy, however, little effect on the expression 
of SRS or epileptogenesis is reported (see 
Table 1). Interestingly, carisbamate presents 
neuroprotective effect in post-SE model of 
epilepsy, exerts a disease-modifying effect, since 
it increases the latency to SRS onset and presents 
an epileptogenic-modifying effect, since it may 
induce spike-and-wave discharges (SWD) instead 
of limbic seizures in the pilocarpine model. In 
addition, carisbamate induces a significant behavior 
and cognitive preservation in the pilocarpine model. 
Altogether, carisbamate can be considered as very 
promising tool to study epileptogenic-modifying 
mechanisms in epilepsy.

6. CONCLUSIONS 

The development of new strategies able 
to promote neuroprotection and to modify the 
epileptogenesis is a topic of high interest. Strategies 
which allow administrating some molecules in 
the earlier stage of the epileptogenic process of a 
post-SE model, and then evaluate the impact on 
SRS latency or frequency, are promising strategies 
to find potential therapeutic targets. In this way, 
adenosinergic agents, EPO and carisbamate are 
promising molecules, and can bring new knowledge 
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on mechanisms underlying epileptogenesis.
http://www.sciencedirect.com/science/article/pii/
S1059131111000124 - bib0230.
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rat from Strasbourg; HIF-1: hypoxia-inducible 
factor-1; HPC: hippocampus; HS: hippocampal 
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sclerosis; IL-1β: interleukin-1β; LSM: 
lacosamide; LTG: lamotrigine; NMDA: N-methyl-
D-aspartate receptor; PGB: pregabalin; PHB: 
phenobarbital; pHBSP: pyroglutamate helix 
B surface peptides; PHT: phenytoin; PI3K: 
phosphatidylinositol-4,5-bisphosphate 3-kinase; 
PPS: perforant-path stimulation; rhEPO: 
recombinant human erytropoietin; R-PIA: 
R-N6-phenylisopropyladenosine; SCH58261: 
(7-(2-phenylethyl)-5-amino-2-(2-furyl)-pyrazolo-
(4,3-e)-1,2,4-triazolo(1,5-c) pyrimidine); 
SE: status epilepticus; SRS: spontaneous 
recurrent seizures; SSSE: self-sustained status 
epilepticus; SWD: spike-and-wave-discharge; 
TGB: tiagabine; TLE: temporal lobe epilepsy; 
TNF-α: tumor necrosis factor-alpha; TPM: 
topiramate; VGB: vigabatrin; VPA: valproate
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