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1. ABSTRACT

The Pim-1 gene encodes for a serine/
threonine protein kinase proto-oncogene involved 
in cytokine signaling as well as in various pathways 
regulating cell cycle and apoptosis. Pim-1 kinase 
plays an important role in the development of various 
tumors mainly, prostate cancer, Burkitt’s lymphoma, 
oral cancer and various other hematopoietic 
lymphomas. This review will focus on the importance 
and mechanisms of Pim-1 in prostate cancer and the 
potential clinical relevance of its various inhibitors.

2. INTRODUCTION

The calcium/calmodulin-dependent kinases 
(camks), including CAMKI, CAMKII and CAMKIV, 
are involved in various cellular responses mediated 
by hormones, neurotransmitters and other signaling 
events (1). Activated camks upon phosphorylation, 
are involved in synchronizing fluctuations of calcium 
levels depending on the suitable cellular response. 
Camks are partly controlled by the intracellular 
calcium receptor calmodulin (cam). Camkii, camki 
and camkiv, consist of an auto-regulatory domain 
that inhibits enzymatic activity in the absence of 
calcium/cam (2). Calcium/cam binding activates 
CAMKII, while camki and camkiv contain an 
activation loop that has to undergo phosphorylation 

of a threonine residue by camk kinase (camkk) for 
activation. The CAMK group consists of the Pim 
kinases that constitute a family of three vertebrate 
serine/threonine protein kinases (Pim-1, Pim-2 and 
Pim-3) (3), enzymes involved in phosphorylation of 
the hydroxyl group of serine and threonine.

The Pim-1 oncogene was initially discovered 
as a pro-viral insertion site for the Moloney murine 
leukemia virus (MuLV) (4), which was mutated in 
more than 25% of murine T-cell lymphomas. The 
human homolog of this gene named hpim is located 
in the vicinity of 6p21 (4). Although primarily situated 
in the cytoplasm, Pim-1 is occasionally found within 
the nucleus (5,6,7).

Ongoing studies in our laboratory, aim 
to shed light on the discrepancy and unravel the 
mechanisms of action of Pim-1 in prostate cancer. 
Here we discuss the current knowledge of these 
mechanisms and the progress in understanding the 
multiple roles of Pim-1.

3. STRUCTURE OF PIM-1

In mammals, Pim-1 oncogene encodes 
a serine/threonine protein kinase proto-oncogene 
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located on the short arm of chromosome 6 (6p21.2.), 
encompassing 5kb of DNA including 5 introns and 6 
exons (Figure 1).

Human Pim-1 consists of 313 amino acids 
and encompasses 94-97% amino acid homology to 
murine and rats. The active site of Pim-1 is located 
between amino acids 38-290 and contains multiple 
conserved motifs important for its function, including 
a glycine loop motif, a phosphate-binding site and 
a proton acceptor site. Mutations such as K67M 
leads to the complete inhibition of Pim-1 kinase 
activity (8). The crystal structure of Pim-1 shows that 
phosphorylation of Pim-1 is needed for its stability 
and not for regulating kinase activity (9).

The Pim-1 serine/threonine kinase has 
two variant isoforms derived from two alternative 
transcription initiation sites. The smaller, 33kDa 
isoform was first reported in 1988 by Telerman 
et al.  (10). The murine 44kDa protein is produced 
through translational initiation at a non-conventional 
CUG codon upstream of the usual start codon; 
However this has not been independently confirmed 
in humans (11). The multifactorial regulation of Pim-1 
expression includes cytokines, such as IL-12 (12) 
and IFN-α (13), growth factors (14), and hormones 
such as gonadotropin (15). Additionally, being a 
stress-phase expressed kinase, it is also expressed 
in conditions such as hepatic ischemia  (16), 
hypoxia  (17), and in response to infections by 
H. pylori (18) and Epstein-Barr virus (19).

4. FUNCTIONS OF PIM-1

Physiologically, Pim-1 is expressed in both 
malignant and normal cells. The following sections 
will discuss the role of Pim-1 in both normal and 
malignant cells.

4.1. Physiological functions of Pim-1 in 
normal cells

Physiologically, Pim kinases are involved in 
the growth and survival of leukocytes, transcriptional 
regulation as well as various other signaling 
pathways. In various tissues, Pim-1 and Pim-2 
are expressed at low levels, but cytokine-driven 

activation (including interleukins 2, 3 and 7, 
granulocyte-macrophage colony stimulating factor, 
interferon-α and γ and erythropoietin) leads to 
a strong leukocytic induction, mediated through 
the JAK/STAT pathway  (3). Pim-1 is also part of a 
negative feedback loop in the JAK/STAT pathway; 
it is involved in the stabilization of a suppressor of 
JAK/STAT pathway – Socs1. In fact, both Socs1 
and Pim-1,2 knockout mice exhibit prolonged JAK/
STAT signaling upon IL-4 stimulation (20). Although 
Pim-1 knockout mice have a very mild phenotype, 
triple knockout mice for all the Pim genes exhibit 
a life-long reduction in body size, due to reduced 
cellular proliferation (21). Additionally, Pim triple 
knockout mice also exhibit impaired response to 
hematopoietic growth factors (21, 22). Pim kinases 
appear to share multiple common substrates such 
as BAD, p21WAF1/CIP1 and Cot/Tp1-2 substrates 
with Akt/PKB and other AGC kinases, thus playing 
a redundant role in regulating hematopoietic cell 
proliferation and survival (25) (3).

Pim kinases phosphorylate various proteins 
involved in the regulation of nuclear transcription 
and cell cycle, including the transcriptional 
repressors (HP1) and activators (NFATc1 and 
c-Myb), the nuclear transcription protein (p100), 
the cell cycle regulators (p21, Cdc25A phosphatase 
and C-TAK1/MARK3/Par1A) and the pro-
apoptotic proteins (BAD on Ser-112) (3) (25-30). 
Heterochromatin-associated protein 1 (HP1) and 
Pim-1 associated protein (PAP1) are involved in the 
silencing of chromatin and mRNA splicing regulation 
respectively, processes which are important 
components of the nuclear transcription regulation 
mechanisms (31, 32). While the co-activator p100 
activates c-Myb (26), signals from T-cell receptors 
are relayed via the NFATc1 protein (27). Pim kinases 
can induce apoptotic resistance upon removal of 
growth factors. Since Pim kinases play critical roles 
in both cell growth and survival, they provide a 
distinct survival benefit during tumorigenesis (3).

4.2. Physiological functions of Pim-1 in 
cancer

Pim kinases are known to be involved in 
promoting early transformation, cell growth and cell 

Figure 1. Structure of Pim-1.
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survival (7). Pim-1 kinase has found to be involved in 
the development of various tumors mainly, prostate 
cancer (PC), Burkitt’s lymphoma, oral cancer and 
various hematopoietic lymphomas (8, 34). As a 
downstream effector of the VEGF-A/Flk1 pathway, 
Pim-1 might also play a role in angiogenesis and 
vasculogenesis (33).

4.2.1. Physiological functions of Pim-1 in 
prostate cancers

The link between Pim-1 kinase and PC 
was first established by Dhanasekaran et al, who 
showed its significantly aberrant expression in 
PC  (7). Studies have shown that interleukin-6 
promotes activation of Pim-1 kinase by activating 
Janus-activated kinase/signal transducers and 
other signaling transcription components involved 
in the onset of PC (35). Pim-1 overexpression in 
high grade prostatic intra-epithelial neoplasia 
(HG-PIN) is considered as an initiating event in PC 
development, thus qualifying Pim-1 as a biomarker 
in PC (36). It  has been observed that cells 
displaying strong Pim-1 expression have abnormal 
mitotic spindles, chromosomal disaggregation 
and amplified centrosomes, characteristics 
responsible for the transformation of androgen-
dependent prostate cells to androgen-independent 
prostate carcinoma cells (6). A synergism between 
the expression levels of Pim-1 and Myc was 
also postulated due to their co-regulation in PC 
(7). In addition, although Pim-1 was generally 
overexpressed in prostatic neoplasia, its down-
regulation significantly correlated with poor 
prognostic outcomes of the disease based on the 
frequency of PSA recurrence (7).

Androgen receptors (AR), critical players 
in PC phosphorylated by multiple kinases, were 
regulated by Pim-1 in PC cells (37). The Pim-1 kinase 
isoforms, Pim-1S and Pim-1L, are up-regulated 
during PC and play a key role in maintaining the 
stability and the transcriptional activity of AR, through 
Ser-213 and Thr-850 phosphorylation. While, only 
the long isoform is capable of AR phosphorylation 
at Thr-850 leading to AR stabilization, only the short 
isoform can promote degradation of AR through 
phosphorylation at Ser-213 (38).

4.2.2. Physiological functions of Pim-1 in 
other cancers

Pim-1 is also over-expressed in various 
hematopoietic and lymphoid malignancies, 
gastric carcinomas, squamous cell carcinomas 

of the head and neck and colorectal cancers (6). 
Pim-1 chromosomal translocations and somatic 
hyper-mutations were identified in non-Hodgkin 
lymphomas. Moreover, Pim-1 is involved in 
non-IG/BCL6 translocations, a characteristic 
feature in B-cell non-Hodgkin lymphomas (39). 
In some cases of non-Hodgkin lymphoma 
and chronic lymphocytic leukemia, Pim-2 is 
overexpressed  (3,  40). Mutated Pim-1 was 
detected in approximately 50% of cases of diffuse 
large B-cell lymphomas, and also altered in primary 
lymphomas of the central nervous system (41). 
Overexpression in various large B cell lymphomas 
suggests Pim-1 as a vital predictive and prognostic 
marker. Pim-1 and the anti-apoptotic protein A1 
promote BCR/ABL-dependent leukaemogenesis by 
cumulative growth of BCR/ABL-mutated cells. They 
also promote cell cycle and support the BCR/ABL-
mediated cell protection from apoptosis (6, 42).

Pim-1 plays a major role in the preservation 
and transformation of Epstein–Barr virus  (EBV) 
infected B-cell lymphocytes, a characteristic linked to 
Burkitt’s lymphoma and helps in stimulating survival 
of mutated cells. In combination with the components 
of the STAT3 signaling pathway, c-Myc and Bcl-2, 
Pim-1 is upregulated to promote the transformation 
and growth of blastoid variant mantle cell lymphoma 
(MCL-BV). Also, Pim-1 can induce phosphorylation 
and up-regulation of the RUNX protein, which is 
mutated on the site of PIM (6p21‑23), a characteristic 
found in the translocation t (12;21)-positive Acute 
Lymphoid Leukemia (ALL) (6, 40). Pim-1 expression 
is present in normal gastric mucosa and gastric 
carcinoma cell lines, suggesting its involvement 
in H. pylori related diseases, such as gastritis and 
gastro-intestinal tumors (18). In human pancreatic 
duct epithelial cells expressing KRas, Pim-1 is 
up-regulated and contributes to the onset of pancreatic 
ductal adenocarcinoma (14). In solid tumors such as 
intrahepatic cholangiocarcinoma (ICC) (43) and non-
small cell lung carcinomas (NSCLC) (44), there is a 
gain of 6p, region where Pim-1 is expressed.

5. INHIBITORS OF PIM-1 KINASE

Pim-1 kinase’s oncogenic and pro-
survival ability is associated with chemo-resistance 
in hormone-refractory PC, which are severely 
aggressive. Hence, studies are now focusing on 
the identification and development of Pim kinase 
inhibitors that can guide the establishment of 
targeted therapeutic strategies against cancer (35). 
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As matter of fact, one of the classes of inhibitors, 
benzylidene-thiazolidine-2,4-diones, can abrogate 
the activity of the Pim-1 kinase in vitro in the 
22Rv1 and DU145 PC cell lines. The loss of Pim-1 
kinase activity was determined by measuring the 
levels of phosphorylated Bad, a pro-apoptotic 
protein phosphorylated by Pim-1, thus abrogating 
its activity. Pim-1 has also been shown to interact 
with various other cell cycle-regulating proteins to 
promote cell cycle checkpoint progression, and 
escape from apoptosis. FACS analysis revealed 
that, the inhibitors were also able to override the 
activity of Pim-1 and induce a cell cycle arrest at 
G1, (Figure 2) (45).

Another small molecule, inhibitor of Pim-1 
kinase, is the DHPCC-9, with general cytotoxicity 
can reverse the anti-apoptotic effect exhibited 
by the Pim-1 kinase in malignant cells (46). This 
effect is mediated through the inhibition of the 
phosphorylation of Pim-1 substrates such as Bad, 
which uses the same mechanism as that utilized 
by the novel benzylidene-thiazolidine-2,4-diones 

discussed earlier. In addition, DHPCC-9 is able to 
block the promotion of cell migration and invasion 
caused by overexpression of the Pim-1 kinase. In 
fact, NFAT1c transfected cells treated with DHPCC-
9, inhibited cell motility (Figure 3), suggesting 
that Pim-1-promoted cell migration and invasion 
is, likely at least partially, mediated through the 
NFATc1 (46).

Further, a selective small molecule inhibitor 
of Pim kinase family, an imidazo (1,2-b) pyridazine 
derivative, SGI-1776 is specific for Pim kinases with 
lower affinity. It can inhibit cell cycle and induce 
apoptosis in PC cells and cause molecular changes 
which include targeting Pim kinase substrates, 
Bad and p21 at their specific phosphorylation sites 
Ser-112 and Thr-145 respectively. In addition, 
to the above, several studies have shown that 
SGI-1776 induces cytotoxic effects in androgen-
independent prostate tumors but not in androgen-
dependent tumors. This inhibitor in combination with 
chemotherapy has found to inhibit Pim kinase in 
prostate cancer by inducing taxane sensitivity and 
can prevent resistance to taxane by inhibition of 
MDR1 activity (35).

The Pim-1 kinase is also a known target 
for immunotherapy of cancer, with monoclonal 
antibodies directed against Pim-1 being tested 
in both in vitro and in vivo models. The antibody 
used was shown to react with both the 33kDa and 
the 44kDa isoforms of the protein as well with a 
novel 37kDa Pim-1 detected in the study which is 
most probably a splicing variant or is generated 
through post-translational modification. This 
monoclonal antibody was able to induce most of 
the effects expected of a Pim-1 kinase inhibitor 
including reduction in phosphorylation levels of 
pro-apoptotic protein such as Bad and Akt thus 
causing their inhibition. In addition, the anti-
Pim-1 mAb was shown to have a synergistic 
effect (using 2-way ANOVA, P<0.0.01) with 
chemotherapy, specifically with cisplatin and 
epirubicin, as it also inhibited the growth of 
chemo-resistant cancer cells, through abrogation 
of the Pim-1 mediated phosphorylation of BCRP/
ABCG2, otherwise responsible for the induction 
of chemo-resistance (47).

6. SUMMARY AND PERSPECTIVE

The Pim-1 kinase has been shown to play 
an important role in the prostate cancer in general 

Figure 2. Novel benzylidene-thiazolidine-2,4-diones shown to 
inhibit Pim-1 kinase. Reproduced with permission from (45).

Figure 3. 1,10-dihydropyrrolo(2,3-a)carbazole-3-carbaldehyde 
(DHPCC-9). Reproduced with permission from (46).
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and in the progression of pre-malignant HG-PIN 
to malignant prostatic carcinomas in particular. 
Further investigation into possible mutations/
polymorphisms in the Pim-1 gene, which could 
putatively cause overexpression of the gene and 
thus increase susceptibility to prostatic cancer, is 
needed. Research showing the link between single 
nucleotide polymorphisms in the Pim-1 gene and an 
increased incidence of non-small cell lung cancer 
in Korean patients can be taken as a starting point 
for any such endeavor (48). Mutations have also 
been detected in the Pim-1 kinase gene in 50% of 
B-cell diffuse large cell lymphomas, thus, furthering 
the case for the existence of such mutations in 
prostatic cancer, especially since Pim-1 kinase is 
known to play a major role in the progression of this 
cancer (49).
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