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1. ABSTRACT

Endometriosis is one of the most common 
gynecological diseases that significantly reduce the 
life quality of affected women. Research results from 
the past decade clearly demonstrated that aberrant 
production of estrogen and cyclooxygenase-2-
derived prostaglandin E2 play indispensable roles 
in the pathogenesis of this disease. However, the 
etiology of endometriosis remains obscure. Recent 
evidence reveals a new facet of endometriotic 
pathogenesis by showing that hypoxia induces the 
expression of many important downstream genes to 
regulate the implantation, survival, and maintenance 
of ectopic endometriotic lesions. These new findings 
shed lights on future investigations of delineating 
the etiology of endometriosis and designing new 
therapeutic strategy for endometriosis.

2. INTRODUCTION

Endometriosis is a common gynecological 
disorder, characterized by the presence of 
endometrial tissue outside of the uterine cavity, 
with a complex, multifactorial etiology. General 
symptoms of endometriosis include pelvic pain, 
dysmenorrhea, and infertility, which significantly 
reduce life quality of affected women. Although the 
etiology of endometriosis remains largely unknown, 
retrograde menstruation has been proposed and 
well-accepted to be a crucial prerequisite for the 

development (1). This notion is supported by several 
clinical observations describing that women with 
vaginal or cervical obstruction have higher risk of 
developing endometriosis (2-4). Along with these 
lines of evidence, baboons with ligated cervices 
tends to develop endometriosis compared to the 
control group (5). Intriguingly, a more recent survey 
indicates that endometriosis is found exclusively in 
species that menstruate (6). However, the theory of 
retrograde menstruation is insufficient to explain why 
90% women of reproductive age have retrograde 
menstruation but only 10-15% of them develop 
endometriosis (7). It is clear that retrograded 
endometrial tissues have to escape from the 
surveillance of immune system and to establish a 
network of blood vessel for supporting proliferation 
in peritoneal cavity. Therefore, for retrograded 
tissues to successfully survive and implant in the 
pelvic cavity, the local microenvironment has to 
play important modulatory roles in the pathogenesis 
of endometriosis. Two of the local factors, hypoxia 
and inflammation-derived prostaglandins (PGs) 
(Figure  1), attract most attention due to the 
indispensable roles they play during the development 
of endometriosis.

PGs are increased in the menstrual 
fluid of women with dysmenorrhea and 
endometriosis (8), which ind Concentrations of 
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uces excessive myometrium contraction and 
abnormal uterine arterial vasoconstriction resulting 
in local hypoxia and menstrual abdominal pain. The 
retrograded endometrial debris during menstruation 
is in hypoxic milieu due to lack of hormone and 
blood supply. In animal study, the growth of hypoxia-
pretreated endometriotic implants is increased via 
the induction of the proliferation and angiogenesis-
associated markers, such as vascular endothelial 
growth factor (VEGF) and hypoxia-inducible factor 
(HIFs) (9). Hypoxia-inducible factors, a group of 
transcription factors in response to hypoxic stress, 
account for the transcriptional modulation of genes 
in cells under hypoxic stress. Two subunits, α and 
β, form heterodimeric complex of HIF. Although both 
are constantly transcribed and translated either 
under normoxia or hypoxia, they are regulated 
in a very distinct manner. HIF-1β, also termed 
aryl hydrocarbon nuclear translocator, is stably 
expressed under normoxia and hypoxia conditions. 
In contrast, the α subunit, such as HIF-1α and 
HIF-2α, undergoes proteolytic degradation through a 
ubiquitin-mediated, proteasome-dependent pathway 
in the presence of ambient concentration of oxygen. 
Under hypoxic condition, HIF α becomes stable and 
accumulates in the nucleus due to lack of enzymatic 
activity of prolyl hydroxylases, which prevents HIF 
α from hydroxylation and thus degradation by 26S 
proteasome (10).

HIF members express in distinct cell-types 
and functional layers of human endometrium (11, 12). 
HIF-1β expresses constantly through the cycle, and 
reaches its maximal levels in the glandular cells 
during the proliferative phase. In contrast, HIF-1α 
expresses mainly in secretory and menstrual phases 
in the functional layer and protein level reaches the 
maximal around late secretory phase (11). These 
findings suggest that HIF may play some important 

roles in maintaining normal endometrial functions, 
especially in cellular and angiogenic gene expression 
in response to hypoxia at progesterone withdrawal via 
PG pathway. The first piece of evidence that clearly 
demonstrates the pathological function of HIF-1α in 
endometriosis was reported by Wu et al., who showed 
constitutively elevated levels of HIF-1α mRNA and 
protein in ectopic endometriotic lesions but not paired 
eutopic endometrial tissues (13). Following this 
pioneer observation, several papers subsequently 
reported the function and regulation of HIF-1α during 
the development of endometriosis (9, 14-18). In 
this review, we will discuss the most recent findings 
regarding roles of hypoxia in the pathological 
processes of endometriosis.

3. HYPOXIA REGULATES ABERRANT 
CYCLOOXYGENASE (COX)-2 EXPRESSION

PGs belong to a group of long chain fatty 
acid biosynthesized from arachidonic acid and 
have been implicated in many physiological and 
pathological processes such as inflammation, 
tissue repair, proliferation and angiogenesis (19). In 
mammals, cells synthesize PGs from arachidonic 
acid through a cascade of multiple enzymes 
including phospholipase A2 (PLA2), prostaglandin 
G/H synthase (better known as cyclooxygenase, 
COX), and terminal PG synthase(s). PLA2 cleaves 
and releases arachidonic acid from membrane-
bound phospholipids. COX then converts 
arachidonic acid to PGH2, which is a common PG 
precursor and will be further converted to other 
PGs or PG-related metabolites by terminal PG 
synthase(s). Dysregulation of these particular 
enzymes have been linked to the development 
of endometriosis (20-24). COX-2, the enzyme 
responsible for the rate-limiting step in PGE2 
biosynthesis, was found aberrantly overexpressed 

Figure 1. The master role of hypoxia in the endometriosis. Hypoxic stress promotes (1) proinflammatory prostaglandins production, modulates 
(2) estradiol signaling via regulation of estrogen receptor α and β expression and induces (3) angiogenic factor expression
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in peritoneal macrophages (23) and in endometriotic 
stromal cells (24). Aberrant production of PGE2 by 
macrophages and ectopic stromal cells contributes 
to numerous pathological processes contributing 
to the development of endometriosis including 
steroidogenesis (25-27), cell proliferation (28-31), 
angiogenesis (15), and immune suppression (32-35). 
Although elevated proinflammatory cytokines are 
commonly found in the peritoneal fluid from women 
with endometriosis (36), it does not fully account for 
the overexpression of COX-2 in the endometriosis. 
Instead, we demonstrated that COX-2 gene is at 
least 100 times more sensitive to interleukin (IL)-1β 
treatment in endometriotic stromal cells compared 
with normal endometrial stromal cells and this 
increased sensitivity of COX-2 gene is mediated 
via extracellular signal-regulated kinase (ERK)-
dependent transactivation (24). Since there is no 
known active mutation of molecules upstream of ERK 
in endometriosis patients, it is reasonable to suggest 
that an increase in ERK activity may be mediated 
by loss-of-function of downstream phosphatases 
which inactivate ERK. We found dual-specificity 
phosphatase-2 (DUSP2), a nuclear phosphatase 
that inactivates ERK, is markedly downregulated in 
stromal cells of ectopic endometriotic tissues  (16). 

The bioinformatic analysis revealed that there is 
a putative hypoxia response element (HRE) in 
DUSP2 promoter, suggesting DUSP2 is a potential 
hypoxia-targeting gene. This notion was supported 
by the results that hypoxic stress (1% oxygen), 
hypoxia-mimetic chemicals (desferrioxamine or 
dimethyloxaloylglycine), and overexpression of 
HIF-1α downregulate DUSP2. Consistently, HIF-1α 
knockdown or mutation in HRE of DUSP2 promoter 
rescues hypoxia-mediated DUSP2 downregulation. 
DUSP2 downregulation leads to more activated 
ERKs and p38 mitogen-activated protein kinase 
(MAPK), and ultimately results in hypersensitivity of 
COX-2 in response to proinflammatory stimuli (16) 
(Figure 2, right panel and Figure 3-(2)).

MicroRNAs (miRNAs) are small noncoding 
RNA modulating the target gene expression through 
cleavage or translational repression. The regulatory 
function of miRNAs has been implicated in hypoxia, 
inflammation, tissue repair, cell proliferation, 
apoptosis, extracellular matrix remodeling, and 
angiogenesis in endometriosis (37). It has been 
reported that expression of miR-20a is relatively 
higher in ectopic lesions compared to that in eutopic 
endometrial tissues (15, 38). By using bioinformatic 

Figure 2. Hypoxia potentiates proinflammatory pathway by modulating DUSP2/ERK molecular module. Under normoxia condition (left panel), 
IL-1β-induced COX-2 expression is properly regulated by DUSP2 acting on ERK. In contrast, hypoxic stress facilitates the accumulation of 
HIF-1α (right panel), which either directly represses DUSP2 transcription or indirectly induces miR-20a to target DUSP2 3′-UTR, causing 
downregulation of DUSP2. Downregulation of DUSP2 unleashes the IL-1β-induced COX-2 expression and further prostaglandin production. 
Hypoxia also induces expression of PLA2 and mPGES, which work together with COX-2 to produce tremendous amount of PGE2 (purple 
lines). Both ERK and PGE2 form a positive regulatory loop to stabilize HIF-1α (not shown on the figure). COX-2, cyclooxygenase-2; DUSP2, 
dual-specificity phosphatase-2; ERK, extracellular signal-regulated kinase; HIF-1, hypoxia-inducible factor-1; interleukin-1β, IL-1β; miR-20a, 
microRNA-20a; mPGES, microsomal PGE synthase; PLA2, phospholipase A2; PGE2, prostaglandin E2.
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and molecular biology approaches, we identified that 
promoter of miR-20a harbors a functional HRE, a 
cis-DNA segment where HIF binds to. Further study 
demonstrated that expression of miR-20a is induced 
by hypoxia (1% oxygen). Interestingly, one of the 
targets of miR-20a is DUSP2. Along with this line of 
evidence, introducing mutation to miR-20a targeting 
site in DUSP2  3′-UTR rescues hypoxia-mediated 
DUSP2 downregulation. Forced expression of miR-
20a represses DUSP2 expression, which further 
promoting ERK phosphorylation and resulting 
overexpression of downstream ERK-regulated 
genes, such as COX-2, angiogenic and mitogenic 
factors, in endometriotic stromal cells (15) (Figure 2, 
right panel). Taken together, these lines of evidence 
strongly support that hypoxia is a critical factor 
that potentiates COX-2 gene sensitivity in ectopic 
endometriotic stromal cells.

4. HYPOXIA TUNES ESTROGEN-
MEDIATED SIGNALING FAVORING THE 
DEVELOPMENT OF ENDOMETRIOSIS

The establishment and development of 
endometriosis highly depend on estrogen. First, the 

identification of endometriosis typically appears after 
menarche and endometriotic lesions usually regress in 
women with menopause or ovariectomy (39). Second, 
Dizerega et al. demonstrated that only implanted 
endometrial tissues in castrated monkeys receiving 
capsules with estrogen or progesterone successfully 
established endometriotic lesions (40). Two isoforms 
of nuclear estrogen receptor (ERα and ERβ) and 
one G protein-coupled estrogen receptor (GPR30) 
mediate most of regulatory functions of estrogen in an 
isoform-specific manner (41, 42). All of three isoforms 
are implicated in the development and maintenance of 
endometriosis. In a mouse uterine fragments-implanted 
model, fragments from either ERα- or ERβ-knockout 
donor mice developed less and smaller endometriotic-
like lesions compared to tissues from wild-type donors 
(43) whereas a mouse model of endometriosis-
induced by implantation of human endometrium 
demonstrated that treatment with ERβ-selective 
agonist induces the regression of endometriotic-like 
lesions (44). In orchestration with the roles of ERα and 
ERβ, treatment with a GPR30-selective ligand also 
promotes proliferation of eutopic endometrial stromal 
cells (45), supporting the important role of estrogen in 
the pathogenesis of endometriosis.

Figure 3. Hypoxia induces multiple angiogenic pathways. Hypoxia directly triggers CYR61, VEGF and leptin expression (1), while indirectly 
promotes both CYR61 and OPN expression through the impact on COX-2/PGs pathway ((2), dot frame). Hypoxia increases the ratio of ERβ/
ERα favoring the expression of VEGF ((3), dash frame) and also promotes estradiol-induced VEGF expression (4). Both prostaglandins 
and estrogen stabilize HIF-1α to form a positive feedback loop ((5), red lines), enhancing the effect of hypoxia on angiogenesis. COX-2, 
cyclooxygenase-2; CYR61, cysteine-rich protein 61; HIF-1, hypoxia-inducible factor-1; ER, estrogen receptor; OPN, osteopontin; PG, 
prostaglandin; VEGF, vascular endothelial growth factor.
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Aberrant expression of ERα, ERβ, 
and GPR30 have been reported in women with 
endometriosis. ERα downregulation and/or ERβ 
upregulation are found in endometriotic tissue, 
causing the higher ratio of ERβ/ERα (46-52) 
whereas GPR30 overexpresses in endometriotic 
tissues (53, 54). Although multiple lines of 
evidence demonstrate a higher ratio of ERβ/ERα 
in endometriotic tissues (46-52), the underlying 
mechanism of which still remains unclear. A  study 
from Xue et al. showed hypermethylated ERα 
promoter and hypomethylated ERβ in endometriotic 
tissue, suggesting that epigenetic dysregulation 
such as DNA methylation is involved (51). However, 
another study found no difference in DNA methylation 
patterns in ERα and ERβ promoter regions between 
endometriotic and endometrial tissues (55). This 
discrepancy may result from the diversity of different 
population and methods for detecting methylation. 
Further investigations in DNA methylation are 
warranted to resolve this discrepancy. In contrast 
to the controversy of DNA methylation, hypoxia 
has been shown to regulate the expression of ERβ, 
ERα, and GPR30. Treatment of eutopic endometrial 
stromal cells with hypoxia induces ERβ but inhibits 
ERα expression leading to a marked increase in ERβ/
ERα ratio. The suppressive effect on ERα and the 
induction of ERβ by hypoxia (1% oxygen) is regulated 
at the transcriptional level in a HIF-1α dependent 
manner (52). In addition to the regulation of ERs 
by hypoxia, GPR30 is also upregulated by hypoxia 
in a HIF-1α-dependent fashion, and mediates the 
anti-apoptotic effect of estrogen in hypoxia-induced 
apoptosis (56). The interplay between hypoxia 
and estrogen could be further complicated since 
estrogen induces nuclear accumulation of HIF-1α 
(Figure  3-(5)) and this effect can be repressed by 
an anti-estrogen antagonist (57). Taken together, 
the direct positive regulation of HIF-1α on ERβ 
expression and vice versa the estrogen on HIF-1α 
accumulation may favor the establishment of 
endometriotic lesions (Figure 3-(3)).

5. HYPOXIA FACILITATES THE LEPTIN 
SIGNALING IN THE PATHOGENESIS OF 
ENDOMETRIOSIS

Leptin is originally identified as an 
endocrine hormone, which is primarily secreted by 
adipocytes, acts on hypothalamus to regulate energy 
homeostasis. A growing body of evidence indicates 
leptin and its receptors widely expressed in various 
tissues such as stomach, muscle, placenta, ovary, 
and uterus and also act in paracrine and autocrine 

fashions (58-63). In addition to the regulatory roles in 
maintaining energy homeostasis, functions of leptin 
also involve in cell proliferation, angiogenesis, and 
immune response.

It has been demonstrated that level of leptin 
was elevated either in serum or peritoneal fluid from 
women with endometriosis (64, 65). Furthermore, 
leptin receptor was expressed in both endometriotic 
stromal and epithelial cells (66, 67), suggesting 
the paracrine and autocrine effects of leptin in 
endometriosis. Either in primary endometriotic 
lesion-derived cells or immortalized endometriotic 
cells, leptin stimulates both stromal and epithelial 
cells proliferation in an ERK/JNK dependent 
manner (66, 67). In a murine model, blocking 
the signaling of leptin by administration of leptin 
antagonist reduces levels of mitotic and angiogenic 
markers and causes less vascularized lesions, 
supporting that leptin and its receptor contribute to 
the pathogenesis of endometriosis by promoting cell 
proliferation and angiogenesis (68).

Although it has been shown that leptin itself 
is involved in a positive regulatory loop in which leptin 
stimulates leptin expression (66), the initiated signal 
stimulating leptin expression in endometriotic stromal 
cells was not revealed until recently. Two functional 
HREs were found in human leptin promoter and first 
intron (13). Promoter activity of leptin was abolished 
in the HRE-mutated reporter constructs, supporting 
the key role of hypoxia in leptin induction. Most 
importantly, normal endometrial stromal cells do not 
express leptin, which can be induced when culturing 
in hypoxic condition (1% oxygen). Hypoxia-mimetic 
treatment recapitulates elevated leptin expression in 
endometriotic stromal cells in a HIF-1α dependent 
fashion. Taken together, these findings demonstrate 
that aberrant expression of leptin in endometriotic 
lesions is induced by hypoxia (Figure 3-(1)).

6. HYPOXIA INDUCES NEO-
VASCULARIZATION IN ECTOPIC 
ENDOMETRIOTIC TISSUES

One of the greatest challenges to the 
retrograde endometrial tissues in peritoneal cavity 
is to establish an available vessel network for 
exchanges of oxygen, nutrients, and metabolites. 
To overcome this constrain of limited oxygen level, 
the cells have to acquire the ability to recruit and to 
modulate the assembly of endothelial cells, smooth 
muscle cells into pre-existing vessels, namely 
angiogenesis.
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Hypoxia has been known as a master 
regulator of angiogenesis. In normal endometrium, 
hypoxia treatment induces expressions of several 
VEGF isoforms in both epithelial and stromal 
cells (69), suggesting that hypoxia and VEGF may also 
modulate angiogenesis in endometriosis. In support 
with this notion, levels of VEGF in the peritoneal 
fluids collected from women with endometriosis are 
actually higher than those in control group (70, 71). 
A more recent study demonstrates that suppression 
of HIF-1α-downstream VEGF expression and 
therefore blockade of angiogenesis reduces the size 
of endometriotic lesions in a mouse model (14). Of 
note, the estrogen-induced VEGF expression is also 
facilitated by HIF-1α (Figure 3-(4)). Although VEGF 
promoter has no consensus estrogen response 
element, estrogen triggers PI3K/Akt-dependent 
pathway to stabilize HIF-1α (Figure  3-(5)). Both 
HIF-1α and ERα are recruited to VEGF promoter 
upon estrogen treatment and further induce VEGF 
expression (72, 73).

In addition to VEGF, other hypoxia-
induced angiogenic factors are also implicated 
in the development of endometriosis. First of all, 
the abovementioned leptin is a potent angiogenic 
factor (74-76). In a murine model, blockage of leptin 
signaling either by treatment of leptin antagonist or 
by implantation of endometrial tissues derived from 
leptin receptor knockout mice results in reduced 
vascular lesions and less VEGF expression. Of 
note, although blockage of leptin signaling causes 
lower VEGF expression, the restoration of VEGF 
level by intraperitoneal injection does not rescue 
the development of vascular lesions, indicating that 
individual angiogenic factors may have distinct and 
non-dispensable roles in the process of vascular 
remodeling (68).

Secondly, a group of angiogenic factors, 
including cysteine-rich protein 61 gene (CYR61) and 
osteopontin, were identified to be upregulated by 
hypoxia (15, 77). CYR61, belonging to CCN protein 
family, was originally found to express at sites where 
neovascularization occurs and a ligand to αvβ3 
integrin, which is involved in angiogenesis (78, 79). 
Later studies demonstrate that CYR61 promotes 
neovascularization in the model of rat cornea (80) 
and cyr61-deficiency in mice is embryonic lethal 
due to severe vascular defects during placental 
development (81). CYR61 is aberrantly expressed 
in endometriotic tissues (15, 82, 83), indicating 
its potential angiogenic roles in the pathogenesis 
of endometriosis. Elevated CYR61 expression 

is recapitulated by hypoxia treatment in eutopic 
stromal cells via a HIF-1/2α-dependent DUSP2 
downregulation-mediated mechanism (15). Similar 
to CYR61, osteopontin is another potent angiogenic 
factor that has been shown in both in vitro and in vivo 
models (84, 85). Higher osteopontin level is found 
in women with endometriosis (86) and this elevated 
expression of osteopontin is induced by hypoxia in 
a HIF-dependent manner (15) (Figure 3-(1)). Taken 
together, the microenvironmental hypoxia triggers 
multiple distinct but yet compensatory pathways to 
ensure the proper development of vessel networks 
at the sites where endometrial tissues reside.

7. INTERACTION BETWEEN HYPOXIA AND 
PGS

Both hypoxia and PGs play crucial roles in 
the normal endometrium physiology. Endometrium, 
the believed origin of endometriotic tissue, exhibits 
many of the classic hallmarks of inflammation upon 
menstruation. One of the most important hallmarks 
is to produce substantial proinflammatory cytokines, 
such as PGs. It was demonstrated that withdrawal 
of ovarian steroids induces COX-2 expression and 
subsequently increases production of PGs including 
PGE2 and PGF2α in human endometrial stromal 
cells (87). An episode of PGF2α-mediated transient 
hypoxia is then induced by vasoconstriction when 
PGF2α acts on spiral arterioles of endometrium. In 
parallel to PGF2α, PGE2 stabilizes HIF-1α via the 
E-series prostanoid receptor 2 (EP2) pathway in a 
model of endometrial epithelial cells (11). Together 
both hypoxia and PGs (PGF2α and PGE2 particularly) 
induce factors mediating cyclic repair of endometrium 
such as VEGF, IL-8, and CYR61 (88-90).

As the capacity in response to hypoxia 
and producing PGs in endometrium, retrograded 
endometrial tissues inherit these traits. In a similar 
but distinct scenario, retrograded endometrial 
tissues are facilitated to develop to endometriotic 
lesion by reciprocal interaction between 
hypoxia and dysregulated immune response. 
Both elevated levels of PGF2α and PGE2 have 
been found in peritoneal fluid from women with 
endometriosis (23, 91). Intriguingly, overexpression 
or elevated activity of phospholipase(s) and terminal 
PG synthase(s) is found in endometriotic lesions 
and macrophages (20-22, 92) (Figure 2, right panel). 
In a mouse implantation model, both endometrial 
fragments from microsomal PGE synthase-1 
knockout (mPGES-1-KO) donor to wild type 
recipient and endometrial fragment from wild type 
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donor to mPGES-1-KO recipient show reduced size 
of endometriotic lesion compared to wild type to wild 
type transplantation (93), supporting the idea that 
terminal PG synthase is crucial to the development 
of endometriosis. Regarding the regulation of PLA2 
and PGES, several lines of evidence have indicated 
that hypoxia is a key inducer (94-97) and thus it is 
reasonable to rationalize that hypoxic environment 
causes the elevated levels of PGs in peritoneal 
cavity (Figure 2, right panel).

More intriguingly, hypoxia and PGs act 
independently or collectively in modulating the 
development of endometriosis. Overexpression of 
pro-angiogenic factor CYR61 in eutopic endometria 
and ectopic endometriotic lesions of women with 
endometriosis is regulated by both hypoxia and 
PGs (82, 83, 89) (Figure 3-(1) and (2)). There are also 
studies in models other than endometriosis indicating 
that PGs stabilize or activate HIF-1α. In a study of 
colorectal cancer, elevated PGE2 enhances HIF-1α 
transcriptional activity through a MAPK-dependent 
pathway, which ultimately induces VEGF production 
and promotes colorectal tumor cell survival and 
angiogenesis (98). Similar to PGE2, PGF2α is also 
capable to activate HIF-1α under normoxic condition in 
a model of adipogenesis (99). Therefore, hypoxia and 
PGs alone or in synergy dysregulated gene expression 
that plays important roles in the development and 
persistence of endometriotic lesions.

8. CLOSING REMARKS

In the last decades, more and more 
biochemical, cellular and molecular differences 
between eutopic endometrial and ectopic 
endometriotic tissues have been discovered. It is no 
doubt that hypoxic stress is one of the most critical 
driving forces behind these differences. Hypoxic 
stress leads to the aberrant expression of COX-2 
and thus PGs over-production, which causes a 
positive feedback loop of COX-2 expression and 
HIF-1α stabilization. Hypoxia also promotes cell 
proliferation through modulation of ER expression, 
leptin signaling, and indirectly the PGE2 pathway. 
Last but not the least; hypoxia induces angiogenic 
factors such as VEGF, leptin, CYR61, and 
osteopontin to facilitate the establishment of valid 
vessel networks. These hypoxia-regulated gene 
networks regulate key pathological processes of 
endometriosis. Unraveling the mechanisms of 
gene-gene and gene-environment interactions may 
provide valuable information to design selective 
inhibitors against these novel targets downstream of 

hypoxia as effective therapeutic regimens to prevent 
or control the development of endometriosis.
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